Skip to main content
Log in

Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Rictor associates with mTOR to form the mTORC2 complex, which activity regulates neuronal function and survival. Neurodegenerative diseases are characterized by the presence of neuronal dysfunction and cell death in specific brain regions such as for example Huntington’s disease (HD), which is characterized by the loss of striatal projection neurons leading to motor dysfunction. Although HD is caused by the expression of mutant huntingtin, cell death occurs gradually suggesting that neurons have the capability to activate compensatory mechanisms to deal with neuronal dysfunction and later cell death. Here, we analyzed whether mTORC2 activity could be altered by the presence of mutant huntingtin. We observed that Rictor levels are specifically increased in the striatum of HD mouse models and in the putamen of HD patients. Rictor-mTOR interaction and the phosphorylation levels of Akt, one of the targets of the mTORC2 complex, were increased in the striatum of the R6/1 mouse model of HD suggesting increased mTORC2 signaling. Interestingly, acute downregulation of Rictor in striatal cells in vitro reduced mTORC2 activity, as shown by reduced levels of phospho-Akt, and increased mutant huntingtin-induced cell death. Accordingly, overexpression of Rictor increased mTORC2 activity counteracting cell death. Furthermore, normalization of endogenous Rictor levels in the striatum of R6/1 mouse worsened motor symptoms suggesting an induction of neuronal dysfunction. In conclusion, our results suggest that increased Rictor striatal levels could counteract neuronal dysfunction induced by mutant huntingtin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    Article  PubMed  CAS  Google Scholar 

  3. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  PubMed  CAS  Google Scholar 

  4. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  PubMed  CAS  Google Scholar 

  5. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  PubMed  CAS  Google Scholar 

  6. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  8. Garcia-Martinez JM, Alessi DR (2008) mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 416:375–385

    Article  PubMed  CAS  Google Scholar 

  9. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ et al (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11:859–871

    Article  PubMed  CAS  Google Scholar 

  10. Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10:2305–2316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Costa-Mattioli M, Monteggia LM (2013) mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci 16:1537–1543

    Article  PubMed  CAS  Google Scholar 

  12. Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84:275–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sun YX, Ji X, Mao X, Xie L, Jia J, Galvan V, Greenberg DA, Jin K (2014) Differential activation of mTOR complex 1 signaling in human brain with mild to severe Alzheimer’s disease. J Alzheimers Dis 38:437–444

    Article  PubMed  CAS  Google Scholar 

  14. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, Zukin RS (2010) Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 30:694–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Siuta MA, Robertson SD, Kocalis H, Saunders C, Gresch PJ, Khatri V, Shiota C, Kennedy JP et al (2010) Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice. PLoS Biol 8:e1000393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Thomanetz V, Angliker N, Cloetta D, Lustenberger RM, Schweighauser M, Oliveri F, Suzuki N, Ruegg MA (2013) Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol 201:293–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pryor WM, Biagioli M, Shahani N, Swarnkar S, Huang WC, Page DT, MacDonald ME, Subramaniam S (2014) Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Sci Signal 7:ra103

    Article  PubMed  CAS  Google Scholar 

  18. Lee JH, Tecedor L, Chen YH, Monteys AM, Sowada MJ, Thompson LM, Davidson BL (2015) Reinstating aberrant mTORC1 activity in Huntington’s disease mice improves disease phenotypes. Neuron 85:303–315

    Article  PubMed  CAS  Google Scholar 

  19. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  PubMed  CAS  Google Scholar 

  20. The Huntington’s Disease Collaborative Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72:971–983

    Article  Google Scholar 

  21. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  22. Labbadia J, Morimoto RI (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38:378–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    Article  PubMed  CAS  Google Scholar 

  24. Vonsattel JP (2008) Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:55–69

    Article  PubMed  Google Scholar 

  25. Francelle L, Galvan L, Brouillet E (2014) Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington’s disease. Front Cell Neurosci 8:295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gines S, Ivanova E, Seong IS, Saura CA, MacDonald ME (2003) Enhanced Akt signaling is an early pro-survival response that reflects N-methyl-D-aspartate receptor activation in Huntington’s disease knock-in striatal cells. J Biol Chem 278:50514–50522

    Article  PubMed  CAS  Google Scholar 

  27. Saavedra A, Garcia-Martinez JM, Xifro X, Giralt A, Torres-Peraza JF, Canals JM, Diaz-Hernandez M, Lucas JJ et al (2010) PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington’s disease striatum. Cell Death Differ 17:324–335

    Article  PubMed  CAS  Google Scholar 

  28. Giralt A, Saavedra A, Carreton O, Xifro X, Alberch J, Perez-Navarro E (2011) Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington’s disease. Hum Mol Genet 20:4232–4247

    Article  PubMed  CAS  Google Scholar 

  29. Dragatsis I, Goldowitz D, Del MN, Deng YP, Meade CA, Liu L, Sun Z, Dietrich P et al (2009) CAG repeat lengths > or =335 attenuate the phenotype in the R6/2 Huntington’s disease transgenic mouse. Neurobiol Dis 33:315–330

    Article  PubMed  CAS  Google Scholar 

  30. Mollersen L, Rowe AD, Larsen E, Rognes T, Klungland A (2010) Continuous and periodic expansion of CAG repeats in Huntington’s disease R6/1 mice. PLoS Genet 6:e1001242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Morton AJ, Glynn D, Leavens W, Zheng Z, Faull RL, Skepper JN, Wight JM (2009) Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiol Dis 33:331–341

    Article  PubMed  CAS  Google Scholar 

  32. Slow EJ, van RJ, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12:1555–1567

    Article  PubMed  CAS  Google Scholar 

  33. Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp AH, Persichetti F, Cattaneo E, MacDonald ME (2000) Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 9:2799–2809

    Article  PubMed  CAS  Google Scholar 

  34. Rue L, Alcala-Vida R, Lopez-Soop G, Creus-Muncunill J, Alberch J, Perez-Navarro E (2014) Early down-regulation of PKCdelta as a pro-survival mechanism in Huntington’s disease. NeuroMolecular Med 16:25–37

    Article  PubMed  CAS  Google Scholar 

  35. Puigdellivol M, Cherubini M, Brito V, Giralt A, Suelves N, Ballesteros J, Zamora-Moratalla A, Martin ED et al (2015) A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington’s disease. Hum Mol Genet 24:7265–7285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Anglada-Huguet M, Giralt A, Rue L, Alberch J, Xifro X (2016) Loss of striatal 90-kDa ribosomal S6 kinase (Rsk) is a key factor for motor, synaptic and transcription dysfunction in Huntington’s disease. Biochim Biophys Acta 1862:1255–1266

    Article  PubMed  CAS  Google Scholar 

  37. Saavedra A, Giralt A, Rue L, Xifro X, Xu J, Ortega Z, Lucas JJ, Lombroso PJ et al (2011) Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington's disease: a STEP in the resistance to excitotoxicity. J Neurosci 31:8150–8162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rue L, Lopez-Soop G, Gelpi E, Martinez-Vicente M, Alberch J, Perez-Navarro E (2013) Brain region- and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington’s disease. Neurobiol Dis 52:219–228

    Article  PubMed  CAS  Google Scholar 

  39. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  PubMed  CAS  Google Scholar 

  40. Wheeler VC, Auerbach W, White JK, Srinidhi J, Auerbach A, Ryan A, Duyao MP, Vrbanac V et al (1999) Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum Mol Genet 8:115–122

    Article  PubMed  CAS  Google Scholar 

  41. Bashir T, Cloninger C, Artinian N, Anderson L, Bernath A, Holmes B, Benavides-Serrato A, Sabha N et al (2012) Conditional astroglial Rictor overexpression induces malignant glioma in mice. PLoS One 7:e47741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chatterjee P, Seal S, Mukherjee S, Kundu R, Bhuyan M, Barua NC, Baruah PK, Babu SP et al (2015) A carbazole alkaloid deactivates mTOR through the suppression of rictor and that induces apoptosis in lung cancer cells. Mol Cell Biochem 405:149–158

    Article  PubMed  CAS  Google Scholar 

  43. Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I, Park Y, Hay N (2010) FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 18:592–604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, Gera J (2007) mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 67:11712–11720

    Article  PubMed  CAS  Google Scholar 

  45. Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, Iwanami A, Liu F et al (2013) mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 18:726–739

    Article  PubMed  CAS  Google Scholar 

  46. Zhang C, Hwarng G, Cooper DE, Grevengoed TJ, Eaton JM, Natarajan V, Harris TE, Coleman RA (2015) Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol. J Biol Chem 290:3519–3528

    Article  PubMed  CAS  Google Scholar 

  47. Holz MK, Blenis J (2005) Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem 280:26089–26093

    Article  PubMed  CAS  Google Scholar 

  48. Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR (1999) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344(Pt 2):427–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, Fingar DC (2010) mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 285:7866–7879

    Article  PubMed  CAS  Google Scholar 

  50. Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, Roth RA (2003) Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 278:10189–10194

    Article  PubMed  CAS  Google Scholar 

  51. Ortega Z, Diaz-Hernandez M, Maynard CJ, Hernandez F, Dantuma NP, Lucas JJ (2010) Acute polyglutamine expression in inducible mouse model unravels ubiquitin/proteasome system impairment and permanent recovery attributable to aggregate formation. J Neurosci 30:3675–3688

    Article  PubMed  CAS  Google Scholar 

  52. Gao D, Wan L, Inuzuka H, Berg AH, Tseng A, Zhai B, Shaik S, Bennett E et al (2010) Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction. Mol Cell 39:797–808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Uesugi A, Kozaki K, Tsuruta T, Furuta M, Morita K, Imoto I, Omura K, Inazawa J (2011) The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res 71:5765–5778

    Article  PubMed  CAS  Google Scholar 

  54. Venkataraman S, Birks DK, Balakrishnan I, Alimova I, Harris PS, Patel PR, Handler MH, Dubuc A et al (2013) MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem 288:1918–1928

    Article  PubMed  CAS  Google Scholar 

  55. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400

    Article  PubMed  CAS  Google Scholar 

  56. Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH et al (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227:172–179

    Article  PubMed  CAS  Google Scholar 

  57. Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I et al (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38:7219–7235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28:14341–14346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Diamanti D, Mori E, Incarnato D, Malusa F, Fondelli C, Magnoni L, Pollio G (2013) Whole gene expression profile in blood reveals multiple pathways deregulation in R6/2 mouse model. Biomark Res 1:28

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915

    Article  PubMed  CAS  Google Scholar 

  61. Vander HE, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323

    Article  CAS  Google Scholar 

  62. Wang L, Harris TE, Roth RA, Lawrence JC Jr (2007) PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 282:20036–20044

    Article  PubMed  CAS  Google Scholar 

  63. Carson RP, Fu C, Winzenburger P, Ess KC (2013) Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis complex. Hum Mol Genet 22:140–152

    Article  PubMed  CAS  Google Scholar 

  64. Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, Krnjevic K, Roman G et al (2013) mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 16:441–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lebrun-Julien F, Bachmann L, Norrmen C, Trotzmuller M, Kofeler H, Ruegg MA, Hall MN, Suter U (2014) Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination. J Neurosci 34:8432–8448

    Article  PubMed  CAS  Google Scholar 

  66. Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA (2006) Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell 11:583–589

    Article  PubMed  CAS  Google Scholar 

  67. Wang S, Amato KR, Song W, Youngblood V, Lee K, Boothby M, Brantley-Sieders DM, Chen J (2015) Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol 35:1299–1313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chen X, Tagliaferro P, Kareva T, Yarygina O, Kholodilov N, Burke RE (2012) Neurotrophic effects of serum- and glucocorticoid-inducible kinase on adult murine mesencephalic dopamine neurons. J Neurosci 32:11299–11308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Wu X, Mao H, Liu J, Xu J, Cao J, Gu X, Cui G (2013) Dynamic change of SGK expression and its role in neuron apoptosis after traumatic brain injury. Int J Clin Exp Pathol 6:1282–1293

    PubMed  PubMed Central  Google Scholar 

  70. Gao D, Wan L, Wei W (2010) Phosphorylation of Rictor at Thr1135 impairs the Rictor/Cullin-1 complex to ubiquitinate SGK1. Protein Cell 1:881–885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Smrz D, Cruse G, Beaven MA, Kirshenbaum A, Metcalfe DD, Gilfillan AM (2014) Rictor negatively regulates high-affinity receptors for IgE-induced mast cell degranulation. J Immunol 193:5924–5932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Li J, Xu Z, Jiang L, Mao J, Zeng Z, Fang L, He W, Yuan W et al (2014) Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney Int 86:86–102

    Article  PubMed  CAS  Google Scholar 

  73. Garcia-Martinez JM, Perez-Navarro E, Xifro X, Canals JM, Diaz-Hernandez M, Trioulier Y, Brouillet E, Lucas JJ et al (2007) BH3-only proteins Bid and Bim(EL) are differentially involved in neuronal dysfunction in mouse models of Huntington’s disease. J Neurosci Res 85:2756–2769

    Article  PubMed  CAS  Google Scholar 

  74. Urbanska M, Gozdz A, Swiech LJ, Jaworski J (2012) Mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of hippocampal neurons. J Biol Chem 287:30240–30256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mazei-Robison MS, Koo JW, Friedman AK, Lansink CS, Robison AJ, Vinish M, Krishnan V, Kim S et al (2011) Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons. Neuron 72:977–990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Drs. Saavedra and Azkona (University of Barcelona) for critical reading of the manuscript, Dr. Azkona for his advice on intrastriatal injection of AAVs, Dr. Lucas (Centre for Molecular Biology “Severo Ochoa,” Madrid, Spain) for providing the plasmids expressing wild-type or mhtt fused to CFP, Dr. MacDonald (Massachusetts General Hospital, Boston, Massachusetts, USA) for the generous gift of STHdhQ7/Q7 cell line and HdhQ111/Q111 mice, Dr. Hayden (Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada) for providing the YAC 128 mice, and Dr. Bayascas for the generous gift of antibodies against phosphorylated and total PRAS40. We also thank the Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS (Barcelona, Spain) for providing human tissue samples, Ana López and Maria Teresa Muñoz for their technical support, and Dr. Maria Calvo, Anna Bosch and Elisenda Coll from the Advanced Optical Microscopy Unit from Scientific and Technological Centers from the University of Barcelona for their support and advice. This work was supported by the project PI13/01250 integrado en el Plan Nacional de I+D+I y cofinanciado por el ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER), Ministerio de Economia y Competitividad (grants SAF2010-21058; CSD2008-00005, SAF2013-48983-R; SAF2013-45888R and SAF2016-08573-R), Fundació La Marató de TV3, Catalunya (grant 20140130), European Commission with a Marie Curie International Reintegration Grant (PIRG08-GA-2010-276957), Spain, funds obtained via the crowdfunding platform Goteo.org and sponsored by “Mememtum: early detection of neurological disorders,” Portal d’Avall SL, the UTE project CIMA and a NARSAD Independent Investigator Award. R.A. is a fellow of Ministerio de Economia y Competitividad, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Pérez-Navarro.

Ethics declarations

All procedures were performed in compliance with the NIH Guide for the Care and Use of Laboratory Animals and approved by the local animal care committee of Universitat de Barcelona following European (2010/63/UE) and Spanish (RD53/2013) regulations for the care and use of laboratory animals.

Human samples were obtained following the guidelines and approval of the local ethics committee (Hospital Clínic of Barcelona’s Clinical Research Ethics Committee).

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(PDF 337 kb)

ESM 2

(PDF 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creus-Muncunill, J., Rué, L., Alcalá-Vida, R. et al. Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration. Mol Neurobiol 55, 7728–7742 (2018). https://doi.org/10.1007/s12035-018-0956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0956-5

Keywords

Navigation