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Abstract
Patients with a diagnosis of multiple sclerosis (MS) or major depressive disorder (MDD) share a wide array of biological
abnormalities which are increasingly considered to play a contributory role in the pathogenesis and pathophysiology of both
illnesses. Shared abnormalities include peripheral inflammation, neuroinflammation, chronic oxidative and nitrosative stress,
mitochondrial dysfunction, gut dysbiosis, increased intestinal barrier permeability with bacterial translocation into the systemic
circulation, neuroendocrine abnormalities and microglial pathology. Patients with MS and MDD also display a wide range of
neuroimaging abnormalities and patients with MS who display symptoms of depression present with different neuroimaging
profiles compared with MS patients who are depression-free. The precise details of such pathology are markedly different
however. The recruitment of activated encephalitogenic Th17 T cells and subsequent bidirectional interaction leading to classi-
cally activated microglia is now considered to lie at the core of MS-specific pathology. The presence of activated microglia is
common to both illnesses although the pattern of such action throughout the brain appears to be different. Upregulation of
miRNAs also appears to be involved in microglial neurotoxicity and indeed T cell pathology in MS but does not appear to play a
major role inMDD. It is suggested that the antidepressant lofepramine, and in particular its activemetabolite desipramine, may be
beneficial not only for depressive symptomatology but also for the neurological symptoms of MS. One clinical trial has been
carried out thus far with, in particular, promising MRI findings.
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Introduction

Multiple sclerosis (MS) is the most common inflammatory,
demyelinating, neurodegenerative disease of the central ner-
vous system (CNS) and is the leading source of non-traumatic
neurological disability among young adults in Europe and
North America [1, 2]. The wide array of core neurological
symptoms associated with this illness includes sensory distur-
bances, limb weakness, optic neuritis, ataxia, profound blad-
der dysfunction, cognitive dysfunction, gastro-intestinal
symptoms, fatigue and depression [2, 3]. Therefore, MS is
viewed as a heterogeneous phenotype, and an expert consen-
sus has proposed some discrete courses for this illness, includ-
ing a clinically isolated syndrome, a relapsing-remitting dis-
ease, and progressive forms of the disease.

In 1887, Jean-Martin Charcot noted that a significant pro-
portion of patients with MS display neuropsychiatric distur-
bances throughout the course of the illness. Since then, a sig-
nificant body of evidence has accumulated and indicated that
depressive symptoms represent the most prevalent of such
neuropsychiatric disturbances seen in MS patients [4, 5].
The prevalence of depressive symptoms in MS patients has
varied across studies. A systematic review and meta-analysis
of population-based studies has estimated a prevalence of
23.7% (95% CI: 17.4–30.0%) [6], while prevalence rates
seem to be substantially higher in specialised clinics (up to
50%) [4].

A growing body of evidence indicates that patients
displaying symptoms of depression have a worse prognosis
than those who do not. It is noteworthy that prospective data
indicate that mood symptoms fluctuate over the course of MS
and that the advent of depressive symptoms is often associated
with disease relapse.

The presence of depressive symptoms is predictive of an
impaired quality of life and such symptoms can either co-exist
with severe fatigue and/or significant cognitive impairment or
occur independently. Cognitive impairment may affect up to
60% of patients with MS [7–9] and the severity of depressive
symptoms correlates with increased impairment in executive
function and processing speed [10, 11]. Depression also is a
significant contributor to the higher suicide rates observed
among individuals with MS, with the standardised mortality
ratio for suicide in such patients being around twice as high as
that in the general population [12].

Major depressive disorder (MDD) is increasingly regarded
as a unitary and very serious neuroprogressive illness with a
remitting-relapsing pattern leading to major disability and re-
duction in life quality together with increased cardiovascular
and other significant medical morbidity [13]. This illness is
currently estimated to be the fourth leading cause of serious
disability in the world and is projected to become the second
leading cause of disabling morbidity worldwide by 2020 [14].
The question arises as to whether the high rates of depressive

symptoms seen in MS patients represent the same condition as
MDD and is the assumption that some patients with MS also
have MDD as a separate illness correct or are such symptoms a
manifestation of the core disease processes driving the patho-
genesis and pathophysiology of the latter illness [15]. In this
context, it is intriguing that there is accumulating evidence sug-
gesting that there may be some common elements underpin-
ning the pathogenesis and pathophysiology of MDD and MS.
For example, it is noteworthy that neuroinflammation and neu-
rodegeneration are both considered to be crucial elements in the
pathogenesis and pathophysiology of both MS and MDD
[16–18]. The weight of evidence also indicates that this is also
true of peripheral inflammation as evidenced by elevated levels
of proinflammatory cytokines (PICs), acute-phase proteins,
such as C-reactive protein (CRP), and transcriptional factors,
such as nuclear factor kappa B (NF-κB) [19, 20]. Indeed, in-
creased rates of peripheral inflammation, notably interleukin
(IL)-6 and CRP, appear to differentiate MS patients suffering
from comorbid depression from those who do not [21].
Interestingly, there is also some evidence to suggest patients
reporting symptoms of depression also present with more ad-
vanced disease and increased clinical disability, as measured by
the Expanded Disability Status Scale (EDSS), compared with
their depression-free counterparts, although whether these find-
ings indicate that depressive symptoms emanate from core dis-
ease processes or whether the advent of MDD is an indepen-
dent driver of pathology remains an open question [21].

MS and MDD patients share many other abnormalities,
such as chronic oxidative and nitrosative stress (O&NS)
characterised by oxidatively and nitrosatively damaged pro-
teins, lipids and DNA, and consequent loss of immunogenic
tolerance [22]. Given the strong association between chronic
oxidative stress and the development of mitochondrial dys-
function, the presence of widespread damage to this organelle
in both illnesses is unsurprising [19, 20]. Impaired natural
killer (NK) cell function and/or reduced numbers of these
lymphocytes are also characteristic features of MDD and
MS [23, 24]. Disturbed T cell homeostasis and recruitment
of myelin autoreactive encephalogenic T cells into the CNS
is still considered to be the ultimate driver of progressive pa-
thology in MS, but there is also a growing awareness that
impaired T cell homeostasis and recruitment into the CNS
may well play an important role in the pathophysiology of
MDD [17]. Further evidence of impaired T cell homeostasis
in both illnesses is provided by several research groups who
have reported abnormalities in function and/or number of reg-
ulatory T cells (Tregs) [25, 26]. Functional polymorphisms
affecting cytokine production and/or function and T cell ho-
meostasis and activation increase the risk of developing both
illnesses [27–29].

Epigenetic dysregulation is also seen inMS andMDDwith
widespread changes in DNA methylation, histone acetylation
and microRNA (miRNA) transcription leading to the
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abnormal expression of a multitude of genes, although the
precise pattern of altered gene expression is markedly differ-
ent [30, 31]. However, despite copious research, the mecha-
nisms underpinning the pathogenesis of both illnesses remain
to be fully delineated and the contributions of many of the
abnormalities to disease pathology are still the subject of some
controversy. The situation is made more complex by evidence
indicating that MDD and MS are very likely pathologically
heterogeneous conditions [32, 33]. While there is a growing
consensus that inflammation in the periphery and the brain
together with oxidative stress and mitochondrial dysfunction
play a role in the aetiopathogenesis of both illnesses, there are
major differences in abnormalities recorded in many other
domains such as T cell dysfunction [16, 18, 19].

The precise biological mechanisms underpinning the exis-
tence of depression in MS and their importance in contributing
to the pathophysiology of MS are still the subject of some
debate. In addition, as previously indicated, the issue remains
outstanding as to whether depressive symptomology accompa-
nyingMS can be regarded either as evidence of the existence of
MDD as a separate condition acting as a driver of pathology or
be a product of core disease processes. In this paper, we aim to
compare findings in MS and MDD produced by various re-
search teams investigating immune abnormalities, glial cell ac-
tivity, blood brain barrier permeability [34], autoimmune man-
ifestations, impaired gastrointestinal epithelial barrier perme-
ability, activity of inflammatory pathways, neuroimaging and
bioenergetics in order to comment on the likely answer or an-
swers to this question or indeed whether such a dichotomous
viewpoint is appropriate. Finally, we suggest translational im-
plications for this expanding body of knowledge.

Methods

Pursuant to our interest in comparing and contrasting a wide
range of biological abnormalities inMS andMDD, a search of
MEDLINE andWeb of Sciencewas undertakenwith keyword
inputs of MS, depression, T cell, B cell, oxidative stress,
nitrosative tress, nitric oxide (NO), mitochondrial dysfunc-
tion, inflammation, immune activation, microglia, astrocytes,
neuroinflammation, neoepitopes, autoimmunity, antioxidants,
antioxidant therapy, gut dysbiosis, increased intestinal perme-
ability, leaky gut, bacterial translocation, epigenetic, histone
acetylation, DNA methylation and microRNA.

Evidence of O&NS in MS and MDD

O&NS in MS

There are multiple lines of evidence demonstrating that chron-
ic O&NS plays a major causative role in the pathogenesis of

MS [18, 19, 35]. Such evidence includes data demonstrating
dramatic increases in O&NS levels during relapse, which falls
to virtually undetectable levels when patients enter into remis-
sion [36]. Levels of O&NS also correlate with the extent of
clinical disability as ascertained by the EDSS score and the
extent of gadolinium-enhanced lesions observed with struc-
tural magnetic resonance imaging (MRI) scanning [37, 38].
Furthermore, Tasset and fellow workers have reported signif-
icant peripheral levels of oxidative stress in patients with
relapsing-remitting MS (RRMS) [39, 40]. Several research
teams have reported the presence of O&NS damage to pro-
teins and lipids, such as elevated levels of protein carbonyls in
the brain, cerebrospinal fluid (CSF) and peripheral blood of
MS patients in vivo and in post mortem studies [19, 41, 42].
Several other surrogate markers of O&NS and lipid peroxida-
tion are frequently observed in the CSF and plasma of MS
patients [42, 43], with the presence of malondialdehyde
(MDA) [44], hydroxynonenal [41] and isoprostanes [45] be-
ing the most common findings. Interestingly, and perhaps pre-
dictably, levels of NO metabolites in the CSF correlate posi-
tively with the number of relapses suffered by a patient over a
given period [46]. Unsurprisingly, significantly increased
levels of NO, peroxynitrite and superoxide are also present
in spinal fluid extracts [44] and high levels of nitrotyrosine,
indicating the presence of peroxynitrite and inducible NO
synthase (iNOS) are often reported in active demyelinated
white matter lesions [44, 47].

O&NS in MDD

O&NS, resulting from increased reactive oxygen species
(ROS), reactive nitrogen species (RNS) and compromised
cellular antioxidant systems, is also considered to be a major
factor driving the pathophysiology of MDD [48–50].
Evidence of compromised antioxidant system activity in-
cludes elevated levels of superoxide dismutase and catalase
activity [51] and deficiencies in levels of antioxidant mole-
cules, such as vitamins C and E [52–54]. Several authors have
also reported the presence of widespread lipid peroxidation in
the prefrontal cortex and other crucial areas of the brain linked
to the development of MDD [55, 56]. Interestingly, lipid per-
oxidation levels correlate with symptom severity in females
but not inmales for reasons which remain to be delineated [55,
56]. The presence of lipid peroxidation is reinforced by data
demonstrating the existence of increasedMDA concentrations
in serum and extensive oxidative damage to a wide range of
lipids in peripheral tissues [51, 57]. Several research teams
have also reported increased levels of isoprostane and 8-oxo-
2′-deoxyguanosine in urine and plasma samples, bearing fur-
ther testimony to the presence of high ROS and RNS levels
produced outside the brain in patients suffering from depres-
sion [52–54]. In this context, it is noteworthy that the levels of
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peripheral oxidative stress markers correlate with severity and
chronicity in both male and female patients [50, 56–58].

Given this relationship, the presence of a large number of
papers reporting the results of trials into the efficacy of anti-
oxidant compounds as potential antidepressant treatments is
unsurprising [59, 60]. Furthermore, the extent of oxidative
damage to proteins, lipids and DNA is of sufficient magnitude
as to form neoepitopes owing to loss of immunological toler-
ance leading to autoantibody responses and the development
of autoimmunity [49, 61, 62]. The presence of oxidative dam-
age to mitochondrial DNA (mtDNA) observed in patients
suffering from MDD is further evidence of the severity of
peripheral nitroxidative stress associated with this illness
[63, 64].

Evidence of Lowered Antioxidant Levels

Antioxidants in MS

There is ample evidence of lowered serum total antioxidant
capacity inMS patients with reduced levels of plasma albumin
ascorbate, alpha tocopherol, retinol urate and bilirubin com-
pared with healthy controls being repeatedly reported
[65–67]. Altered glutathione homeostasis, especially reduced
glutathione reductase and glutathione peroxidase, is also a
well-documented phenomenon although some research teams
have not observed such abnormalities in their study cohorts
[68, 69]. The activity of the thioredoxin system is also com-
promised in at least some patients diagnosed with this illness
with increased thioredoxin activity but impaired thioredoxin
reductase activity being the most commonly reported findings
[70]. Superoxide dismutase and catalase activities are in-
creased in grey matter, microglia, lesions and the CSF, but
impaired in peripheral blood mononuclear cells (PBMCs)
and erythrocytes in the periphery [71–74]. Finally, there are
several studies reporting increased activity of the transcription
factor nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or
Nrf2) and of antioxidant response elements (ARE) in the brain
and periphery but that this increased activity is unable to pre-
vent the oxidative damage to molecules in the environment of
chronically increased ROS and RNS seen in MS patients [70,
75, 76].

Several antioxidant regimes have demonstrated clinical and
neurological benefit in non-human animal models of MS but
results in humans, in whom very high doses of antioxidants
are needed to achieve functional effects in the CNS, have been
relatively disappointing until relatively recently. However, ac-
tivators of Nrf2-ARE signalling pathway such as dimethyl
fumarate (DMF) are now showing considerable promise [77,
78]. Activation of this pathway has several beneficial conse-
quences, such as activation of the haem oxygen pathway and
increased synthesis of reduced glutathione, inhibition of

NF-κB and PIC production, and a concomitant provocation
of a Th1 to Th2 lymphocyte shift [79, 80]. The authors of the
CONFIRM and DEFINE studies were the first to report a
significant decrease in the annual relapse rate, reductions in
the number of gadolinium-enhanced MRI lesions and new or
hyper-intense legions in patients treated with DMF compared
with interferon (IFN)-β [81, 82]. These findings have been
confirmed by several other research teams [83–85]. MitoQ
has been successful in delaying progression and reducing neu-
rological disability in experimental autoimmune encephalo-
myelitis (EAE) [86] and standard formulations of coenzyme
Q10 (CoQ10) at 500 mg/day have demonstrated a capacity to
reduce inflammatory markers in people with MS [87].
However, there are no studies demonstrating any benefit on
neuroimaging indices or clinical disability although CoQ10 at
500 mg/day appears to produce a significant reduction in the
symptoms of fatigue and depression in MS patients [88].
Polyunsaturated fatty acids (PUFAs) are another class of nu-
trients which have shown clinical and neurological improve-
ment in some MS patients albeit at very high doses for
prolonged periods of time [89]. However, while PUFAs clear-
ly have antioxidant effects, their mode of action is multifacto-
rial and these entities affect very similar pathways to those
influenced by DMF [90].

Antioxidant Levels in MDD

MDD patients characteristically display significantly lower
serum concentrations of a wide array of crucial antioxidants,
such as zinc, ascorbic acid and CoQ10 [91]. Several research
teams have also reported lower plasma total antioxidant status
compared with unaffected controls [92–94]. There is also ev-
idence of impaired activity of the glutathione system with
reduced levels of reduced, oxidised and total glutathione re-
ported in the post mortem brains of MDD patients [94]. The
concentration and activity of key enzymes within the glutathi-
one system, namely glutathione peroxidase and glutathione-S-
transferase, also appear to be reduced in the brain and periph-
ery of patients suffering from this illness [95, 96]. While there
is limited published work investigating the status of the
thioredoxin system in MDD patients [97], there is ample ev-
idence of abnormal MnSOD and catalase activity [98–100].
Catalase activity appears to be consistently increased but the
data for MnSOD are somewhat inconsistent with reports of
both increased serum activity [98, 99] and decreased serum
activity [100]. There is no direct evidence of abnormal Nrf2 or
DJ-1 (PARK7) activity in MDD patients although there is
some evidence from animal studies suggesting that the expres-
sion of Nrf2 may be reduced [101].

While several classes of antioxidants have proven to be
efficacious in treating depression in animal models of the ill-
ness, the overall results in human studies have been rather
disappointing especially as far as unipolar depression is
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concerned (review [92, 102]). There are some data demon-
strating that 1200 mg CoQ10 per day over 8 weeks can sig-
nificantly reduce depressive symptoms in patients with bipo-
lar disorder [103, 104] and a recent study by Gaultan and
others demonstrated a significant treatment effect in unipolar
depression using vitamins C (in the form of ascorbic acid), E
(as alpha-tocopherol) and A (as beta-carotene) over a 6-week
period [105]. A meta-analysis of 241 studies concluded that
supplements containing eicosapentaenoic acid (EPA) and
docosahexaenoic acid appeared to convey significant benefit
in treating MDD if the EPA content was greater than 50% of
the total concentration [106]. A reader interested in a more
detailed examination of these studies is invited to consult a
review by [89]. Therapeutic administration of N-
acetylcysteine has demonstrated therapeutic benefit in a num-
ber of illnesses in which chronic inflammation and oxidative
stress play a major pathogenic role (reviewed [89]).
Disappointingly, it only demonstrated slight non-significant
effects on symptom reduction in MDD [59], although the
doses used in this trial were significantly lower than the doses
proven to convey therapeutic benefit in other inflammatory
illnesses [18]. Meta analyses of N-acetylcysteine however
seem to show a positive signal [107]. The use of polyphenols
such as apigenin, amentoflavone, chlorogenic acid, ferulic ac-
id, resveratrol and curcumin have recently attracted a great
deal of attraction following their success in non-human animal
studies and their broad range of positive effects on inflamma-
tion, oxidative stress, mitochondrial dysfunction, intestinal
permeability and serotoninergic and dopaminergic neurotrans-
mission [108, 109]. Lopresti and colleagues reported a signif-
icant improvement in symptoms in patients with MDD fol-
lowing 1000 mg/day of curcumin, particularly those patients
suffering from depression with atypical features [108].
However, replication of these results in larger samples is due
before definitive conclusions can be made regarding the ther-
apeutic benefit of this supplement. A summary of similarities
and differences between MS andMDD in the redox domain is
provided by Table 1.

Evidence of Peripheral Inflammation in MS
and MDD

Peripheral Inflammation in MS

There is now copious evidence of the distribution patterns and
levels of a wide range of PICs and anti-inflammatory cyto-
kines in the CSF, post mortem brains and serum of patients
diagnosed with RRMS and indeed all other presentations of
the disease [110–112]. Examples of elevated PICs include
IFN-γ, tumour necrosis factor (TNF)-α, IL-12 IL-1β, IL-6,
IL-15, IL-4, IL-17, IL-10, transforming growth factor
(TGF)-β1, IL-27 and IL-23 [112, 113]. It is noteworthy that

the overall pattern of cytokine abnormalities seen in patients in
the active phase of the illness differs from that characteristi-
cally observed in patients who have entered remission [106,
109]. In particular, elevated levels of TGF-β1 and IL-10 are
characteristic of the latter individuals while elevated levels of
PICs, most notably TNF-α, IL-1β and IFN-γ, are character-
istic of patients following relapse [110, 113].

Importantly, increasing levels of TNF-α in the peripheral
circulation are predictive of relapse and levels of this PIC
correlate with clinical disability estimated by EDSS scores
[110, 114, 115]. Levels of TNF-α correlate with the severity
of fatigue experienced by many MS patients, which has a
major detrimental impact on their quality of life [116]. It is
also noteworthy that functional single nucleotide polymor-
phisms (SNPs) in several genes encoding TNF superfamily
members would appear to be the largest non-human leukocyte
antigen (HLA) risk factors for developing the illness with the
TNF-β Ncol polymorphism rs909253, in the first intron of
TNF-β, conferring the greatest risk [113, 114]. There is an
accumulating body of evidence demonstrating that this SNP
combined with elevated O&NS is associated with a marked
increase in disease progression and levels of clinical disability
and unsurprisingly the TNF-β Ncol polymorphism rs909253
continues to be the focus of intense research [117, 118].

Levels of IL-6, CRP and other markers of systemic inflam-
mation appear to be higher inMS patients reporting symptoms
of depression compared with patients who do not report such
symptoms [21]. It is also noteworthy that elevated levels of
IL-6 are also associated with increased symptoms and in-
creased severity of disease experienced by MS patients ex-
posed to protracted periods of extreme psychosocial stress
[119]. IL-1β is another PIC implicated in the pathogenesis
and pathophysiology of MS [116, 117]. In particular, the pres-
ence of this cytokine in the CSF of patients currently in remis-
sion foretells a poor prognosis and the development of a more

Table 1 Similarities in O&NS pathways and antioxidant levels between
MS and MDD

O&NS MS MDD

Lipid peroxidation Y Y

Increased malondialdehyde Y Y

Elevated peroxynitrite Y Y

Nitrated amino acids Y Y

Elevated NO Y Y

Elevated iNOS Y Y

Raised isoprostane levels Y Y

Low vitamin E N Y

Reduced levels of glutathione Y Y

Low zinc levels N Y

Low CoQ10 concentrations N Y

O&NS implicated in pathology Y Y
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aggressive disease profile as determined by EDSS [120]. In
addition, detectable levels of IL-1β observed in the CSF of
newly diagnosed treatment-naïve patients are an invariant
marker of significant brain damage and correlate positively
with cortical lesion volume [121].

Elevated CNS and serum levels of IL-17 are also common-
ly detected in MS patients [122, 123]. The multiple patholog-
ical effects of this cytokine include direct cellular and tissue
damage as well as promotion of the maturation of dendritic
cells and increased production of TNF-α [122]. The contribu-
tion made by IL-17 to the pathogenesis of RRMS is highlight-
ed by data demonstrating that levels of IL-17 correlate with
the frequency of relapses endured by a patient and are strongly
predictive of the failure of IFN-β therapy [122, 123]. The
ultimate origin of cytokine abnormalities in MS appear to be
activated T and B cells in the periphery while activated mi-
croglia B lymphocytes and monocytes are the major source of
cytokines in the CSF [124].

Activation of the nucleotide-binding oligomerisation do-
main (NOD)-like receptor (NLR) family, pyrin domain con-
taining 3 (NLRP3) inflammasome, also appears to be a source
of PIC production, and the weight of evidence suggests that
activated dendritic cells make an additional contribution [125,
126]. However, despite copious evidence implicating the
pathogenic role of PICs and IL-17 in the development of
RRMS, there are also data indicating that anti-inflammatory
cytokines are drivers of pathology in some patients [127].

Peripheral Inflammation in MDD

There is a developing consensus which places chronic system-
ic inflammation, as evidenced by elevated PICs and/or a dys-
regulated pattern of cytokine production, as the ultimate driver
of major depression [17, 128–130]. It is noteworthy that in-
creased levels of peripheral PICs in combination with in-
creased free ROS and RNS production go some way towards
explaining the increased risk of developing cardiovascular,
metabolic and other serious medical diseases in patients
afforded a diagnosis of MDD compared with age- and sex-
matched controls [131, 132]. Several meta-analyses have re-
vealed that increased levels of Il-6 and TNF-α would seem to
be the most consistent findings in MDD patients, but elevated
levels of IFN-γ and IL-1β are also frequently reported [13,
133, 134]. The importance of PICs in the pathogenesis of
MDD has been emphasised by recent evidence published by
Young and fellow workers, who reported that the magnitude
of peripheral PIC elevation correlated with the progression
and severity of the disease [135]. This conclusion supports
the work of earlier research teams who reported a correlation
between levels of PICs in the CSF of MDD patients and the
severity of symptoms they endured [26]. Moreover, Maes and
fellow workers have established an association between the
presence of functional SNPs in TNF-α, IL-1β and CRP and an

increased risk of developing depression and, indeed, respon-
siveness or otherwise to the administration of antidepressant
therapy [94].

The origin of PICs inMDD is thought to beM1 (classically
activated) polarised macrophages and, possibly, neutrophils
but there is also accumulating evidence of activated, if
anergic, T cells in at least some MDD patients [94]. The acti-
vation of the NLRP3 inflammasome by danger-associated
molecular patterns (DAMPs) (also known as damage-
associated molecular patterns), such as heat-shock protein-72
(HSP72), mtDNA and uric acid, leading to the increased pro-
duction of activated IL-1β and IL-18, may also be involved
[27]. In the context of examining potential sources of inflam-
mation in MDD patients, it is noteworthy that DAMP-
mediated activation of the NLRP3 inflammasome is potenti-
ated by the presence of commensal lipopolysaccharide (LPS)
translocated into the peripheral circulation as a result of in-
creased intestinal permeability [136, 137], Translocated LPS
is also a major cause of Toll-like receptor (TLR) activation on
antigen-presenting cells (APCs) and hence a potential source
of T cell activation in MDD [17, 137]. Readers interested in a
detailed treatment of this area are referred to a comprehensive
review by Lucas and colleagues [138].

This would seem to be an appropriate juncture to add
words of caution, as while elevated PICs would appear to be
major drivers of symptoms in MDD patients, this is not in-
variably so. It would appear that, in at least some patients, the
symptoms are associated with increased levels of anti-
inflammatory cytokines, notably IL-4, IL-13 and IL-15, and
the recovery is associated with increased levels of PICs, such
as TNF-α [139]. This may reflect the fact that MDD is con-
sidered by many to be a biologically heterogeneous illness, as
proposed by the latter authors, but there may also be other
explanations. One such would be activation of the haem-
containing enzyme indoleamine 2,3-dioxygenase (IDO) by
PICs or LPS and a pattern of immunosuppression following
the subsequent increase in levels of the L-tryptophan metab-
olite kynurenine [91]. It is also conceivable that direct Treg
activation by LPS could provoke a Th2-biased cytokine pat-
tern [140]. Peripheral cytokines can access the CNS to pro-
voke activation of microglia and astrocytes via several mech-
anisms, such as via the circumventricular organs, which lack a
fully functional blood-brain barrier (BBB) [18]. This influx of
peripheral PICs leads to activation of perivascular macro-
phages and endothelial cells, which in turn secrete cytokines
and other inflammatory mediators, such as a range of
chemokines, NO and prostaglandin E2 (PGE2) [17, 141].
The other major mechanisms involved in relaying cytokine
signalling to the CNS involve the stimulation of vagal nerve
afferents in the spleen conveying cytokine signals to brain
regions such as the hypothalamus and are often described as
the neural route [142]. We now move to a consideration of the
similarities and differences of the patterns of microglial
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pathology in MS and MDD. A summary of similarities and
differences between MS and MDD regarding abnormalities in
immune and inflammatory pathways is provided in Table 2.

Evidence of Microglial Pathology in MS
and MDD

Microglial Pathology in MS

Several authors have reported the presence of activated mi-
croglia expressing the cell surface receptor HLA-antigen D-
related (HLA-DR), which (with its ligand) is a T cell receptor
ligand, in the normal-appearing white matter (NAWM) of
RRMS patients in the earliest stages of the disease even in
the absence of BBB disruption [143, 144]. It is also notewor-
thy that the extent of microglial activation in the later stages of
RRMS is associated with a worse prognosis and also corre-
lates positively with the level of disability as ascertained by
the EDSS score [145, 146]. Microglial actions in MS lesions
can be dichotomised into the activities of M1 and M2 (alter-
natively activated) microglia (sometimes respectively desig-
nated as neurotoxic and neuroprotective). Neuroprotectivemi-
croglia carry out their benign role by secreting a range of
neurotrophic factors and also play a major role in aiding clear-
ance of myelin and other debris and thus can be considered to
have an anti-inflammatory and calming effect within the CNS
[147]. Neurotoxic microglia, on the other hand, can provoke
and accelerate the development of neuroinflammation via the
secretion of PICs, ROS, RNS, PGE2, cyclooxygenase-2

(COX-2), quinolinic acid and glutamate [20, 148, 149].
Importantly, from the perspective of the pathogenesis and
the pathophysiology of the disease, the polarisation of these
glial cells into neurotoxic or neuroprotective phenotypes is
heavily influenced and perhaps even determined by the envi-
ronmental balance of microRNAs (miRNAs) in the environ-
ment, with increases in miR-689, miR-124 and miR-155 be-
ing associated with the development of an M1 phenotype
while miR-124, miR-711 and miR-145 appear to mediate
polarisation into an M2 phenotype [150]. In this context, it
is important to note that the production of miR-155 is upreg-
ulated in microglia of RRMS patients and is a recognised
driver of PIC synthesis and secretion [151]. The mechanisms
underpinning these observations have yet to be fully delineat-
ed but it is noteworthy that there are data indicating that the
transcription of mi-155 and mi-145 is responsive to levels of
NF-κB, PICs and Nrf2 [152, 153]. Microglia also have the
capacity to act as APCs, thereby activating naïve autoreactive
T cells recruited from the peripheral circulation [146]. The
recruitment of T cells from the periphery appears to play a
crucial role in the pathogenesis and pathophysiology of
RRMS and determines the pathological or benign conse-
quences of microglial activation [154]. In particular, the influx
of inflammatory encephalitogenic CD4+ T cells, including
Th17, Th1 and γδT-cells, robustly promote the development
of neuroinflammatory and neurodegenerative processes while
recruitment of Tregs and Th2 ameliorate neuroinflammation
stemming from microglial activation thereby playing a major
role in the development of an anti-inflammatory and neuro-
supportive environment [155, 156].

Microglial Pathology in MDD

Several research teams have also reported the existence of
activated microglia in patients afforded a diagnosis of MDD
[157, 158]. Sustained activation of these glial cells would
appear to be the ultimate source of the neuroinflammation
seen in most, but by no means all, MDD patients [157, 159].
The weight of evidence implicating the presence of activated
microglia as a causative factor in the pathogenesis and patho-
physiology of MDD is accumulating so rapidly that one team
of researchers has even described idiopathic MDD as Ba
microglial disease^ [160]. The putative role of activated mi-
croglia in the initiation and progression of the illness is further
reinforced by the existence of data demonstrating that the
severity of symptoms experienced byMDDpatients correlates
with levels of quinolinic acid, which is a neurotoxin secreted
by these glial cells in an activated state [161], and that the
activation of microglia underpins the development ofN-meth-
yl-D-aspartate (NMDA) receptor excitotoxicity [158]. It is
also of interest that many, if not all, antidepressants modulate
the function and morphology of microglia and this property
may well underpin their therapeutic effects seen in some

Table 2 Similarities and differences in immune-inflammatory bio-
markers between MS and MDD

Immuno-inflammatory pathways MS MDD

Raised levels of PICs Y Y

Increased NF-κB Y Y

Increased COX-2 Y Y

Raised IL-2 Y Y

Raised IL-10 N Y

Raised TGF-β Y N

Co-existence of a Th1 and Th2 response Y Y

Presence of IL-17-secreting Th17 T cells Y Y

Temporal variation in cytokine profile Y Y

Astrocyte activation and or dysfunction Y Y

Treg dysfunction Y Y

FOXP3 dysfunction Y ?

Clonal exhaustion of T cells N Y

Activated microglia and macrophages Y Y

Intrathecal IgG production Y N

Low NK cell activity Y Y

Chronic activation of immuno-inflammatory pathways Y Y
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patients [160]. However, there appear to be significant differ-
ences in the pattern of microglial activation in the hippocam-
pus in MDD patients compared with the pattern seen in
RRMS patients. Microglial pathology in MS is described in
the previous subsection, while in the case of MDD the initial
activation and proliferation of these glial cells is replaced by
cell death in the form of apoptosis and/or a myriad of mor-
phological changes which include reduced expression of a
wide array of essential functional proteins indicative of pro-
found dystrophy [162].

Interestingly, the development of dystrophy appears to be
preventable in animal models of MDD by the early adminis-
tration of the tetracycline-class antibiotic minocycline [162],
which also demonstrates early efficacy signals in depression
[163, 164]. Abnormalities in miRNA expression patterns have
also been reported in the brains of MDD patients, but once
again, the overall pattern seems to be significantly different
from that detected in RRMS patients. Specifically, in the case
of abnormalities in their levels, miRNA species appear fo-
cused on those playing a major role in modulating and en-
abling the many Bhousekeeping^ roles of microglia in the
CNS such as maintaining neuroplasticity, regulating long-
term potentials involved in the development and consolidation
of learning and memory, and the global performance of innate
and adaptive immune signalling pathways within the brain
[157]. There is some evidence of increased recruitment of
Tregs into the CNS in MDD [26, 165]. This phenomenon
may be of importance given data demonstrating that Tregs
reduce levels of microglial activation and thus act to restrain
the development of neuroinflammation [151, 152]. This
would appear to be an important point as the recruitment of
Tregs into the CNS in Bidiopathic^MDD versus the pattern of
Th17 and Th1 T cell recruitment into the CNS in RRMSmay,
at least in part, explain the different patterns of microglial
pathology seen in each condition.

Evidence of Mitochondrial Dysfunction in MS
and MDD

Mitochondrial Dysfunction in MS

While the weight of evidence indicates that inflammation and
O&NS are the prime drivers of pathology in early MS, the
ultimate trajectory of disease progression is heavily influenced
by mitochondrial dysfunction and impaired production of
adenosine triphosphate (ATP) in the brain and periphery
[166, 167]. The range of mitochondrial abnormalities ob-
served in MS includes altered cellular distribution and struc-
ture together with a wide range of biochemical and molecular
abnormalities [20, 168–170]. Impaired activity of Complex I
(reduced nicotinamide adenine dinucleotide (NADH)-Q oxi-
doreductase) of the electron transport chain (ETC) and

extensive oxidative damage to mtDNA are characteristically
observed in active MS lesions [171], while the activities of
Complex I, Complex III (Q-cytochrome c oxidoreductase),
and Complex IV (cytochrome c oxidase) are also impaired
in NAWM of the motor cortex and elsewhere [172–174].
Complex IV activity is also decreased in normal-appearing
grey matter (NAGM) as well as in white matter
hyperintensities [173, 174].

Several authors using neurospectroscopy have reported the
presence of lactate in the CSF of MS patients and a range of
abnormalities consistent with globally impaired bioenergetics
[175, 176]. A recent longitudinal study conducted by
Lazzarino and colleagues provided support for the causative
role of mitochondrial dysfunction in the pathophysiology of
MS when they reported that progressive depletion of central
ATP levels correlated with increased physical disability as
measured by EDSS changes over a 3-year period [177].
Even more recently, a different group reported that not only
did RRMS and secondary progressive MS (SPMS) patients
have higher phosphocreatine (PCr) and lower phosphodiesters
than age-matched healthy controls, but a higher β-ATP level
was found in RRMS patients than in SPMS patients, with its
level correlating negatively with the EDSS score in all the MS
patients; these findings suggest a higher level of energy pro-
duction in the former MS group, which might be related to an
increased energy need than in the SPMS group [178].

N-acetylaspartate (NAA) levels can be measured in the
brain using proton neurospectroscopy and is of particular in-
terest because of its neuronal localisation [179]. Using a com-
binat ion of diffusion tensor imaging and proton
neurospectroscopy, in 2012 Wood and colleagues reported
lower NAA parallel diffusivity (λ ) in MS patients compared
with age- and sex-matched controls [180]. They also found
that NAA λ was inversely correlated with water λ and with
clinical severity [174]. These results were consistent with ax-
onal degeneration in MS. Five years later, the same group
published the results of a six-month diffusion-weighted proton
neurospectroscopy study in MS, reporting a decrease in NAA
diffusivity in patients with evidence of inflammatory activity
but not in those with neuroradiological and clinical stability
[181]. Thus, this technique can be used to assess the down-
stream effects of acute inflammatory demyelination [175].

Mitochondrial Dysfunction in MDD

There is also copious evidence demonstrating that mitochon-
drial dysfunction plays a causative role in the pathophysiology
of MDD [58, 182]. This is perhaps unsurprising given the
heavy involvement of O&NS in driving the genesis, persis-
tence and severity of the illness and the fact that the bidirec-
tional association between chronically elevated ROS and RNS
levels and mitochondrial dysfunction has been conclusively
established [13, 20, 149, 183]. The core symptoms of MDD,
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such as loss of motivation, lethargy, fatigue, neurocognitive
impairment and sleep disturbances appear to be driven at least
in part by dysfunction of enzyme clusters involved in the ETC
[184, 185]. In addition, several authors have reported evidence
indicating globally impaired bioenergetic metabolism in the
brain of MDD patients, which is particularly deficient in the
prefrontal cortices and the basal ganglia [184, 186]. Other
research teams have detected global abnormalities in glucose
metabolism, and a reliance on glycolysis as the major source
of ATP generation [185, 187, 188]. Crucially, there are also a
number of studies demonstrating the existence of profound
mitochondrial dysfunction in peripheral immune cells and in
a range of other tissues extracted from MDD patients [189,
190]. For example, Gardner and fellow workers reported mi-
tochondrial dysfunction notably in Complexes III and IV of
the ETC leading to impaired ATP generation in the striated
muscle of MDD patients complaining of physical symptoms
[191]. The presence of mitochondrial dysfunction in PBMCs
of MDD patients has also recently been confirmed [192]. It is
also noteworthy that impaired PBMC mitochondrial respira-
tion correlates with the severity of many core MDD symp-
toms, notably fatigue, loss of energy and concentration diffi-
culties, further supporting a causative role for a shortfall in
ATP production as an important driver of such symptoms
[192]. A summary of the similarities and differences between
MS and MDD in the area of compromised bioenergetics is
provided in Table 3.

Bacterial Translocation and Leaky Gut

Leaky Gut in MS

Geffard’s group has established increased IgA and IgM re-
sponses to bacterial antigens and LPS in MS patients com-
pared with controls [193, 194]. This indicates increased IgA-
and IgM-mediated immune responses to Gram-negative com-
mensal bacteria in the peripheral blood of patients with MS.
There is some evidence that this phenomenon is probably a
consequence of increased gut permeability in those patients.

Miyake and colleagues compared the intestinal
microbiome of RRMS patients with that present in healthy
participants, utilising next-generation pyrosequencing and
culture-independent amplification of the bacterial 16S ribo-
somal RNA (rRNA) gene [195]. Their subsequent analysis
revealed the presence 21 species of Clostridia and
Bacteroidetes in MS patients which were not present in
healthy controls. Moreover, there were significant differences
within Clostridia clusters XIVa and IV and Bacteroidetes be-
tween RRMS patients and controls with a relative paucity in
the Clostridia species normally playing a major role in main-
taining the Th17/Treg balance in the intestine [195–197].

Changes in the composition of the gut microbiome, termed
gut dysbiosis, can lead to the breakdown of immune homeo-
stasis in the intestinal immune system in turn provoking distal
abnormalities in the systemic immune and inflammatory path-
ways and hence making a major contribution to the develop-
ment of CNS diseases characterised by demyelination
[198–200]. There is an accumulating body of research sug-
gesting that the intestinal microbiota act as environmental
niches where the multiple risk factors driving the development
of MS merge, thereby influencing the development of disease
processes [199].

Several mechanisms have been proposed which might me-
diate the role of gut commensals or their antigens in driving
the development ofMS and other diseases of the CNS, such as
the activation of myelin-specific auto-aggressive Th17 lym-
phocytes either via molecular mimicry or bystander activation
together with the production of neurotoxic metabolites or the
translocation of Gram-negative commensal bacteria contain-
ing LPS into the systemic circulation as a result of increased
intestinal permeability [201, 202]. In addition, several gut mi-
crobial metabolites and bacterial products may interact with
the immune system to modulate CNS autoimmunity [202,
203]. Several studies have reported the presence of increased
intestinal permeability in MS patients and in mice with EAE
[204, 205], which would enable the translocation of LPS into
the bloodstream with consequent engagement of TLR-4 and
immune activation [141]. Indeed, a recent study reported that
increased intestinal permeability seemed to be present at the
onset of EAE, although this finding is yet to be replicated in
human studies [206].

Leaky Gut in MDD

There is also considerable direct evidence of increased intes-
tinal permeability and bacterial translocation into the systemic
circulation in patients with MDD, which appears to make a
significant contribution to levels of peripheral inflammation,
O&NS and autoimmunity [207, 208]. There is also accumu-
lating evidence that variations in the composition of the mi-
crobiota are involved in the pathophysiology of major depres-
sion as well as a range of other neuroprogressive conditions

Table 3 Comparison of mitochondrial dysfunction between MS and
MDD

Mitochondrial dysfunction MS MDD

Depleted ATP production (muscle and brain) Y Y

Decreased PCr re-synthesis following exercise Y N

Impaired oxidative phosphorylation Y Y

Acceleration of glycolysis Y Y

Damage to mitochondrial respiratory chain Y Y

Oxidative mitochondrial damage Y Y

Mitochondrial energy failure Y Y
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[209, 210]. Jiang and colleagues analysed faecal samples from
MDD patients in the active phase of the disease and in remis-
sion and from unaffected age- and sex-matched controls
utilising pyrosequencing following polymerase chain reaction
methodology [211]. These authors reported increased levels of
Bacteroidetes, Actinobacteria and Proteobacteria and re-
duced levels of Firmicutes in patients in both illness states
compared with controls. Interestingly, there was also an in-
crease in bacterial species diversity in active MDD patients
compared with controls, which was not observed in patients in
remission. Furthermore, reduced levels of Faecalibacterium
were observed in MDD patients, which correlated negatively
with the severity of depressive symptoms [211].

The influence of the microbiota in influencing the develop-
ment of MDD appears to be multifactorial. The weight of
evidence suggests that one such pathway involves the modi-
fication of bidirectional communication systems between the
gut and the brain. There is now a large and accumulating body
of evidence demonstrating that commensal gut bacteria have
the capacity to activate several neural pathways and signalling
systems in the CNS and have given rise to the concept of the
microbiota-gut-brain axis which relays a variety of signals
between the CNS and the gastrointestinal tract [212, 213].
While it is increasingly apparent that the optimum activity of
this pathway is an essential element in maintaining intestinal
and CNS homeostasis, the precise details of the mechanisms
enabling such function are not fully understood although hu-
moral, immune, neural and metabolic pathways are all consid-
ered to play a part [213, 214].

The action of translocated LPS on TLRs and the conse-
quent activation of immune-inflammatory cascades have been
discussed above and can go some way to explaining the sys-
temically elevated levels of PICs seen in many patients with
an MDD diagnosis [208]. Elevated levels of LPS can also
exert a number of somewhat contradictory effects on the im-
mune system, however, such as the activation of IDO with
activation of the tryptophan catabolite (TRYCAT) pathway
leading to profound immunosuppression [13]. LPS and IDO
also conspire to activate Tregs, which can also lead to an
immunosuppressed environment and possibly contribute to a
state of T cell anergy seen in some MDD patients [215–217].
LPS activation of TLR-4 and the TRYCAT pathway in mi-
croglia, following the translocation of the antigen from the

intestine, leads to a host of neuropathological consequences
in animal models of depression [217, 218] and the signifi-
cance of this phenomenon in the development of MDD ap-
pears to be under discussion. A summary of the similarities
and differences between MS and MDD in the arena of in-
creased intestinal permeability and bacterial translocation is
provided in Table 4.

Evidence from Neuroimaging Studies

The association between structural brain abnormalities and the
development of depressive symptomology in patients with
MS has been the focus of intense empirical research for over
two decades and there is an accumulating body of evidence
suggesting that brain atrophy or demyelination in the frontal
and temporal lobes are associated with the development of
depression in at least some MS patients [4, 219, 220]. For
example, Pujol and others detected a significant association
between the presence of lesions in the white matter of the left
suprainsular region and the occurrence depressive symptoms,
which accounted for approximately 17% of the depression
variance [221]. In a later study, the same team reported a
significant association between the presence of depression
and the existence of demyelinating lesions in the left arcuate
fasciculus, which accounted for 26% of the depression vari-
ance as measured by the BeckDepression Inventory [222]. On
the other hand, Bakshi and others reported that the presence
and severity of depressive symptoms suffered by MS patients
were predicted by the presence and extent of hypointense
plaques on T1-weighted magnetic resonance images (black
holes) in the superior parietal and frontal regions, as well as
by lateral and third ventricular enlargement [223]. Zorzon and
others examined 95MS patients, 19% of whom qualified for a
diagnosis of MDD, using T1-weighted brain MRI and report-
ed that the presence and severity of depressive symptomswere
weakly correlated with right temporal brain atrophy and right
frontal lesion load [224]. Moreover, the presence and magni-
tude of T1 lesions in the superior frontal and parietal regions
were predictive of depression in their patients [214]. In a two-
year follow-up study, the same research team reported that
increases in brain atrophy in the left frontal lobe were signif-
icantly greater in depressed MS patients than in those MS

Table 4 Similarities in gut
dysfunction between MS and
MDD

Gut dysfunction MS MDD

Increased IgM/IgA responses to LPS/antigens of Gram-negative bacteria Y Y

Gut dysbiosis Y Y

Leaky gut Y Y

Leaky gut mediating immune activation, inflammatory responses or autoimmunity Y Y

Possible activation of the TLR-2/4 complex Y Y

Role of gut dysbiosis, leaky gut and bacterial translocation in the pathophysiology of the illness Y Y
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patients not diagnosed with depression (with a trend in the
same direction for the right temporal lobe) [225].
Furthermore, these authors reported that the magnitude of at-
rophy displayed by patients in the right temporal lobe was a
significant and independent predictor of the severity of de-
pressive symptoms [215]. In a later cerebral MRI study,
Feinstein and colleagues reported that 42% of the depression
variance in their MS study cohort was accounted for by the
increase in the left anterior temporal CSF volume and the
increase in T2-weighted lesion volume in the left medial infe-
rior prefrontal cortex [226].

However, while the evidence does seem to support the
conclusion that structural and/or morphological changes in
the frontal and temporal lobes are associated with the devel-
opment of depression in at least some MS patients, many
research teams in recent years have investigated potential as-
sociations between structural and/or functional abnormalities
within the hippocampus and the presence of depression in
individuals with MS [227, 228]. In particular, MRI studies
involving patients with a confirmed diagnosis of MS have
demonstrated that volume loss and abnormal morphology
within the hippocampus are predictive of the presence and
severity of depressive symptoms in such individuals
[227–230]. This is perhaps unsurprising given that hippocam-
pal impairment is associated with depression and with a range
of cognitive abnormalities [231]. In addition, several authors
have reported reduced hippocampal grey matter volume in
patients with idiopathic MDD [232–234].

Significantly, while the majority of structural neuroimaging
studies have revealed significant associations between the
presence and or severity of depression in MS patients and
various objective measures of disease burden, such as lesion
load, brain atrophy and abnormalities within NAWM and
NAGM; these findings have only accounted for a small per-
centage of the total variance of depressive symptoms in each
study [4, 221, 222]. This observation suggests that these
somewhat disparate findings may stem from the presence of
a common underlying factor (or factors) which contributes to
the pathogenesis and pathophysiology of MS and MDD
[235]. This is an important point as most, if not all, these
neuroimaging abnormalities are caused at least in part by neu-
roinflammation [236–240] and there is copious evidence that
peripheral inflammation, in the guise of elevated PICs, and
neuroinflammation, in the guise of activated microglia, play
a causative role in the development of both illnesses as
discussed above. There are also multiple lines of evidence
which suggest that depressive symptoms in MSmay originate
as a result of synaptic impairment, derived from an abnormal
production of proinflammatory molecules by activated mi-
croglia during central inflammation [166, 241, 242].

From the perspective of data demonstrating an association
between hippocampal atrophy and the development of depres-
sion in MS patients, it is also noteworthy that the existence of

microglial activation and other aspects of hippocampal pathol-
ogy such as neuronal loss, atrophy and extensive demyelin-
ation, in at least some MS patients, has been confirmed by
neuroimaging and post mortem studies in between 53 and
79% of patients recruited into studies [243–245]. In addition,
among the various CNS sites involved in MS, the hippocam-
pus is particularly vulnerable to the detrimental effects of neu-
roinflammation, largely because of the high density of IL-1
receptors found in that region of the brain [243, 246].
Furthermore, strong evidence confirming the presence of
neuroinflammation-induced abnormalities in the hippocam-
pus and the development of depressive symptoms in MS pa-
tients have been provided by two recent studies conducted by
Rocca and fellow workers and Cosalanti and fellow workers
[235, 247]. In their structural MRI and resting-state (RS) func-
tional MRI (fMRI) study of 69 MS patients, Rocca and co-
workers demonstrated a strong correlation between, on the
one hand, reduced hippocampal RS functional connectivity
(FC) with cortical-subcortical regions of the default-mode net-
work and, on the other hand, increased T2-weighted lesion
volume, duration of the disease, and the severity of clinical
disability and depressive symptomatology [236]. These find-
ings were supported by Cosalanti and fellow workers who
utilised RS fMRI and positron emission tomography (PET)
to investigate a potential relationship between the existence of
neuroinflammation, hippocampal FC and the existence of de-
pression in MS patients [224]. Importantly, these authors re-
ported that the intensity of microglial activation, indexed by
the second-generation 18-kDa translocator protein (TSPO)
radioligand [18F]BRIII, within the hippocampus, was posi-
tively correlated with the severity of depression, indexed by
the Beck Depression Inventory, while there was also a positive
correlation between the hippocampal [18F]BRIII distribution
volume ratio and the strength of hippocampal FC with pre-
frontal, parietal and occipital cortices [224].

Neuroendocrine Abnormalities

Cortisol Levels and Cortisol Awakening Response
in MS

Elevated basal levels of plasma cortisol and adrenocorticotro-
pic hormone (ACTH), together with enlarged adrenal
(suprarenal) glands, have been observed in RRMS patients
[248–250]. Moreover, large increases in cortisol levels have
been observed in proximity to or during acute relapse
characterised by a significant increase in inflammatory state
[251–253]. Unsurprisingly, the increased levels of inflamma-
tory markers in the CSF seen in patients during this phase of
the illness is associated with an increase in hypothalamic-
pituitary-adrenal (HPA) axis activity and a corresponding in-
crease in the numbers of patients reporting symptoms of
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depression [254]. This association between increased HPA
axis activity, elevated cortisol secretion and increase in inflam-
mation may well be significant from the perspective of the
pathophysiology of the illness, as increased HPA axis dysreg-
ulation in RRMS is associated with global neurodegeneration
and an aggressive disease profile [255]. It is also noteworthy
that basal levels of cortisol and levels of cortisol following
corticotropin-releasing hormone (CRH) stimulation vary ac-
cording to disease subtypes and severity of MS for reasons
which are not fully understood [256]. However, one factor
may be the levels and activity of CRH-secreting neurones in
the hypothalamus, as increased numbers and activity of such
neurones have been detected in this region of the brain in
RRMS patients post mortem, possibly resulting from an up-
regulation in an attempt to mitigate against the presence of
inflammation [252, 257]. However in severe disease, in-
creased inflammatory lesion burden in the hypothalamus leads
to reduced numbers and activity of CRH neurones and a de-
nuded production of cortisol and thus, at least potentially, an
impaired capacity to combat inflammation [258].

Several authors have investigated potential relationships
between various measures of HPA axis activity and cortisol
levels and the presence of depression in MS patients. For
example, Gold and fellow workers reported significantly in-
creased levels of evening cortisol in RRMS patients with de-
pression but normal levels in patients without such symptoms
compared with healthy controls [227, 259]. Similarly, Kern
and others reported that elevated cortisol awakening response
(CAR) levels were only observed in RRMS patients reporting
symptoms of depression and noted a significant association
between CAR levels and the extent of neurological disability
and the presence of depression [260]. Kern and others also
reported a significant association between elevated CAR
values and increases in disease severity, indexed by the
EDSS [261]. Briefly, these authors investigated the longitudi-
nal relationship between CAR, extent of neurological disabil-
ity as measured by EDSS and the presence of depressive
symptoms in 77 MS patients over a nine-month period
[261]. They noted that RRMS patients with increases in neu-
rological disability over the relevant time-period displayed a
significantly greater CAR compared with healthy participants
while CAR levels in patients whose EDSS scores remained
stable were not significantly different from healthy controls.
This is of interest given data demonstrating an association
between increased EDSS scores and increased levels of in-
flammatory markers and an association between increased
HPA axis activity during relapse and the advent of MDD
[254, 262]. However, in a departure from earlier findings by
this research team, CAR values were not associated with the
presence of depressive symptoms in this study nor indeedwith
an index of patient stress, but baseline values of EDSS and
CAR were predictive of EDSS at the nine-month follow-up
[250]. This latter finding is consistent with other lines of

evidence which indicate that HPA axis abnormalities are as-
sociated with more severe MS and possibly even an enhanced
susceptibility to developing the disease [242, 243, 247]. HPA
axis hyperactivity in particular is associated with advancing
disease and global neurodegeneration, possibly as a result of
increases in cortisol production which may cause widespread
damage in several areas of the brain such as the hypothalamus,
which may go some way to explaining the associations be-
tween CAR and disease severity and/or progression and the
development of MDD in patients with more aggressive dis-
ease [217, 245].

Cortisol and CAR Abnormalities in MDD

The data regarding CAR levels in MDD are at first sight
somewhat inconsistent with authors reporting elevated,
lowered and normal CAR values in their study cohorts com-
pared with healthy controls [263]. For example, Vreeberg and
fellow workers reported an increased CAR in a large cohort of
currently depressed middle-aged females and middle-aged fe-
males in remission [264]. Similar associations have been re-
ported in adolescent and young adult females [265, 266].
Several other research teams have also reported elevated
CAR values in medication-free patients in remission, which
indicates that HPA axis dysfunction may be a trait in some
individuals which confers a vulnerability to developing MDD
[264, 267–269]. However, other research teams have reported
a blunted CAR in young adult women and older individuals
with relatively mild or moderate clinical depression [270] and
a significantly reduced CAR in patients with severe depres-
sion [271]. These findings have been echoed in several other
studies with patients with relatively moderate symptoms
displaying an elevated CAR while patients with more severe
symptoms almost invariably showing a decreased CAR both
in cross-sectional and longitudinal studies [272, 273]. The
reduced CAR in severe depression indicates HPA axis
hypofunction possibly as a result of CRH receptor downreg-
ulation as a result of chronically elevated levels of PICs rather
than the reduced numbers and activity of CRH neurones [264]
seen in severe RRMS [258].

Glucocorticoid Receptor Resistance in MS

There is accumulating evidence, largely from cross-sectional
studies, that glucocorticoid (GC) receptor (GR) sensitivity, as
determined by proliferation of T cells and PIC production, is
significantly impaired in RRMS patients compared with
healthy age- and sex-matched control subjects [274, 275].
This phenomenon is of importance as the activity of these
receptors mediates the response of corticosteroids released
by HPA axis activation and is essentially the effector of the
neuroendocrine anti-inflammatory response (reviewed [276]).
This is clinically significant as GR resistance is associated
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with non-responsiveness to corticosteroid therapy used in an
attempt to reduce the time spent in relapse [277, 278]
(reviewed in [279]).

Perhaps unsurprisingly, several polymorphisms affecting
GR sensitivity, such as N363S, ER22/23EK and Bcl1 C/G,
have been associated with more aggressive MS as assessed
by EDSS and MRI [280, 281]. However, a recent larger,
multi-ethnic study found no association between the presence
of these polymorphisms and illness severity and that non-
genetic factors such as the presence of inflammation and ele-
vated PICs were the most important cause of GC resistance in
RRMS patients [282]. This conclusion is supported by other
lines of evidence which indicate that the GC sensitivity of T
cells can be modulated by PICs and other inflammatory mol-
ecules [283–285]. There are also data suggesting that GC
resistance is more pronounced during relapse than during re-
mission [252, 286].

GR Resistance in MDD

The weight of evidence suggests that GR resistance and ab-
normalities in GR functioning occur in approximately 80% of
MDD patients and are held to be the most reproducible bio-
logical measures associated with the illness [287–289]. These
are important findings as there is accumulating evidence that
PIC- and/or p38 MAPK-induced GR resistance may be a ma-
jor driver of the increased inflammatory response system ob-
served in many MDD patients which in turn is responsible for
HPA axis hyperactivity seen in many individuals afforded this
diagnosis [290–292]. This phenomenon has important impli-
cations from a treatment perspective, as GR resistance second-
ary to increased inflammation is associated with resistance to
antidepressants, and there is some evidence that GR resistance
must be overcome before a patient enters remission [278, 280,
281] The significance of GR resistance is further emphasised
by the presence of data demonstrating a significant association
between the development of GR resistance in patients and the
advent of depressive symptoms [293]. Chronic stress and the
resultant upregulation of inflammatory pathways as part of the
conserved transcriptional response to adversity also appear to
be causes of GR resistance [294, 295]. This is of interest as
this stress-induced inflammatory response in combination
with diminished GR responsiveness is considered to underpin
the pathogenesis of MDD [296]. Moreover, the conserved
transcriptional response to physical adversity is also activated
by a range of perceived non-physical or symbolic threats
which in part depend on within-patient factors [285]. These
are intriguing observations as they allow for a contribution
from psychosocial factors to the inflammatory burden of an
individual MS patient and possibly to the severity of the dis-
ease experienced and indeed to the existence, or otherwise, of
depressive symptoms. Finally, impaired GR function makes
effector T cells resistant to chemokine-induced recruitment

into the CNS [297]. This is of importance as T lymphocyte
recruitment into the CNS plays an important role in maintain-
ing cognitive function, neurogenesis and synaptic plasticity in
an environment of neuroinflammation [298, 299] and thus GR
resistance may contribute to the severe cognitive dysfunction
and impaired neurogenesis seen in many people afforded a
diagnosis of MDD.

Therapeutic Implications

Desipramine

Given the arguments made in this paper, it would seem rea-
sonable to propose that a molecule which has antidepressant,
antioxidant and anti-inflammatory actions might have thera-
peutic actions in MS. Desipramine, which is an active metab-
olite of the tricyclic antidepressants imipramine and
lofepramine, is such a molecule.

The antidepressant activity of desipramine, which inhibits
the central reuptake of noradrenaline (norepinephrine) and, to
a lesser extent, serotonin, has been well established since the
mid-1960s [300, 301]. The combined plasma concentrations
of desipramine, which is a demethylated metabolite of the
Bgold standard^ tricyclic antidepressant imipramine, and is
also known as desmethylimipramine (formally, 10,11-
dihydro-5-[3-(methylamino)propyl]-5H–dibenz[b,f]azepine
monohydrochloride), and imipramine have been found to
show an approximately linear relationship with clinical anti-
depressant response, at doses higher than a minimal plasma
threshold below which such improvement is not seen
[302–305]. Indeed, it has been suggested that the parent anti-
depressants imipramine and lofepramine act as prodrugs of
desipramine [305].

The antioxidant and anti-inflammatory actions of desipra-
mine (unlike imipramine) are also well established, with a
number of studies demonstrating its protective effects against
oxidative stress. Desipramine has been shown to have antiox-
idant and anti-inflammatory actions in experimentally induced
colitis in rats, with the drug attenuating the severity and extent
of tissue damage, reducing myeloperoxidase activity (in a
dose-dependent way), increasing the level of reduced glutathi-
one in colonic tissue and diminishing PIC levels [306]. In
olfactory-bulbectomised rats, desipramine has been shown to
reverse the usual depressed neutrophil phagocytosis associat-
ed with this operation, to shorten the time to the start of phago-
cytosis, and to reverse the decreased activity of glutathione
peroxidase [307]. In a murine model of chronic fatigue syn-
drome (myalgic encephalomyelitis), desipramine has been
found to attenuate oxidative stress, as well as decreasing the
immobility time, increasing locomotor activity and
diminishing anxiety; in particular, there was a dose-
dependent increase in reduced glutathione, a dose-dependent

6294 Mol Neurobiol (2018) 55:6282–6306



increase in catalase, and a dose-dependent reduction in nitrite
levels [308]. Similarly, desipramine has been shown to atten-
uate oxidative damage and to restore mitochondrial enzyme
activities, including of Complexes I, II and IVof the ETC, in a
murine ischaemia/reperfusion injury model of transient global
ischemia [309]. Similarly, desipramine has been shown to
have antioxidant and anti-inflammatory actions in a murine
model of carrageenan-induced inflammation [310].

Given the importance of HPA axis and hippocampal func-
tioning in MS, described earlier, it is germane to mention a
controlled murine study by Bravo and colleagues in which the
effects of chronic stress were studied [311]. Chronic stress was
associated with increased body mass, which was prevented by
desipramine; a large increase in serum corticosterone levels,
which was prevented by desipramine; anhedonic behaviour,
prevented by desipramine; increases in measures of learned
helplessness, prevented by desipramine; and increased immo-
bility, which was significantly reduced by desipramine [305].
It has been hypothesised that phosphorylation of extracellular
signal-regulated kinase (ERK)1/2 might mediate antidepres-
sant action; in this study, hippocampal levels of phospho-
ERK1/2 (P-ERK1/2) were assayed and indeed the ratios of
P-ERK1/ERK1 and P-ERK2/ERK2were found to be elevated
in the group of rats exposed to chronic stress, but this effect
was reversed by desipramine [305]. Finally, chronic stress and
GCs have been associated with decreased expression of brain-
derived neurotrophic factor (BDNF) [312]. In the study by
Bravo and colleagues, chronic stress was indeed associated
with a reduction in BDNF mRNA and this was prevented in
the CA3 hippocampal region by desipramine [305]. Thus,
there is good evidence that desipramine has neuroprotective
actions, including in the hippocampus.

Clinical Trial

While desipramine is not available for oral administration, its
parent prodrugs lofepramine and imipramine are readily avail-
able in such a formulation (although, at the time of writing,
lofepramine is not available in certain countries, including the
United States of America and Australia). In 1996, the late Cari
Loder, who herself suffered from MS, published a book de-
scribing the possibility, based on her serendipitous experience,
that MS symptoms might improve with treatment using
lofepramine, L-phenylalanine and vitamin B12 [313]. A
randomised, placebo-controlled, double-blind trial of this
combination subsequently took place in the United
Kingdom; the lofepramine-based treatment was indeed found
to be effective in relieving MS symptoms, with benefits being
noted within a fortnight to a month [313, 314]. The improve-
ment was statistically significant but the authors of the study
cautioned that the improvement was clinically small and that
further research was needed to confirm and explore its signif-
icance [314].

No further clinical trials in MS involving lofepramine have
taken place. However, a subgroup of the MS patients taking
part in the above study underwent MRI scanning of the brain
by Puri and colleagues at baseline and six-month follow-up.
Using a highly accurate method for quantifying changes in
ventricular volume (an index of cerebral atrophy) developed
by the same group [315], it was found that the mean lateral
ventricular volume increased far less in the treated group than
in the untreated one; moreover, in the treated group the ven-
tricular size change correlated with changes in Gulick MS-
related symptoms scale scores and Gulick MS-related activi-
ties of daily living scale scores [316]. Furthermore, in the
treated group, there was a significant reduction in the number
of focal lesions on the T1-weighted scans [316].

Summary and Conclusion

Elevated O&NS and compromised antioxidant defences in the
periphery and CNS are strongly implicated as a causative
element in the pathophysiology of MS and MDD. Evidence
of a causative role includes an established correlation between
levels of oxidative stress and number of relapses and increases
in levels of O&NS prior to relapse in MS and correlation
between O&NS levels and severity of illness in MDD.

Imbalances in the production of pro- and anti-inflammatory
cytokines are seen in the serum and CNS of both illnesses and
it is noteworthy that the concentrations of one or more cyto-
kines correlate with the severity of both illnesses along several
different dimensions. For example, levels of TNFα in the
periphery are predictive of relapse and correlate with disability
and fatigue, while levels of IL-1 are predictive of a poor prog-
nosis and cortical lesion load. It is also noteworthy that pe-
ripheral levels of IL-6 and CRP differentiate MS patients with
depression from those free of depression. This is perhaps un-
surprising as levels of peripheral inflammation correlate with
the severity and chronicity of MDD. The presence of abnor-
mally high levels of IL-17 in the periphery and CNS would
appear to clearly differentiate patients with MS from those
with a diagnosis of MDD. This highly inflammatory and
tissue-damaging cytokine is generally produced by activated
Th17 T cells and to a lesser extent B cells and intestinal den-
dritic cells and these differences in cytokine population be-
tween the two illnesses might be a reflection of the fact that
the source of cytokine production in MDD patients appears to
be M1-polarised macrophages, neutrophils, anergised T cells
and the NLP-3 inflammasome while cytokine production in
MS is primarily driven by activated Th1 and Th17 lympho-
cytes and effector B cells, although recent evidence suggests
DAMP-mediated inflammasome activation in this illness as
well.

Given the presence of excessive inflammation and oxida-
tive stress, the presence of widespread mitochondrial
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dysfunction in the brain and periphery of sufferers of both
illnesses is unsurprising. The nature of mitochondrial dysfunc-
tion largely confined to enzymes of the ETC is also very
similar in MS and MDD patients. This is strongly suggestive
of the detrimental effects of chronically elevated NO and
peroxynitrite. It does seem likely that mitochondrial dysfunc-
tion does make an independent contribution to the pathophys-
iology of both illnesses both as a result of ATP depletion and
increased production of ROS. The exact origin of chronic
O&NS, immune-inflammation and mitochondrial dysfunction
are very difficult to determine given their complex interrela-
tionship but, once commenced, established biochemical rela-
tionships predict the development of a self-amplifying pathol-
ogy. This may well be a reason why simple antioxidants have
met with limited success as treatment options while prepara-
tions targeting mechanisms driving the generation of oxida-
tive stress, inflammation and mitochondrial dysfunction ap-
pear to be more promising.

There is now a considerable body of evidence demonstrat-
ing abnormalities in microglial activation and/or function in
MS andMDD.Microglia can be activated as a result of chron-
ic peripheral inflammation and activation of these glial cells
plays a major role in the pathogenesis and the pathophysiolo-
gy of MS largely as a source of cytokines, O&NS, inflamma-
tory mediators and neurotoxic TRYCATs. The neurotoxicity
and polarisation pattern of microglia in MS are heavily deter-
mined by bidirectional interactions between activated
encephalogenic Th17 T cells from the periphery which is not
a feature in MDD patients. Epigenetic dysregulation in terms
of abnormal histone acetylation and miRNA production is
clearly an element in the pathology induced by microglia
and the extreme neurotoxicity of Th17 T cells seen in MS
which once again does not seem to be the case in MDD.
The source of Th17 T cell activation in MS is not fully under-
stood but may result from inflammation-induced dysbiosis
and breakdown of intestinal homeostasis. The nature of
microglial pathology in MDD appears to be different from
that seen in MS and would appear to involve the impaired
function of many of their CNS housekeeping roles such as
maintaining synaptic plasticity, learning memory and other
aspects of cognitive functioning.

Increased inflammation could underpin the increased BBB
permeability, intestinal permeability and bacterial transloca-
tion seen in MDD. While increased intestinal permeability
can be a cause of dysbiosis; the quite distinct patterns of
dysbiosis seen in MS and MDD indicate another origin for
these observations. The advent of depressive symptoms inMS
appears to be associated with the levels of brain atrophy and
demyelination in NAWM and NAGM in the frontal and tem-
poral lobes, indicating that such symptomatology is a conse-
quence of disease process. The relationship between altered
morphology, reduced volume and lesions in the hippocampus
caused by inflammatory mediators released by activated

microglia and the development of depressive symptoms
would also support such a conclusion. However several lines
of research also indicate that psychosocial factors could make
a contribution to the pathogenesis of depressive symptoms in
MS, most likely by increasing the level of peripheral inflam-
mation and subsequent neuroinflammation.

Theoretically, the antidepressant lofepramine and, in par-
ticular, its active metabolite desipramine, may be beneficial
not only for the depressive symptomatology but also for the
neurological symptoms in MS. One clinical trial has been
carried out thus far with, in particular, promising MRI
findings.

In conclusion, multiple lines of evidence suggest that many
abnormalities common to MS and MDD likely have their
origins in the presence of chronic inflammation and concom-
itant oxidative stress and individual differences could be a
product of disparate genetic, epigenetic and environmental
influences. However, when the evidence is considered as a
whole, the view that MDD exists as an entirely separate no-
sological entity from BMS-associated MDD^, which is asso-
ciated with a characteristic array of empirical abnormalities,
would appear to be reasonable.
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