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Abstract
Early-life adversity (ELA) represents a major risk factor for the development of behavioral dysfunctions and mental disorders
later in life. On the other hand, dependent on type, time point, and duration, ELA exposure can also induce adaptations, which
result in better stress coping and resilience later in life. Guided by the hypothesis that chronic exposure to ELA results in
dysfunctional brain and behavior, whereas short exposure to ELA may result in resilience, the behavioral and neurobiological
consequences of long-term separation stress (LTSS) and short-term separation stress (STSS) were compared in amouse model for
ELA. In line with our hypothesis, we found that LTSS induced depressive-like behavior, whereas STSS reduced depressive-like
behavioral symptoms. We then tested the hypothesis that the opposite behavioral outcomes of the two stress paradigms may be
mediated by functional, epigenetically regulated changes of dopaminergic modulation in the hippocampal formation. We found
that STSS exposure elevated dopamine receptor D1 (DRD1) gene expression and decreased gene expression of its downstream
modulator DARPP-32 (32-kDa dopamine- and cAMP-regulated phosphoprotein), which was paralleled by decreased H3 acet-
ylation at its gene promoter region. In contrast, LTSS elevated DARPP-32 gene expression, which was not paralleled by changes
in histone acetylation and DRD1 gene expression. These findings indicate that short- and long-term neonatal exposure to ELA
induces changes in dopaminergic molecular pathways, some of which are epigenetically regulated and which either alleviate or
aggravate depressive-like symptoms later in life.

Keywords Dopamine receptor 1 . DARPP-32 . Depression . Histone modification . Resilience

Introduction

Early-life adversity (ELA) affects brain development and has
been identified as a major risk factor contributing to the etiol-
ogy of mental disorders, including depression, anxiety and
ADHD [1–8]. The particular outcome of ELA exposure has
been shown to depend on the type, intensity, and duration of

the stressor [9–12].While the majority of experimental studies
focused on stress vulnerability and pathological behavioral
outcomes [13–16], evidence is accumulating that acute, brief,
or intermittent ELA can promote flexibility and adaptation of
behavioral strategies to changing environments [17–20]
through activating cellular mechanisms mediating stress resil-
ience [21–24]. So far, the mechanisms determining stress vul-
nerability or resilience are not well understood. Key mecha-
nisms conferring an individual’s adaptation to environmental
challenges include transient or lasting epigenetic alterations as
has been shown in a variety of studies in animals and humans
[3, 20, 25–30]. Clinical studies revealed that epigenetic mod-
ifications are involved in the development of various psycho-
pathologies, such as bipolar disorder and schizophrenia,
which are associated with changes in neurotransmitter func-
tions [31, 32]. Since depressive symptoms include anhedonia
and despair, dopaminergic modulation of brain regions, which
are part of the Breward system,^ is particularly affected
[33–35]. Animal studies have shown that exposure to ELA
as well as variations in maternal care interferes with the mat-
uration of catecholaminergic innervation and dopaminergic
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function in prefronto-limbic circuits [36–42] and induces sex-
specific changes in dopamine receptor D1 (DRD1) density
[43] as well as epigenetic modifications regulating the expres-
sion of the DRD1 receptor [44, 45]. A key downstream regu-
lator of dopaminergic signaling and mediator of actions and
interactions of dopamine with other neurotransmitters is
DARPP-32 (32-kDa dopamine- and cAMP-regulated phos-
phoprotein), which is phosphorylated upon activation of
DRD1 receptors. DARPP-32 has been suggested to be in-
volved in neuropsychiatric and neurodegenerative disorders
associated with dopaminergic dysfunction [46–49]. For exam-
ple, it was shown that specific polymorphisms in PPP1R1B,
the gene encoding DARPP-32 in the human brain, were asso-
ciated with the risk for schizophrenia [50] and may predict
autism susceptibility [51]. Although such polymorphisms
are not clearly evident in depression, evidence from human
studies indicates a role for DARPP-32 in mood disorders [52].
An animal study described alterations of DARPP-32 in the
prefronto-limbic system in mice developing depressive-like
symptoms in response to psychosocial stress or social defeat
[53, 54].

Based on this evidence, the aims of this study were to
compare the behavioral and neurobiological consequences of
short-term early-life separation stress (STSS) and long-term
separation stress (LTSS) in a mouse model for ELA and to
assess changes in DRD1 and DARPP-32 mediated via histone
modifications.

Material and Methods

Animals

C57BL/6 mice were housed on a 12-h light-dark cycle with
food and water provided ad libitum. During pregnancy, the
home cages were cleaned once a week. After delivery of the
pups (day of birth = postnatal day, PND 0), the home cages
were not cleaned for the first 16 postnatal days to minimize
stress for the mother and her pups. Males from litters of ap-
proximately the same size (five to eight pups) were randomly
assigned to the stress groups (see below) and the control
groups. The experimental protocols were approved by the
ethics committee of the government of the state of Saxony-
Anhalt according to the German guidelines for the care and
use of animals in laboratory research (§8 TSchG; AZ: 42502–
2-1272).

Stress Paradigms

BMild^ Short-Term Separation Stress (STSS) Pups of this group
were separated from their mother at PND 14–16 using the
same separation conditions as described for the LTSS group
(see below). After the last separation session on PND 16, the

pups remained undisturbed until weaning on PND 21. On
PND 21, the animals were reared in groups with a maximum
of five individuals until the onset of the experiments.

Control (CON) for STSS Paradigm Animals of this control
group lived undisturbed with their mother and littermates.
After weaning at PND 21, they were group housed with a
maximum of five same-sex individuals until the time of the
respective experiment.

BChronic^ Long-Term Separation Stress (LTSS) Pups of this
group were exposed to daily maternal separation from PND
1 to PND 21 by removing them from the home cage and
individually placed in isolation boxes (13 × 13 cm, covered
with paper bedding) for 3 h each day (9:00–12:00), which
allowed olfactory and auditory but no visual or body contact
with their separated siblings. The dam remained undisturbed
in the home cage. Prior to the return of the pups, fresh nesting
material was provided. After weaning on PND 21, the animals
were housed individually until the time of the respective
experiment.

Control (CON) for LTSS Paradigm Animals of this control
group lived undisturbed with their mother and littermates.
After weaning at PND 21, they were group housed with a
maximum of five same-sex individuals until the time of the
respective experiment.

Distribution of Animals

In the STSS experiments, 75 control and 67 stressed animals
derived from 24 and 24 litters, respectively, were used. The
LTSS experiments included 80 control animals from 24 litters
and 50 stressed animals from 20 litters.

Forced Swim Test

To test for depressive-like behavioral traits, the STSS and their
respective control group were subjected to the forced swim
test (FST) on PND 62 and 63. On the first day, the animals
were habituated to the test situation by transferring them for
15 min to a glass container filled with 22 °C tempered water.
On the subsequent test day, the behavior was videotaped dur-
ing a 15-min trial. Active swimming and passive floating be-
havior during the first 5 min of the FST were quantified with
the BObserver^ (Noldus, Wageningen, Netherlands) software.
Results for the LTSS group have been published in a previous
paper [15].

For the FST in the STSS experiments, 21 control animals
and 20 stressed animals, each derived from 6 litters, were used.
For the LTSS experiments, 45 control animals derived from 11
litters and 21 stressed animals from 7 litters were used. For the
statistical analysis, N = number of animals was used.
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Tissue Preparation

Animals of all experimental and control groups were decapi-
tated on PND 64. Brain tissue of the hippocampal formation
was collected and frozen on liquid nitrogen and stored at −
80 °C. Tissue for gene expression and western blot analysis
was derived from the same animals, i.e., the hippocampus of
the left hemisphere was used for protein extraction, and tissue
from the right hippocampus underwent RNA extraction.
Tissue for native chromatin immunoprecipitation (nChIP)
was derived from additional animals. Hippocampal tissue of
the LTSS group from our previous study [15] was collected
and analyzed in the same way.

Gene Expression

Expression of DRD1 and DARPP-32 mRNAwas quantified
by real-time quantitative PCR (qPCR). RNA extraction was
performed using the RNeasy Mini Kit (Qiagen GmbH,
Hilden, Germany). Genomic DNAwas removed utilizing the
RNase-free DNase Kit (Qiagen GmbH, Hilden, Germany).
Gene expression analysis was carried out with the Rotor-
Gene Multiplex RT-PCR Kit (Qiagen GmbH, Hilden,
Germany), which allows the execution of simultaneous one-
step quantitative real-time PCR of two to five genes using
TaqMan gene expression assays. Commercially available as-
s a y s f o r t h e d o p am i n e D1 r e c e p t o r (DRD1 ;
Mm01353211_m1_Drd1a) and the dopamine- and cAMP-
regulated neuronal phosphoprotein 32-kDa protein (DARPP-
32; Mm00454892_m1_Ppp1r1b) were used. As a reference
gene, hypoxanthine phosphoribosyltransferase I (Hprt I;
Mm01545399_m1; VIC) was used. Gene expression of
DRD1, DARPP-32, and Hprt was calculated utilizing the
delta-delta CT method [55]. The samples were normalized to
their respective control groups.

For gene expression analysis for the STSS experiments,
hippocampal tissue of 41 control animals and 30 stressed an-
imals, each derived from 9 litters, was used, and for the LTSS
experiments, 24 control animals derived from 7 litters and 23
stressed animals derived from 6 litters were used. For statisti-
cal analysis, N = number of animals was used.

Histone Acetylation

Acetylation of H3 and H4 was assessed by quantitative west-
ern blot (WB) analysis. Tissue samples were homogenized in
extraction buffer (0.1M Tris/HCl pH 8.0; 0.01MEDTA; 10%
SDS; 1× Halt Protease Inhibitor Cocktail (Thermo Fisher
Scientific, Waltham, MA, USA)) using ultrasonic vibration.
After centrifugation, the supernatant was removed and protein
concentration was measured using the Bio-Rad DC™
Universal Protein Assay Kit II (Bio-Rad, Hercules, CA,
USA). SDS-PAGE was performed using a 20-μl reaction

volume per lane, which contained 50 μg protein mixed with
loading buffer and Bio-Rad Tris-Glycine Mini-PROTEAN
TGX Precast Gels (Bio-Rad, Hercules, CA, USA). The
prestained protein molecular weight marker PeqGOLD
Protein Marker V (PeqLab/VWR International GmbH,
Darmstadt, Germany) was used to monitor the progress of
SDS-PAGE and to assess transfer efficiency onto the mem-
brane during western blot. After gel electrophoresis, the sam-
ples were blotted onto a nitrocellulose membrane (GE
Healthcare, Chalfont St Giles, UK), and the proteins were
visualized by Red Alert staining (Novagen, brand by Merck
KGaA, Darmstadt, Germany). The blots were blocked by
using Roti-Block (Carl Roth, Karlsruhe, Germany) working
solution followed by overnight incubation with primary anti-
bodies anti-acetyl H3 (#06-599, 1:10,000; Merck Millipore,
Billerica, MA, USA), anti-acetyl H4 (#06-866, 1:4000; Merck
Millipore, Billerica, MA, USA), and antihypoxanthine
phosphoribosyltransferase I (#ab10479, 1:500; Abcam,
Cambridge, UK) at 4 °C. The blots were then incubated for
1 h at room temperature with a secondary antibody
(horseradish peroxidase conjugated anti-rabbit) (#12-348,
1:4000; Novagen, brand by Merck Millipore, Billerica, MA,
USA). Horseradish peroxidase was detected by using
Luminata Crescendo Western HRP substrate (Merck
Millipore, Billerica, MA, USA), and signals were detected
by using Syngene G:Box system (Syngene Europe,
Cambridge, UK). Western blot data were analyzed using
Gene Tools software (Syngene Europe, Cambridge, UK).

Histone acetylation analysis for the STSS experiments was
conducted in hippocampal tissue from 48 control animals and
41 stressed animals, each derived from 12 litters. For the LTSS
experiments, 29 control animals and 23 stressed animals, each
derived from 7 litters, were used. For statistical analysis, N =
number of litters.

Histone Acetylation at the DARPP-32 Promoter

H3 and H4 acetylation associated to DARPP-32 expression
was quantified by nChIP. Tissue samples were homogenized
in 500 μl MNase Reaction Buffer (10 mM Tris pH 8.8, 1 mM
CaCl2). After adding 10 units MNase (Affymetrix, Cleveland,
OH, USA), the samples were incubated for 2 min at 37 °C.
The enzymatic reaction was blocked by adding 10 μl 0.5 M
EDTA. The samples were mixed with 5 ml 0.02 mM EDTA
and 6 μl 100 mM PMSF and were incubated for 1 h on ice
while mixing them every 10 min. After the incubation period,
9 μl 1 M DTTwas added and the samples were centrifuged at
4000×g for 10 min at 4 °C. The supernatant was divided into
four parts: 500 μl input and 3 × 1500 μl H3, H4, and control.
The three latter samples (H3, H4, control) were incubated for
2 h at room temperature with the respective antibodies: anti-
acetyl H3 (#06-599, 1:10,000; Merck Millipore, Billerica,
MA, USA) and anti-acetyl H4 (#06-866, 1:4000; Merck
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Millipore, Billerica, MA, USA). Protein A/GMagnetic Beads
(Thermo Fisher Scientific,Waltham,MA, USA) were used for
immunoprecipitation. Before use, the beads were washed
twice with TBS wash buffer containing 0.05% Tween-20
and 0.5 M NaCl. The beads and the ChIP-antibody samples
were incubated overnight at 4 °C while rotating. Beads were
separated from unbound sample fraction and washed twice
using TBS wash buffer and once with dH2O. The DNA was
then eluted in 100 μl low pH elution buffer (0.1M glycine pH
2.0). After incubating for 10 min, the eluates were separated
from the beads and pHwas neutralized with 15μl 1M Tris pH
7.5. Subsequently, the samples were subjected to protein di-
gestion by adding 400 μl Tris-HCl pH 7.5, 20 μl Tris-HCl pH
6.8, 20 μl 5 M NaCl, 10 μl 0.5 mM EDTA pH 8.0, and 1 μl
20 mg/ml Proteinase K (Roche Diagnostics, Rotkreuz,
Switzerland) and incubated overnight.

DNA was extracted from the sample by adding 500 μl
phenol/chloroform/isoamylalcohol (Carl Roth GmbH,
Karlsruhe, Germany). DNA purification was performed using
the MinElute Reaction CleanUp Kit (Qiagen GmbH, Hilden,
Germany). ChIP quantitative real-time PCR was carried out
using the Rotor-Gene Multiplex PCR Kit (Qiagen, Hilden,
Germany). A custom-made FAM-coupled TaqMan assay
targeting the DARPP-32 promoter region was used (Life
Technologies, Carlsbad, CA, USA).

In both the STSS and the LTSS experiments, histone acet-
ylation at the DARPP-32 promoter was analyzed in hippo-
campal tissue from six control animals and six stressed ani-
mals, each derived from six litters. For statistical analysis, N =
number of animals was used.

Statistical Analyses

The data for each experiment were tested for normal distribu-
tion using the D’Agostino and Pearson omnibus normality
test. If normally distributed, data were analyzed for signifi-
cance with a two-sided unpaired t test. Non-normally distrib-
uted data were tested for significance with a Mann-WhitneyU
test. Data of the gene expression analysis were normalized to
controls. All data are presented as means ± SEM. Significance
was set at *p ≤ 0.05 and **p ≤ 0.01 for all data sets. Statistical
analysis was performed and graphs were produced using
GraphPad Prism 6.0 software (GraphPad, La Jolla, CA, USA).

Results

Behavior

STSS resulted in reduced depressive-like behavior in adult-
hood, measured as lower time of immobility (floating) com-
pared to controls (p = 0.005, Table 1; N: CON = 21, STSS =
20). In contrast, LTSS (PND 1–21) induced enhanced

depressive-like behavior measured as elevated duration of im-
mobility as published in a previous study [15].

Gene Expression

In the hippocampus of the STSS group, increased DRD1 ex-
pression was found compared to the control group (p = 0.023,
Fig. 1a; N: CON= 39, STSS = 28), whereas in LTSS animals,
DRD1 expression remained unchanged compared to controls
(p = 0.433, Fig. 1a N: CON= 24, LTSS = 22). Expression of
DARPP-32 was decreased in the STSS group (p = 0.049, Fig.
1b; N: CON= 41, STSS = 30), whereas it was increased in the
LTSS group (p = 0.033, Fig. 1b; N: CON= 24, LTSS = 22).

Histone Acetylation

STSS decreased histoneH3 acetylation in the hippocampus com-
pared to control animals (p = 0.0147, Fig. 2a; N: CON= 11,
STSS = 11), and no significant changes were detected in histone
H4 acetylation (p = 0.248, Fig. 2c; N: CON=12, STSS = 12).
LTSS did not affect histone H3 and H4 acetylation (p = 0.459,
Fig. 2a; and p = 0.497, Fig. 2c; N: CON= 7, LTSS = 7).

Histone Acetylation at the DARPP-32 Promoter

nChIP-qPCR revealed that the reduced expression of
DARPP-32 was associated with reduced acetylation of
H3 at the promoter region of its gene (p = 0.0252,
Fig. 2b; N: CON = 6, STSS = 5), while H4 acetylation at
the promoter region of DARPP-32 was not altered (p =
0.5414, Fig. 2d; N: CON = 6, STSS = 6). In the LTSS
group, H3 and H4 acetylation at the DARPP-32 promoter
region was unchanged (p = 0.285, Fig. 2b; p = 0.264,
Fig. 2d; N: CON = 7, LTSS = 7).

Discussion

In line with our working hypothesis, we show that expo-
sure to Bmild^ STSS reduces depressive-like behavioral
symptoms in adulthood, whereas a previous study [15]
demonstrated that Bchronic^ LTSS increased depressive-
like symptoms. We further found that the opposing

Table 1 Duration of immobility in the forced swim test

Treatment N Duration of immobility (mean ± SEM) (s) p value

STSS Stressed 20 68.67 ± 9.76 0.005
Control 21 124.1 ± 14.7

LTSS Stressed 21 195.6 ± 10.69a 0.015
Control 45 161.8 ± 7.73a

a Published in [15]
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behavioral outcomes were paralleled by partly opposite
changes in dopaminergic cellular pathways in the hippo-
campal formation. STSS elevated DRD1 gene expression
and decreased gene expression of its downstream regula-
tor DARPP-32, the latter of which is regulated via re-
duced H3 acetylation at its promoter region. In contrast,
LTSS did not alter DRD1 gene expression and elevated
DARPP-32 gene expression, which was not associated
with changes in histone acetylation. Global hippocampal
histone H3 acetylation was reduced after STSS but not
after LTSS.

Methodological Considerations

With respect to our STSS paradigm, it is important to point out
that this manipulation not only represents a mild, short-term
stress experience but is also restricted to a defined develop-
mental time window, i.e., after the end of the so-called stress
hyporesponsive period (SHRP) of the HPA axis. In mice and
rats, the SHRP is characterized by low levels of circulating
corticosterone and a relative hyporesponsiveness to mild en-
vironmental stressors [56, 57]. Our previous studies in rats
revealed that the extent and direction of stress-induced

Fig. 2 ELA-induced changes in
histone acetylation. a STSS
induced a reduction of H3
acetylation in the hippocampus,
whereas LTSS had no effect (*p ≤
0.05). b STSS resulted in reduced
H3 acetylation at the promoter
region of DARPP-32, whereas
LTSS had no effect (*p ≤ 0.05). c,
dGlobal H4 acetylation as well as
DARPP-32 promoter-specific H4
acetylation was affected neither
by STSS nor by LTSS

Fig. 1 ELA induces changes in
DRD1 and DARPP-32 gene ex-
pression. a Short-term separation
stress (STSS) induced an increase
in DRD1 gene expression,
whereas long-term separation
stress (LTSS) had no effect on the
expression of the DRD1 gene
(*p ≤ 0.05). b STSS induced
reduced gene expression of
DARPP-32; in contrast, LTSS
induced increased DARPP-32
expression (*p ≤ 0.05)
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neuromorphological outcomes are dependent on the time
point of the respective stress exposure (maternal separation),
i.e., prior, during, or after the SHRP [58, 59]. We specifically
selected a time window after the SHRP for this experiment
since our previous study in mice demonstrated that stress ex-
posure during this time window increases dendritic complex-
ity and the number of excitatory spine synapses of hippocam-
pal CA3 neurons [19], which we predicted to reflect positive
behavioral outcome. Comparing the behavioral assessment
during the FST, it is obvious that there are significant differ-
ences between the immobility times of the two separate con-
trol groups, i.e., the control group for the present study and the
control group for the previous study [15]. The animals of the
respective control groups were derived from completely dif-
ferent cohorts, and it is not unusual that basal behavioral pa-
rameters may differ between such separate samples. Hence,
this finding emphasizes the importance of running parallel
control animals for every experiment so that they can be in-
ternally compared to the respective experimental group. With
respect to our findings, the difference between the two sepa-
rate control groups does not affect the results, since the STSS
animals show lower immobility levels than their respective
control group and the LTSS animals display higher levels than
their respective control group.

ELA-Induced Changes of Depressive-like Behavior
Depend on Chronicity of Stress Experience

As stated above, the results of the present and previous stud-
ies [15] revealed opposite behavioral outcomes. First of all, it
is important to state that due to the large spectrum of different
maternal separation (MS) paradigms (procedure, timing, du-
ration, etc.) used by different research groups, it is difficult to
compare the specific outcomes that have been described
[60–62]. Various studies have reported an increase in
depressive-like behavior as a consequence of repeated MS
[63–67], whereas evidence is accumulating from clinical
and animal studies that stress experience early in life may
also promote adaptive effects that are beneficial to emotional
and cognitive development. Rats exposed to MS displayed
reduced immobility time in the FST [68], and a combination
of MS with reduced bedding material (maternal neglect par-
adigm) increased active behaviors in the FST [69]. A recent
study in mice revealed that exposure to ELA induced by
limited nesting and bedding material leads to better coping
with challenging environments in adulthood [18]. These find-
ings can be interpreted within the concept of the Bstress-in-
oculation/induced resilience^ hypothesis [70–81]. Along the
same line, the present study revealed that STSS results in
reduced Bbehavioral despair^ symptoms (less floating), indi-
cating better stress coping in this group, in contrast to animals
exposed to LTSS, which displayed increased Bbehavioral
despair^ [15].

ELA BReprograms^ Dopaminergic System
Development

The dopaminergic system is involved in the modulation of
a number of important brain functions such as motor con-
trol, control of emotional behavior, reward, cognition, and
decision-making. Consequently, dysfunctions in the dopa-
minergic system are implicated in a number of patholo-
gies such as Parkinson’s disease, schizophrenia, depres-
sion, and ADHD. Studies in a variety of species and stress
paradigms revealed that the development of the dopami-
nergic system is particularly sensitive toward ELA such as
prenatal stress [4, 25] and neonatal stress experience [26,
36, 40, 43, 82–84]. With regard to changes of dopamine
receptors, it has been reported in rats that MS (24 h on
PND 9) increases the expression of DRD1 (and DRD2)
receptors [16, 85]. Similarly, a study in male mandarin
voles reports that early deprivation leads to an increase
of D1 and D2 receptors [86]. Evidence for dysfunctional
development of the dopaminergic system is also revealed
by a series of studies in the biparental rodent Octodon
degus, which show that exposure to repeated brief paren-
tal separation stress induces an increase in DRD1 receptor
(and other receptors) expression in the hippocampal for-
mation [43] and the amygdala (only in females). In addi-
tion, chronic, repeated exposure to parental separation re-
sulted in decreased dopaminergic innervation in the hilus
of the dentate gyrus and increased innervation in the stra-
tum granulosum and subgranular layer, and changes in
dopaminergic innervation were also observed in prefrontal
and other limbic regions [38, 40, 87].

The reduced Bbehavioral despair^ symptoms observed in
STSS animals during the FST might be mediated by elevated
expression of DRD1 in the hippocampal formation. This view
is supported by pharmacological analyses in mice, which re-
vealed that passive behavioral traits in the forced swim test
induced by MS are specifically mediated by DRD1 [63].
Dopamine D1 receptor agonists were found to induce anti-
immobility effects, and the Bantidepressant^ effect of imipra-
mine can be antagonized by SCH 23390, a selective dopamine
D1 receptor blocker [88, 89].

Exposure to STSS resulted in a downregulation of
DARPP-32, a key mediator of dopaminergic transmission
[46, 49, 90], whereas it was upregulated in the LTSS group.
It is tempting to speculate that changes in hippocampal
DARPP-32 gene expression may alter short-term and long-
term hippocampal synaptic plasticity. DARPP-32 is required
for LTP induction in the hippocampal-PFC pathway [91], and
DRD1 activation is involved in late LTP [92–94]. Moreover, it
was reported that LTP induction in hippocampal afferents into
the PFC, which depends on DRD1 activation [95], was facil-
itated after short stress exposure, whereas prolonged exposure
to stress impaired LTP induction [96].
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ELA-Induced Downregulation of DARPP-32
Expression Is Mediated by Specific Epigenetic Histone
Modification

First, the present study revealed a global reduction in H3 acet-
ylation in the STSS but not in the LTSS group, which is in line
with the concept that gene × environment interactions are
mediated by specific epigenetic modifications. With respect
to ELA, a number of studies revealed an influence on epige-
netic mechanisms that interfere with preprogrammed develop-
mental processes resulting in adaptive or maladaptive neuro-
nal and behavioral alterations [4, 97–104]. Epigenetic adapta-
tions in response to early environmental challenges are dy-
namic multistep events starting with rapid and transient alter-
ations, some of which eventually may become permanent epi-
genetic marks [75, 105]. Our results are in line with this dy-
namic concept as we observed a rapid increase in H3 as well
as H4 acetylation in the hippocampus of juvenile STSS-
exposed animals [19], while the present study demonstrates
a lasting reduction of hippocampal H3 acetylation in adult
STSS-exposed animals.

Second, we also show that the STSS-induced reduction in
DARPP-32 gene expression is mediated by a reduction of H3
acetylation at the promoter region of the DARPP-32 gene,
whereas elevation of DARPP-32 gene expression observed
in the LTSS group appears not to be related to histone modi-
fications; hence, it remains to be further investigated whether
other epigenetic mechanisms, such as DNA methylation, may
be involved.

In conclusion, this study revealed differential behavioral,
molecular, and epigenetic changes in response to exposure to
Bmild^ STSS and chronic LTSS, which are potentially related
to improved (STSS exposure) or impaired (LTSS exposure)
adaptability and coping toward environmental adversities later
in life.
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