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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline and neurodegeneration in the
hippocampus. Despite the pathological importance of the hippocampal degeneration in AD, little topographical evidence exists
of impaired hippocampal connectivity in patients with AD. To investigate the anatomical connections of the hippocampus, we
injected the neurotracer 1,1′-dioctadecyl-3,3,3′3,3′-tetramethyl-indocarbocyanine perchlorate (DiI) into the hippocampi of
5XFAD mice, which were used as an animal model of AD. In wild-type controls, DiI-containing cells were found in the
entorhinal cortex, medial septum, locus coeruleus, dorsal raphe, substantia nigra pars compacta, and olfactory bulb.
Hippocampal inputs were decreased in multiple brain regions in the 5XFAD mice compared to wild-type littermate mice.
These results are the first to reveal alterations at the cellular level in hippocampal connectivity in the brains of 5XFAD mice.
These results suggest that anatomical mapping of hippocampal connectivity will elucidate new pathogenic mechanisms and
therapeutic targets for AD treatment.
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Introduction

Alzheimer’s disease (AD), which is the most divesting age-
dependent neurodegenerative disorder, is characterized by
memory and cognition impairments. The severity of the pathol-
ogy in patients with AD correlates with their burden of plaques
formed by amyloid-beta (Aβ) protein and neurofibrillary tan-
gles resulting from hyperphosphorylation of the microtubule-
associated protein tau [1]. Aβ accumulation in the brain is a

major causative factor of AD pathogenesis, and it results in
neuroinflammation, neuronal loss, and synaptic dysfunction.
These histological pathologies are associated with cognitive
decline and memory impairment [2]. Among them, the cogni-
tive dysfunction of patients with AD is primarily caused by
synaptic loss, which is indicated by decreased levels of synaptic
proteins, such as synaptophysin and postsynaptic density pro-
tein 95, in the brains of patients with AD [1, 3].

The hippocampus is involved in spatial and episodic mem-
ory in humans [4]. In addition, patients with damaged hippo-
campi show impaired declarative and semantic memory [5,
6]. Hippocampal degeneration, which is the most obvious
feature of patients with AD, results in symptoms of deterio-
rating cognitive functions, olfactory impairments, and emo-
tional deficits [7–9]. Especially, the entorhinal cortex (EC) is
not the only major brain region that sends axons to the hip-
pocampus, but it is the first brain area that is affected by AD
pathogenesis [10]. The neuronal pathways from the EC to the
hippocampus are indispensable for cognitive functions, in-
cluding memory retrieval and initial memory acquisition
[11]. Interestingly, the olfacto-hippocampal network has a
critical role in odor-discrimination learning [12], and a corre-
lation has been reported between olfactory deficits and cog-
nitive function in AD patients [13–16]. The hippocampus
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innervates many brain regions involved in cognition. In ad-
dition to the glutamatergic inputs of the hippocampus, it re-
ceives dopaminergic, noradrenergic, serotonergic, and cholin-
ergic inputs [17–20]. The hippocampus receives dopaminer-
gic inputs from the substantia nigra (SN) [21], and these
inputs are associated with cognitive function and adult hip-
pocampal neurogenesis [22, 23]. Moreover, the pathogenesis
of AD is, in part, associated with dopaminergic neuronal loss
and deficits [24]. The locus coeruleus (LC) provides norad-
renergic inputs and is a major source of noradrenaline to the
hippocampus, which has a critical role in cognitive functions
[25]. Interestingly, neuronal degeneration in the LC is a well-
known early pathology of AD [26, 27]. The dorsal raphe
(DR), which is the largest serotonergic nucleus, directly in-
nervates the hippocampus [28]. Furthermore, the DR is
strongly associated with neuropsychiatric symptoms, such
as agitation, depression, and anxiety, which are observed in
patients with AD [29]. The major cholinergic projections to
the hippocampus originate from the medial septum (MS)
[30]. Decreased cholinergic innervation of the hippocampus
has been demonstrated to impair learning and memory in
rodents and monkey [31–33]. In addition, cholinergic dys-
function is one of the major abnormalities in patients with
AD [34, 35]. To date, the loss of hippocampal inputs from
extrahippocampal areas has been indirectly demonstrated in
histological and electrophysiological studies. Moreover, func-
tional neuroimaging studies have been conducted to identify
the exact hippocampal connections that underlie the symp-
toms of AD [36, 37]. However, no previous anatomical stud-
ies have reported evidence of the topographical destruction of
hippocampal pathways or the level of impairment in hippo-
campal inputs in the brains with AD.

One of the main purposes of neuroscience research is the
investigation of the integration of neuronal assemblies in the
brain into neural circuits that control behavior. Therefore, the
visualization of specific neural pathways is critical for under-
standing the relationship between structure and function in the
central nervous system. Recently, a number of studies exten-
sively mapped neuronal connectivity in the brains of animals
and humans. Neuronal connectivity in animal brains can be
examined at the microscale, mesoscale, and macroscale level
[38]. At the mesoscale level, various neuroanatomical tracers
are used to visualize brain connectivity. Classically, neural
circuit systems have been delineated with tracers that reveal
the projections of subsets of neurons. Tract-tracing with
neurotracers is unavoidable in studies of neuronal circuitry
and its related neuronal functions under healthy and disease
conditions. However, to date, few studies of mesoscale brain
connectivity have been conducted with neuroanatomical trac-
ing in the brains of patients with AD.

Cognitive dysfunction in patients with AD is mainly
caused by synaptic degeneration in the hippocampus,
which has been demonstrated by the expression of

presynaptic terminal proteins, such as synaptophysin [1,
3]. Unfortunately, because presynaptic markers only label
presynaptic axon terminals [39], they do not provide in-
formation on which brain region is the origin of the pre-
synaptic axon terminals. Various neuronal tracers, such as
engineered viruses, tracer proteins, and dyes, can be used
to visualize neuronal or synaptic connections and map
complex neuronal connections in the central nervous sys-
tem [40]. Neural tracers, which are injected into or ap-
plied to the brain, can be taken up by endocytosis into
neurons and transported in axons and dendrites in both
anterograde and retrograde directions, where they can be
visualized by immunohistochemical techniques. Trans-
synaptic tracers can be transported from one neuron to
another at or near synapses, thus revealing the locations
of connected neurons [41].

To examine whether hippocampal connectivity is changed
by AD-related pathologic proteins, we aimed to elucidate hip-
pocampal afferents in an animal model of AD with 1,1′-
dioctadecyl-3,3,3′3,3′-tetramethyl-indocarbocyanine perchlo-
rate (DiI), which is a retrograde neurotracer that has been
widely used in cells and tissues because it does not affect cell
viability, development, or basic physiological properties
[42–45]. When the neurotracer DiI is injected into the brain,
it is taken up by axon terminals and retrogradely transported to
the cell body, thereby tracing various afferent inputs from
multiple brain regions. By using the DiI tract-tracing tech-
nique, we were able to visualize retrogradely labeled inputs
of the hippocampus from several brain regions and quantify
impaired hippocampal connections in the AD animal model.
The analyses of the DiI-positive neurons in the brains of the
5XFAD mice provided direct evidence for topographical
changes in hippocampal connectivity and impaired hippocam-
pal afferents in AD.

Materials and Methods

Animals

Transgenic mice with five familial mutations of AD-related
genes (5XFAD mice) express three mutations in human APP
(K670N/M671L, V717I, and I716V) and two mutations in
human PSEN1 (M146L and L286V) [46]. The animals were
obtained from The Jackson Laboratory (Bar Harbor, ME,
USA; catalog number 006554). The wild-type littermates
and 5XFAD mice were genotyped and used in the present
study. The maintenance and treatment of the animals were
performed in accordance with the Guide for the Care and
Use of Laboratory Animals (NIH Publication No. 85-23, re-
vised 1985) and the Animal Care and Use Guidelines of
Konyang University (Daejeon, Korea).
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Stereotaxic Neurotracer Injections

For the topographical tracing, DiI (Sigma-AldrichCorporation, St.
Louis, MO, USA) or Fluoro-Gold (Fluorochrome, LLC, Denver,
CO, USA) was dissolved in dimethyl sulfoxide to result in a 20-
mM stock solution. The stock solution was diluted to 82μMwith
phosphate-buffered saline (PBS) and then used as the injection
solution. When the mice were 11.5 months old, the DiI or
Fluoro-Gold were stereotaxically injected at 1 μL/min for 3 min
into the dentate gyrus of the hippocampus (AP, − 2.0 mm; ML,
1.3 mm; DV, − 1.9 mm from bregma and skull) in the 5XFAD
(n= 5) and wild-type mice (n= 5), while they were anesthetized
with Avertin (tribromoethanol; Sigma-Aldrich Corporation, St.
Louis, MO, USA; 250 μg/kg), which was administered by intra-
peritoneal injections. After the Dil or Fluoro-Gold injections, the
needle was slowly withdrawn and the skin was sutured.

Brain Tissue Preparation

Four days after the injections, the animals were anesthe-
tized, transcardially perfused with 0.05 M PBS, and then
fixed with ice-cooled 4% paraformaldehyde in 0.1 M
phosphate buffer (PB). The brain tissue was extracted,
postfixed in 0.1 M PB containing 4% paraformaldehyde
for 20 h at 4 °C, and then saturated with a 30% sucrose
in 0.05 M PBS solution for 3 days at 4 °C for
cryoprotection. The samples were embedded with optimal
cutting temperature (OCT) compound and cut into serial
30-μm-thick coronal sections with a cryostat (Leica
Biosystems, Wetzlar, Germany). The tissue sections were
stored in a cryoprotectant (25% ethylene glycol, 25%
glycerol, and 0.05 M PB) at 4 °C until they were needed
for histology.
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Fig. 1 Validation and characterization of the application of the DiI
neurotracer in the brains of wild-type mice. a Photomicrographic
validation of the stereotaxic injection sites of DiI. The mouse brain atlas
diagram illustrates the injection sites. Scale bars = 1 mm and 200 μm for
the magnified inserts. b Serial Z-stack images, comprising nine sections,
of the subcellular localization of DiI that was retrogradely transported

from the hippocampus to the entorhinal cortex. c Orthogonal view of
the z-stack images shown in b. The panels on the side and bottom show
y–z and x–z cross-sectional images, respectively. d The three-dimensional
Z-projection of the acquired stacks. DAPI was used to stain the nuclei.
Scale bars = 10 μm b–d
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Image Acquisition and Analysis

To trace the DiI-labeled cells, the entire tissue section was
imaged with a Zeiss LSM 700 Meta confocal microscope
(Carl Zeiss AG, Oberkochen, Germany; λex = 550 nm;
λem = 567 nm). The DiI-labeled cell bodies were examined
in several brain regions, including the olfactory bulb (OB),

MS, EC, substantia nigra pars compacta (SNc), interfascicular
region of the DR nucleus, and locus coeruleus (LC). To quan-
tify the DiI-labeled cells, 4–10 representative images of each
region were analyzed and quantified by ImageJ software
(National Institutes of Health (NIH), Bethesda, MD, USA)
as following steps: (1) images are converted to 8 bit for the
quantify images; (2) following converting, images are

Fig. 2 Delineating the neural inputs of the hippocampus in the wild-type
mice with the neurotracer DiI. a A sagittal view of mouse brain showing
representative figures of (c–h). b Schematic drawing of the brain regions
that project axons to the hippocampus. DiI fluorescence was observed in c
the olfactory bulb (OB), dmedial septum (MS), e hippocampus (Hippoc),

f substantia nigra pars compacta (SNc), entorhinal cortex (EC), g dorsal
raphe (DR), and h locus coeruleus (LC). All tissues were counterstained
with DAPI (blue). All figures were captured in the ipsilateral hemisphere.
Scale bars = 1 and 500 μm for c

Mol Neurobiol (2018) 55:7886–7899 7889



thresholded for area of DiI-positive cells and background sig-
nals are removed; (3) topographic anatomical areas are desig-
nated based on DAPI counterstaining; (4) thresholded images
for the designated brain area are quantified by Analyze parti-
cles tool to the B%Area^ value of the DiI-positive cells; (5) to
normalize relative to the control, the following equations are
applied to the B% Area^ values of the two groups (WT and
5XFAD) to be compared: %of control = (%AreaWT or 5XFAD/
%Areaaverage of WT) × 100.

Statistical Analyses

The data are presented as the mean ± standard error of the
mean. The differences between the two groups were analyzed
statistically with independent t tests and Prism 5 (Windows
Version 3.10; Systat Software, Inc., San Jose, CA, USA). P
value less than 0.05 indicated statistical significance.

Results

Histological Profiling of the Neuronal Inputs
of the Hippocampus in Healthy Mice

To determine the origin of axonal inputs of the hippocampus,
we used DiI, a retrograde tracer, to identify extrahippocampal

afferents. Before the afferent inputs of the hippocampus were
examined in the AD model brains, we injected the retrograde
tracer into the hili of the hippocampi of wild-type littermate
mice to validate the injection site and delineate the afferents of
the hippocampus. Four days after the injection, DiI fluores-
cence was detected in the dentate gyrus, CA1, and CA3
(Fig. 1a). DiI signals were also found in the contralateral den-
tate gyrus and CA3, and these signals represent projections
from the contralateral hippocampus (Supplementary Fig. 1).
Because the hippocampus receives major inputs from the EC
[47, 48], we performed Z-stack imaging of the (DAPI) and DiI
signals in the EC of the wild-type mice to investigate the
subcellular localization of the DiI that was axonally
transported from the hippocampus. The fluorescence signals
of the retrotransported DiI were localized in the cytoplasm of
the DAPI-stained cells (Fig. 1b–d). Fluorescent cells were
prominent in specific brain regions or nuclei, including the
MS, LC, DR, SNc, and OB, in the DiI-injected littermate
controls (Fig. 2a–h). These labeled regions are known to send
afferents to the hippocampus, and these results indicated that
the DiI-positive cells were afferent neurons of the hippocam-
pus. In addition, the number of DiI-containing cells in the
injected hemisphere was larger than that of the contralateral
side, which suggested that the hippocampus receives neural
inputs from extrahippocampal areas in a predominantly ipsi-
lateral manner (Supplementary Fig. 2). Although DiI is
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Fig. 3 Olfactory input to the
hippocampus was significantly
decreased in the 5XFAD mice
compared to the wild-type
littermate mice. a Diagram of the
coronal mouse brain sections
illustrating the location of the OB
at bregma + 4.28 mm. b
Representative figures showing
DiI-positive somata in the main
OB (MOB). DiI-positive signals
are mainly observed in the mitral
layer of the OB. c Quantification
of the DiI-positive area in the
MOB. Scale bar = 50 μm. The
values are given as
mean ± standard error of the
mean. ***p < 0.001 indicates
significant differences between
the groups. OB, olfactory bulb;
gr, granule layer; ipl, inner
plexiform layer; mi, mitral layer;
opl, outer plexiform layer; gl,
glomerular layer
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anterogradely and retrogradely transported in neurons, the
properties of the anterograde transport have not yet been clar-
ified [43, 49]. To confirm the retrograde transport of DiI, we
traced another retrograde tracer, Fluoro-Gold [50]. As a result,
we found intrahippocampally injected Fluoro-Gold in the
same extrahippocampal regions observed in the DiI-injected
brains (Supplementary Fig. 3).

Altered Olfacto-Hippocampal Pathways in the 5XFAD
Mice

To investigate the neural connections between the OB and the
hippocampus in the AD model brains, DiI was injected into
the hippocampi of the wild-type and 5XFAD mice when they
were 11.5 months old. Four days after the DiI injections, DiI
fluorescence was observed in the mitral layer of the OB in
both the 5XFAD and wild-type mice (Fig. 3a, b). The number
of DiI-positive cells was decreased in the OB of the 5XFAD
mice compared with those in the wild-type mice (Fig. 3c, t =
4.966, p = 0.0006). These results suggested that the olfactory

memory deficits in patients with AD are associated with de-
creased innervation of the hippocampus from the OB.

Disrupted Septohippocampal Projections
in the 5XFAD Mice

To examine if the septohippocampal pathways were altered in
Aβ-overexpressing brains, we traced the transport of the retro-
grade tracer from the hippocampi of the 5XFAD mice.
Fluorescence was observed in septal areas in both 5XFAD and
wild-type mice (Fig. 4a, b). Compared to the wild-type mice, the
DiI-labeled afferents from the MS were significantly decreased
by 52% in the 5XFAD mice (Fig. 4c, t = 9.132, p < 0.0001).
These results indicated that the innervation of the hippocampus
from the MS was decreased in Aβ-overexpressing brains.

Decreased Entorhinal-Hippocampal Connections
in the 5XFAD Mice

To investigate changes in the hippocampal inputs originat-
ing from the EC, we revealed the entorhinal-hippocampal
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Fig. 4 Medial septal inputs to the hippocampus were significantly
decreased in the 5XFAD mice compared to their littermate controls. a
Diagram of a mouse brain atlas illustrating the location of the MS at
Bregma + 0.74 mm. b Representative figures of DiI-containing somata
in the MS complex. DiI-positive cells are mainly observed in the MS

nucleus. Scale bar = 200 μm. c Magnification of the white rectangles in
b. d Quantification of the DiI-positive area in the MS nucleus. Scale
bar = 50 μm. ***p < 0.001 indicates significant differences between the
groups. MS, medial septal nucleus; LSV, lateral septal nucleus, ventral
part
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connections with the DiI tract-tracing technique. Most of
the traced afferents were found in the superficial layers of
the LC (Fig. 5a, b). These retrograde-tracing results dem-
onstrated that the DiI-positive area was reduced by 46.5%
in the cortical layers of the EC in the 5XFAD mice com-
pared to that in the wild-type mice (Fig. 5c, t = 10.73,
p < 0.0001). These findings suggested that the neural in-
puts of the hippocampus from the EC are decreased in
the brains of patients with AD.

Altered Nigrohippocampal Pathways in the 5XFAD
Mice

To reveal the nigrohippocampal pathway, we injected DiI into
the hippocampus and examined the midbrain (Fig. 6a, b).
Compared with the littermate mice, the nigrohippocampal
pathway was decreased by 41.3% in the SNc of the 5XFAD

mice, which indicated that this pathway was significantly al-
tered in the 5XFAD mice (Fig. 6c, t = 6.496, p < 0.0001).
These retrograde tract-tracing results showed that hippocam-
pal afferents from the SNc were significantly decreased in
Aβ-overexpressing brains.

Disrupted Raphe-Hippocampal Projections
in the 5XFAD Mice

To examine raphe-hippocampal projections, we conducted
retrograde-tracing with DiI. These retrograde-tracing results
demonstrated that the DiI-positive area was reduced by
44.6% in the DR of the 5XFAD mice compared with the
littermate controls (Fig. 7, t = 3.961, p = 0.0027) and implied
that impairments in the raphe-hippocampal projections con-
tribute to the decreased levels of serotonin that have been
observed in the hippocampi of patients with AD.
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Fig. 5 Innervation of the hippocampus from the EC was significantly
impaired in the 5XFAD mice compared to the wild-type mice. a
Diagram of a mouse brain atlas illustrating the location of the EC at
bregma − 2.08 mm. b Representative figures of DiI-positive somata in
the entorhinal area, lateral part. The DiI-positive cells are mainly observed

in layer 2/3 of the EC. Scale bar = 200 μm. c Quantification of the DiI-
positive area in the EC. Scale bar = 50 μm. ***p < 0.001 indicates
significant differences between the groups. EC, entorhinal cortex; MS,
medial septal nucleus; LSV, lateral septal nucleus, ventral part
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Decreased LC-Hippocampal Innervation in the 5XFAD
Mice

To examine alterations in hippocampal afferents from the LC
in AD, we revealed LC-hippocampal projections in the
5XFAD and wild-type mice. DiI was injected into the hippo-
campus, and DiI fluorescence was detected in the LC of the
5XFAD and wild-type mice (Fig. 8a, b). At 11.5 months of
age, the number of DiI-containing somata was dramatically
decreased by 69.1% in the LC of the 5XFAD mice compared
to the wild-type mice (Fig. 8c). The LC-hippocampal connec-
tion was the most severely altered of all neural pathways ex-
amined in the 5XFAD mice (Fig. 9a, t = 20.19, p < 0.0001),
which supports previous reports of neuronal loss in the LC
being most severe in patients with AD [51].

Discussion

The hippocampus is the major brain region involved in the
regulation of learning and memory. Due to the critical role of

the hippocampus in cognitive functions, hippocampal connec-
tivity has been examined in the brains of patients with AD.
Although functional magnetic resonance imaging can be used
to visualize and examine neural networks in the brains of
patients with AD, it cannot be used to examine direct neuronal
connections at the cellular level [36, 37]. The aim of this study
was to identify topographical changes in hippocampal con-
nectivity in AD by providing direct anatomical evidence of
the origins of axon terminals that innervate neurons in the
hippocampus and the extent they are damaged in patients with
AD. To reveal the innervation of the hippocampus from sev-
eral brain regions, we performed stereotaxic injections of the
retrograde tracer DiI into the hippocampi of 5XFAD and wild-
type mice. Subsequently, we analyzed the DiI-positive neu-
rons in the extrahippocampal regions and found that afferents
to the hippocampus were decreased in the 5XFAD mice
(Fig. 9).

To date, many of the therapeutic drugs that are used to treat
AD and that target Aβ, neuroinflammation, oxidative stress,
mitochondrial dysfunction, and hyperphosphorylated tau are
largely unsuccessful at restoring memory. Recently, selective

Bregma - 3.16 mm

Ipsilateral

a b

c

Fig. 6 The nigrohippocampal pathways were impaired in the 5XFAD
mice compared to the wild-type mice. a Diagram of a mouse brain atlas
illustrating the location of the SNc at bregma − 3.16 mm. b
Representative figures of DiI-positive somata in the entorhinal area,
lateral part. DiI-positive cells were mainly observed in the SNc. Scale

bar = 200 μm. c Quantification of the DiI-positive area in the SNc. Scale
bar = 50 μm. ***p < 0.001 indicates significant differences between the
groups. SNc, substantia nigra, compact part; SNR, substantia nigra,
reticular part
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abnormalities in neural circuits have been shown to be the
major cause of noticeable memory loss in patients with AD
[52, 53]. Thus, restoring neural networks in patients with AD
might directly enhance cognitive function in these patients
[53, 54].

To investigate impairments in hippocampal connectivity in
AD, we used 5XFAD mice, which exhibit the major features
of AD. The pathological phenotypes of 5XFAD mice are the
accumulation of amyloid plaques, synaptic loss, neuronal
death, impaired adult hippocampal neurogenesis, and neuro-
inflammation [55, 56]. In patients with AD, the accumulation
of Aβ is the main contributor to the compromised synaptic
networks and neural circuits [57]. Thus, we confirmed Aβ
deposits in the brain regions that exhibited DiI retrogradely
labeled cells in the 5XFAD mice (Supplementary Fig. 4). The
brains of patients with AD also exhibit amyloid plaque accu-
mulation in the cholinergic nuclei of the basal forebrain, LC,
DR, SNc, hippocampus, and EC [58], indicating that the re-
gions with Aβ deposition in the brains of the 5XFAD mice
were very similar to those in human AD brains. In addition,

the 5XFAD mice develop hippocampal degeneration and def-
icits in memory and cognition in an age-dependent manner
[59]. The hippocampus receives glutamatergic afferents from
the EC, and the levels of glutamate are reduced by 8months of
age in the 5XFAD mice [60]. In addition to the glutamatergic
inputs, the hippocampus receives dopaminergic, noradrener-
gic, serotonergic, and cholinergic inputs, and these inputs are
also decreased in the hippocampi of 5XFAD mice [60].
Despite the pathological importance of hippocampal degener-
ation in AD, little direct anatomical data show impairments in
hippocampal inputs at the mesoscale level in animal models of
AD.

Deficits in the cholinergic system are strongly associated
with AD-associated memory loss [61]. Therefore, acetylcho-
linesterase inhibitors have been used as therapeutic agents for
patients with AD [62, 63]. Neural pathways from the MS
mostly terminate in the hippocampus [64, 65]. Thus, the MS
is one of the major sources of released acetylcholine within the
hippocampus. Our results indicated that DiI-positive cells,
which trace afferent paths of the hippocampus, were
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Fig. 7 The innervation of the hippocampus from the DR was
significantly decreased in the 5XFAD mice compared to the wild-type
mice. aDiagram of a mouse brain atlas illustrating the location of the DR
at bregma − 4.84 mm. b Representative figures of DiI-positive somata in
the midbrain raphe nuclei. DiI-positive cells were mainly observed in the
DR and VTg. Scale bar = 200 μm. c Quantification of the DiI-positive

area in the DRI. Scale bar = 50 μm. **p < 0.01 indicates significant
differences between the groups. AQ, cerebral aqueduct; DR, dorsal
raphe; DRD, dorsal raphe nucleus, dorsal part; DRI: dorsal raphe
nucleus, interfascicular part; mlf, medial longitudinal fasciculus; VTg,
ventral tegmental nucleus
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significantly reduced in the MS in the animal model of AD
(Fig. 4), which implied that the cholinergic septohippocampal
pathway might be impaired in Aβ-overexpressing brains.

Many studies have reported that dysfunction of the norad-
renergic system or LC destruction in the brains of patients
with AD plays critical pathogenic roles in AD-related pathol-
ogies, such as neuroinflammation, cognitive deficits, synaptic
loss, and amyloidosis [27, 66–68]. Interestingly, the LC is an
especially vulnerable part of the brain in patients with AD
[66]. Our results showed that DiI-traced afferents from the
LC to the hippocampus were impaired the most of all the
neuronal pathways examined in the brains of the 5XFADmice
(Fig. 9a), which suggests that the afferent pathway from the
LC to the hippocampus is the most severely altered in AD.

Although the onset of AD is clinically diagnosed by cog-
nitive decline, several secondary symptoms, such as depres-
sion, olfactory dysfunctions, and deficits in olfactory memory,
are present in patients with AD [16, 69]. Considering the
association of the DR nucleus with mood regulation, destruc-
tion of the raphe-hippocampal connection might be associated
with depressive symptoms in patients with AD. In addition,
the present results of the anatomical mapping of the olfacto-

hippocampal connection indicate that impairments in this cir-
cuit might be the underlying mechanism of the olfactory def-
icits in patients with AD.

The ventral tegmental area (VTA), which is directly linked
to the hippocampus, is involved in the spatial memory and
activity of the hippocampus and the dopaminergic response
to the novelty and encoding of hippocampal-dependent mem-
ories [70–73]. In addition to the SNc, the VTA exhibits neu-
ronal loss in patients with AD [74]. Although DiI-positive
somata were not prominent in the VTA, we observed a trend
of decreased DiI-positive area in the VTA (data not shown).
These impaired neuronal connections might result from the
degeneration of axonal terminals within the hippocampus or
somata in the regions projecting axons to the hippocampus.

In the mice receiving intrahippocampal DiI injections, fluo-
rescence was observed in the DG, CA3, and CA1 (Figs. 1a and
2e). Cortical layer II of the EC projects mainly to CA3 and DG,
and cortical layer III of the EC projects primarily to CA1 and
the subiculum [47]. Consistent with the results of previous
studies, our results showed that DiI-positive cells were mainly
found in the superficial (II and III) layers of the EC (Fig. 5b, c).
The hippocampus innervates the contralateral hippocampus

LC

Bregma - 5.68 mm

5X
FA

D
W

T

DAPI Dil Merge

4V

WT 5XFAD
Ipsilateral

a
b

c

Fig. 8 The LC-hippocampal pathways were dramatically decreased in
the 5XFAD mice compared with the wild-type mice. a Diagram of a
mouse brain atlas illustrating the location of the LC at bregma −
5.68 mm. b Representative figures of DiI-positive somata in the pons.

DiI-positive cells were mainly observed in the LC. Scale bar = 200 um. c
Quantification of the DiI-positive area in the LC. Scale bar = 50 μm.
***p < 0.001 indicates significant differences between the groups. LC,
locus coeruleus; 4V, fourth ventricle
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[75, 76]. Consistent with the results of previous studies, DiI-
positive cells were also observed in the DG and CA3 of the
contralateral hippocampus (Fig. 1a and Supplementary Fig. 1).
Many studies have revealed that neuronal circuitries are ipsilat-
erally dominant in the brain. A recent study showed that there
are prevalent bilateral circuitries to corresponding ipsilateral
and contralateral target regions, with the ipsilateral circuits gen-
erally being stronger than the contralateral sides [38].
Specifically, the majority of LC neurons project predominantly
throughout the entire brain in an ipsilateral manner (Ader et al.,
1980; Waterhouse et al., 1983; Simpson et al., 1997; Room
et al., 1981). Consistent with previous reports, our results also
showed that the intensity of the DiI fluorescence or the number
of DiI-positive cells was increased on the ipsilateral side com-
pared with the contralateral side in the SNc and LC of the mice
brains (Supplementary Fig. 2).

These results suggested that hippocampal inputs from the
cholinergicMS, noradrenergic LC, serotonergicDR, dopaminer-
gic SNc, and glutamatergic EC were impaired in 5XFAD mice.
Therefore, investigations of the destruction of neurotransmitter-
specific pathways should be conducted with cell-type-specific
promoters. The current findings were the first to elucidate im-
pairments in neural pathways/tracts that originate from
extrahippocampal areas in animal models of AD at the meso-
scale level, and these results might be potent evidence for the
pathological mechanisms underlying AD. Further studies are
needed to identify the change of efferent and afferent projections

within not only hippocampus but also whole brain structure in
AD. Based on mapping of connectivity in the AD brain, restor-
ing impaired neural pathways with optogenetic therapy or trans-
cranial magnetic stimulation might be potential therapeutic strat-
egies for treating cognitive impairments in patients with AD.
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