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Abstract CX3CL1 (fractalkine) is the only member of the
CX3C (delta) subfamily of chemokines which is unique and
combines the properties of both chemoattractant and adhesion
molecules. The two-form ligand can exist either in a soluble
form, like all other chemokines, and as a membrane-anchored
molecule. CX3CL1 discloses its biological properties through
interaction with one dedicated CX3CR1 receptor which be-
longs to a family of G protein-coupled receptors (GPCR). The
CX3CL1/CX3CR1 axis acts in many physiological phenom-
ena including those occurring in the central nervous system
(CNS), by regulating the interactions between neurons, mi-
croglia, and immune cells. Apart from the role under

physiological conditions, the CX3CL1/CX3CR1 axis was im-
plied to have a role in different neuropathologies such as trau-
matic brain injury (TBI) and spinal cord injury (SCI). CNS
injuries represent a serious public health problem, despite im-
provements in therapeutic management. To date, no effective
treatment has been determined, so they constitute a leading
cause of death and severe disability. The course of TBI and
SCI has two consecutive poorly demarcated phases: the initial,
primary injury and secondary injury. Recent evidence has im-
plicated the role of the CX3CL1/CX3CR1 axis in
neuroinflammatory processes occurring after CNS injuries.
The importance of the CX3CL1/CX3CR1 axis in the
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pathophysiology of TBI and SCI in the context of systemic
and direct local immune response is still under investigation.
This paper, based on a review of the literature, updates and
summarizes the current knowledge about CX3CL1/CX3CR1
axis involvement in TBI and SCI pathogenesis, indicating
possible molecular and cellular mechanisms with a potential
target for therapeutic intervention.
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Introduction

Traumatic central nervous system (CNS) injuries are the most
heterogeneous as regards the individual response to injury and
the results of treatment of the group of diseases. In spite of
constant progress concerning the pathophysiology, diagnostic
work-up, and treatment, they still pose a challenge for the
modern society due to their complex and prolonged course,
socioeconomic dimension, and also numerous existing con-
troversies concerning the implementation of optimal operative
and non-operative treatment [1–4]. CNS injuries may be di-
vided into traumatic brain injury (TBI) and spinal cord injury
(SCI), depending on the anatomical location. Neurotrauma is
a name which comprises both these types [5, 6]. The analysis
of currently available data concerning long-term epidemiolog-
ical research revealed that CNS injuries are one of the leading
causes of death and severe disability which drastically reduces
health-related quality of life (HRQoL) in all age groups and all
populations all over the world, especially in the developing
countries [7, 8]. According to the Center for Disease Control
and Prevention (CDC), the epidemiological data on TBI for
the years 2002–2006 shows the average of 1.7 million new
cases of TBI in the USA, resulting in over 52,000 deaths and
80,000 cases of long-term disability [9–11]. According to 23
independent studies, the yearly incidence of TBI is estimated
at 235 per 100,000 people in Europe [1, 12]. World Health
Organization (WHO) claims that globally, TBI will surpass
many diseases as the major cause of death and disability by
the year 2020 [13]. Epidemiological data on SCI, based on
statistical studies provided by National Spinal Cord Injury
Statistical Center (NSCISC), shows the annual incidence of
SCI in the USA to be approximately 12,500–20,000 new
cases and currently 240,000–337,000 living survivors [14,
15]. In Europe, the incidence of SCI is estimated at 15–16
per one million people [16, 17]. The global incidence rate is
estimated at approximately 23 SCI cases per one million
which equals to almost 180,000 new cases per annum [17,
18]. Apart from isolated TBI or SCI which occur quite rarely,
it is also possible that these two conditions are concomitant
and also accompanied by injuries to other body parts

(extracranial or extraspinal injuries) which then means a mul-
tiple trauma in a patient [19–24]. CNS trauma and associated
extracranial and extraspinal injuries give an image of a debil-
itating condition, which does not only create physical and
emotional costs for individuals. It is also a significant financial
burden for the whole society [25, 26]. With an increasing
amount of knowledge about the pathogenesis of changes dur-
ing TBI and SCI, it becomes clear that the natural course of
these diseases does not only cover the direct moment of injury
but, more importantly, long-term neurodegenerative processes
[27, 28]. TBI- and SCI-related pathologies occur as a result of
two subsequent complex mechanisms which are not clearly
demarcated: primary injury and secondary (delayed) injury
[1–3]. Brain and spinal cord injuries develop as a result of
an external mechanical force, whose character, intensity, di-
rection, and duration determine the severity of the injury. This
mechanism is categorized as a primary injury [1–3].
Therefore, as regards primary injury, we can distinguish blunt
TBI/SCI resulting from an external mechanical force and a
rapid acceleration/deceleration, penetrating TBI/SCI which
occurs by damaging the continuity of neural tissue by a bal-
listic object, and blast TBI/SCI resulting from different shock
waves, e.g., acoustic, electromagnetic, light, and thermal
waves or their combination, which are responsible for diffuse
function disorders and neural tissue destruction [1–4, 29, 30].
The macrostructural image of primary injury includes contu-
sion and edema of the neural tissue, discontinuation of menin-
ges, concomitant fractures and dislocations of cranial and spi-
nal bones, injuries and dislocations of ligamentous structures,
and the development of intra- and extra-axial hemorrhages
both in the brain and in the spinal cord [1, 31–33]. The effect
of the primary injury is additionally strengthened by the dis-
location and compression of edematous neural tissue by dam-
aged osseous and ligamentous structures, hematomas, and al-
so by possible compression of cerebrospinal fluid (CSF) cis-
terns which significantly influences the increase in intracranial
pressure (ICP) and intraspinal pressure (ISP) [32–37].
Microscopically, the direct effects of primary injury include
the immediate death of cells resulting from the direct mechan-
ical force and secondary compression, the disruption of vas-
cular regulation, hypoperfusion and hypoxia of injured tis-
sues, the dysfunction of neurovascular units forming blood-
brain and blood-spinal cord barriers (BBB and BSCB),
microporation and the disorders of cell membrane permeabil-
ity, changes in the ionic composition of intracellular and ex-
tracellular space, rapid release of neurotransmitters from dam-
aged cells, and the possibility of diffuse axonal injury (DAI)
[38, 39]. The essence of the multidimensional character of
molecular and biochemical events occurring during secondary
injury is the specific continuation of the processes initiated by
primary injury, which contributes to the image of numerous
synergistic neurodegenerative mechanisms [40–42]. The
mechanisms of secondary injury include progressive disorders
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in the vascular regulation, progressive disorders of cell mem-
brane permeability, disorders of energy homeostasis associat-
ed with the dysfunction of the synthesis of mitochondrial
adenosine triphosphate (ATP), the production of free radicals
and lipid peroxidation, glutamate (Glu) excitotoxicity, calci-
um (Ca2+)-mediated neurotoxicity, programmed cell death
(apoptosis), and local and systemic inflammatory response
related to the inflow of immune cells and secretion of inflam-
matory mediators [1, 3, 41, 42]. In case of an injury, all the
abovementioned and other numerous mechanisms at the cel-
lular and subcellular level lead to time-dependent neurochem-
ical dysregulation, demyelination, loss of neurons (NeuN+),
and the development of a glial scar resulting in the dysfunction
of the injured neural tissue in the brain and the spinal cord
[43–45]. Both the local and systemic body response constitute
an essential element of CNS injuries [46, 47]. Immune system
response influences all organs, not only the injured ones (the
brain and the spinal cord), via marked changes encompassing
gene expression changes, the recruitment of a broad spectrum
of cells, and secretion of inflammatory mediators [46–48].
Neuroinflammation is considered to be one of the leading
elements of secondary injury [49]. The role of immune re-
sponse in the pathogenesis of TBI and SCI has been regarded
controversial, due to its possible positive and negative conse-
quences [49, 50]. In the past few years, independent authors
who have been trying to fully elucidate the pathogenesis of
TBI and SCI gave more attention to phenomena occurring
during the secondary injury, particularly those connected with
the immunological component [51]. Ongoing research most
commonly concentrates on the mechanisms connected with
the inflammatory mediators (e.g., cytokines, including
chemokines) secreted by cells located residually in the brain
and the spinal cord and also by infiltrating CNS structures via
blood vessels [52, 53]. It seems that the most promising ther-
apeutic direction is the modulation of the inflammatory re-
sponse by limiting its neurotoxic effect, enhancing the neuro-
protective properties and promoting the regeneration of in-
jured neural tissue [54, 55]. As regards the wide range of
inflammatory mediators connected with CNS functions,
chemokines have been attributed an increasing role both in
physiological and pathological conditions in the past few
years [56]. The knowledge about the role of chemokines in
CNS functioning is so wide, that researchers distinguished a
new class of neurotransmitters and neuromodulators and
named them neurochemokines [57]. The multidirectional ac-
tions of neurochemokines include the participation in the em-
bryogenesis of the nervous system, modulation of synaptic
conductance, plasticity, and also their function in the patho-
genesis of neurodegenerative disorders [57]. Researchers have
described almost 50 chemokine ligands, out of which chemo-
kine CX3CL1 (fractalkine) and its receptor CX3CR1 deserve
special attention. Apart from properties which are typical for
the remaining compounds in this group, chemokine has a

different molecular structure and may function not only as a
chemoattractant but also as an adhesive molecule. The in-
creasing role of the CX3CL1/CX3CR1 axis has been noted
in the physiological communication between neurons and
microglial cells. Moreover, there are numerous newly discov-
ered phenomena as regards the influence of the CX3CL1/
CX3CR1 axis on CNS physiology and pathology, such as
the effect on the synaptic plasticity, maturation, and activity
and a marked effect on the functioning of hippocampal for-
mation [58]. Up to now, the role of CX3CL1/CX3CR1 axis
has not been widely discussed in the context of its presence
and possible functions in the pathophysiology of TBI- and
SCI-related phenomena. Therefore, it seems justified to de-
scribe and summarize the participation of CX3CL1 and its
CX3CR1 receptor in the course of CNS injuries basing on
the available professional literature. In order to present a
comprehensive overview of the problem, we will perform
a thorough analysis of the structure and functions of the
CX3CL1/CX3CR1 axis, present its role in the physiolog-
ical processes related to CNS functioning, and then, we
will discuss its possible role in the course of CNS injuries
with particular attention paid to each stage of the pathol-
ogy and its subsequent consequences and also possible
clinical implications.

Molecular Organization and Biological Functioning
of CX3CL1 and Its Dedicated Receptor CX3CR1

CX3CL1—a Unique Two-Form Ligand Member
of the CX3C (Delta) Subfamily

In 1997, Bazan et al. first identified and described the CX3C
(delta) subfamily of chemokines [59]. The name Bfractalkine^
was then used for the first time. In the same year (at the inter-
val of several weeks), Pan et al. confirmed the existence of the
CX3C subfamily [60]. This group of researchers used the
name Bneurotactin^ to emphasize its mode of action during
experimental autoimmune encephalomyelitis (EAE) on a
mouse model. Regarding the latest classification of
chemokines including the arrangement of amino acids and
cysteine (Cys) residues with disulfide bonds, CX3CL1 is the
only representative of the CX3C subfamily which is also clas-
sified as a dual-function chemokine (category D) which has
the properties of homeostatic chemokines (category H) and
inflammatory chemokines (category I) [61, 62]. In human
genome, the gene coding CX3CL1 is composed of three
exons and is located within the long arm of chromosome 16
(16q13) [63]. It is highly conservative with the genes of a
mouse (Mus musculus) or a rat (Rattus norvegicus). The re-
spective genes are located on chromosome 8 (8qC5) in the
mouse and chromosome 19 (19p12) in the rat [64, 65]. In
the body, CX3CL1 occurs in two different isoforms:
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membrane-anchored CX3CL1 and soluble CX3CL1
(sCX3CL1). Therefore, it has chemotactic and adhesive prop-
erties [66]. Ultrastructurally, the precursor form of membrane-
anchored CX3CL1 is a polypeptide chain composed of 397
amino acid residues containing signal peptide (SP) included in
24 amino acid residues, N-terminal chemokine domain (CD)
with CX3Cmotif included in 76 amino acid residues, forming
a globular structure which is approximately 3 nm long, mucin-
like stalk included in 241 amino acid residues which are
26 nm long, also including 17 degenerated mucin-like repeats
with 26 potential O-glycosylations at serine (Ser) and threo-
nine (Thr) residues, transmembrane region (TM) included in
21 amino acid residues, and C-terminal intracellular cytoplas-
mic tail (CT) included in 35 amino acid residues [59, 60, 67,
68] (Fig. 1). The mature membrane-anchored form of
CX3CL1 does not contain SP and is composed of 373 amino
acid residues of the total molecular weight of approximately
17.5 kDa, and 95 kDa after glycosylation [59, 60]. The con-
nection with cell membranes is a factor which, apart from the
regulation at the level of transcription and translation observed
in other chemokines, is associated with an additional phenom-
enon of functional regulation via undergoing constitutive in-
ternalization, producing a dynamic balance in membrane
compartments between the plasma membrane and the intra-
cellular endocytic compartment [69–71]. The structure of in-
tracellular CT includes two adaptor protein 2 (AP2)-binding
motifs, such as YQSL at positions 362–365 and YVLV at
positions 392–395 (PSORT II analysis), predicted to bind
clathrin-coated pit which allows constitutive clathrin-
mediated endocytosis [70]. The distribution of CX3CL1 in
distinct subcellular compartments is also associated with the
properties of soluble N-ethylmaleimide-sensitive factor at-
tachment protein receptor (SNARE), such as syntaxin 13
(STX13) and vesicle-associated membrane protein 3
(VAMP3) [71]. This type of dynamic balance facilitates the
protection of presynthesized CX3CL1 against premature deg-
radation on the external side of cell membrane and, under
appropriate conditions, accelerates the mobility of intracellu-
lar content [70, 71]. Another form to be described is
sCX3CL1 included in 317 amino acid residues, approximate-
ly 29 nm long, whose structure encompasses a CD-containing
segment and a mucin-like stalk of the total molecular weight
of approximately 14.7 kDa, and 80 kDa after glycosylation
[59, 60]. The separation of sCX3CL1 results from proteo-
lytic cleavage process which occurs at the di-arginine (di-
Arg) motif (RR) near the external surface of plasma mem-
brane [59]. The process is based on ectodomain shedding
in which sCX3CL1 acts as a soluble ectodomain and is
mediated by two transmembrane proteases from a
disintegrin and metalloproteinase (ADAM) family and
by cathepsin S (CTSS) [72, 73]. The proteases from
ADAM family, which take part in this process are
ADAM metallopeptidase domain 10 (ADAM10) and

ADAM metallopeptidase domain 17 (ADAM17) which
is also called tumor necrosis factor-alpha-converting en-
zyme (TACE) [72]. ADAM10 was identified as a protease
responsible for the constitutive and ionomycin-induced
shedding of CX3CL1, and ADAM17 is involved in the
12-O-tetradecanoylphorbol-13-acetate (PMA)-induced
shedding of CX3CL1 [74, 75]. It is worth noting that
the described shedding events may be pharmacologically
targeted by the use of a specific inhibitor for ADAM10
(GI254023X) and the dual-specific ADAM10 and
ADAM17 inhibitor (GW280264X) [74, 76]. The remain-
ing C-terminal cleavage fragment (CTF) undergoes deg-
radation associated with the activity of membrane-
associated secretase complexes and the proteasome [77].

Characteristics of CX3CR1 Chemokine Receptor

Unlike most ligands belonging to the chemokine family with
the affinity for numerous receptors, CX3CL1 reveals its bio-
logical activity via an interaction with only one dedicated
receptor—CX3CR1 [78]. During a study on a rat model con-
ducted byHarrison et al. in 1994, CX3CR1was first described
as RBS11 constituting the orphan G protein-coupled receptor
(oGPCR) [79]. In further study by Raport et al., a homologous
human gene was named V28, and its product was described as
oGPCR containing a highly conserved 20 amino acid region
typical for receptors from G protein-coupled receptor (GPCR)
family and seven amino acid sequence Asp-Arg-Tyr-Leu-Ala-
Ile-Val (DRYLAIV motif) in the second cytoplasmic loop
(IL2) which is conserved among chemokine receptors [80].
The identification of the connection of CX3CL1 and
CX3CR1 in a signaling axis was described by Imai et al. in
1997 [81]. In human genome, the gene coding CX3CR1 is
composed of four exons and is located within the short arm of
chromosome 3 (3p21.3) [82, 83]. It is conservative with
mouse or rat genes, which, in turn, are located on chromosome
9 (9qF4) in the mouse and on chromosome 8 (8q32) in the rat
[80, 82–84]. According to existing classifications, CX3CR1
belongs to the biggest A class (rhodopsin-like receptors) of
GPCR proteins, which includes all chemokine receptors [85,
86]. Ultrastructurally, the polypeptide chain of CX3CR1 in-
cludes 355 amino acid residues of the total molecular weight
of approximately 40 kDa [80] (Fig. 2). The polypeptide chain
includes extracellular N-terminus, seven α-helical domains
(TM1–TM7) penetrating the whole thickness of the cell mem-
brane, three intracellular (IL1, IL2, IL3) and three extracellu-
lar loops (EL1, EL2, EL3), and an intracellular C-terminus
[87]. Two conservative Cys residues located respectively at
the top of the third transmembrane domain (TM3) and the
second extracellular loop (EL2) are connected with a disulfide
bond [88]. N-terminus and loops formed by the polypeptide
chain extracellularly create the location of binding two func-
tional ligands, which can be both CX3CL1 and CCL26
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(eotaxin-3) and also antibodies and some pathogens such as
bacteria and viruses [89–92]. It was also demonstrated that the
appropriate level of tyrosine (Tyr) sulfation of N-terminus is
necessary for maintaining normal activity of the majority of
GPCR receptors for chemokines [93]. C-terminus and loops
located on the cytoplasmatic side form the site where
heterotrimeric Gαi protein is bound [81]. The phosphoryla-
tion of C-terminus, which occurs easily due to numerous Ser
and Thr residues, facilitates the appropriate modulation of the
process of transmitting a signal associated with Gαi protein
[94]. Gαi protein, which has a function in the transmission of
intracellular signals associated with CX3CR1 activation, may
be inhibited by pertussis toxin (PTX), which was implement-
ed in some experimental models [90]. The majority of chemo-
kine GPCR receptors (including CX3CR1) are characterized
by a marked polymorphism. This may be responsible for
intraindividual and interindividual variability of chemokine
effects andmay account for changeable risk of the development
and course of inflammatory, autoimmune, and hyperplastic dis-
eases [95, 96]. It is also worth noting that the existence of only

one receptor for CX3CL1 significantly facilitates the interpre-
tation and possible clinical implications of reported biological
effects concerning the CX3CL1/CX3CR1 axis.

Systemic Expression and Distribution
of the CX3CL1/CX3CR1 Axis

Themain source of chemokines is white blood cells (WBC), but
CX3CL1 is mainly produced in endothelial cells and neurons
[97]. It is not surprising that CX3CL1 expression is elevated in
highly vascularized and well-innervated organs and also in lo-
cations with an increased concentration of immune system cells,
such as the CNS, lungs, cardiac muscle, liver, intestines, and
placenta [98–104]. In spite of the wide distribution and expres-
sion throughout the body, CX3CL1 presents a high specificity
for some cell types. CX3CR1+ cells present chemotactic prop-
erties toward sCX3CL1. They include a significant percentage
of immune cell population, i.e., monocytes (CD14+), macro-
phages (MΦ), NK cells (CD16+), lymphocytes (CD4+ and
CD8+), mast cells (MC), and dendritic cells (DC) [105–109].
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CX3CL1/CX3CR1 Axis in the Regulation of Cellular
Mechanism Involved in Cellular Adhesion and Migration

Leukocyte transendothelial migration (TEM) from vascular
lumen into extravascular tissues triggers a dynamic cascade
of molecular events connected with interactions between leu-
kocytes and endothelial cells both under physiological and
pathological conditions [110]. Apart from the conventional
leukocyte extravasation based on integrin-mediated adhesion,
it is also possible to employ the adhesive activity of
membrane-anchored CX3CL1 [111]. It was noted that the
CX3CL1/CX3CR1 axis is involved at all migration stages,
but the adhesive ability of CX3CL1 is determined by the pres-
ence ofmucin-like stalk [111, 112]. Leukocytes which have an
appropriate level of CX3CR1 expression adheres CD to
membrane-anchored CX3CL1 [112]. Following the adhesion
associated with an interaction between CX3CL1 and
CX3CR1, leukocytes are able to migrate through vessel walls
in a directly selectin- and integrin-independent manner [113].

Moreover, after the adhesion of CX3CL1 to CX3CR1, there is
an activation and synthesis of other adhesive molecules which
strengthens the adhesion via synergism [114, 115]. It was also
noted that integrins may act as receptors and co-receptors as
they are able to adhere to CX3CL1 with no participation of
CX3CR1 [114, 115]. Multilevel interactions of the CX3CL1/
CX3CR1 axis with different types of cell adhesion molecules
(CAM), such as selectins and integrins, are currently thought
to be key phenomena in the pathogenesis of many inflamma-
tory diseases, which may be useful as potential locations of
modulating immune response associated with the recruitment
of individual cell types [116].

CX3CL1/CX3CR1 Axis Interplay with Related
Activators/Repressors and Intracellular Multiple
Signaling Pathways

The regulation of the activation and functioning of the
CX3CL1/CX3CR1 axis encompasses the control at the level
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of transcription and also regulation during post-translational
modifications. Intracellular transmission of signals via
CX3CR1 and then heterotrimeric Gαi protein is associated
with the activation of numerous signaling molecules, such as
several different secondary messengers and transcription fac-
tors, including nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB), cAMP response element-binding
protein (CREB), signal transducer and activator of transcrip-
tion (STAT), and activator protein 1 (AP-1) [117–119]. The
activation of the transcription factors associated with the
CX3CL1/CX3CR1 axis may be connected with activating a
potentially wide range of functions of a given cell, such as
messenger RNA (mRNA) transcription for many proteins (in-
cluding cytokines), cytoskeletal rearrangement and migration,
apoptosis, and proliferation [117, 119]. Local production and
membrane expression of CX3CL1 and also CX3CR1 are con-
trolled by other cytokines with the most important ones in-
cluding tumor necrosis factor alpha (TNFα), interleukin 1 (IL-
1), interferon gamma (IFNγ), and soluble interleukin 6 recep-
tor alpha (sIL-6Rα) [120, 121]. Similar reciprocal correlations
were also observed as regards the presence of lipopolysaccha-
ride (LPS), nitric oxide (NO), adenosine (ADO), 15-deoxy-
delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), 8-isoprostane,
and hypoxia [122–126]. CX3CL1 production induced by var-
ious factors is also subjected to autoregulation via modulating
the expression of their CX3CR1 receptor [117]. The activation
and functioning of individual cascades of intracellular path-
ways associated with the CX3CL1/CX3CR1 axis under partic-
ular physiological and pathological conditions demonstrate dif-
ferences, and a direct recapitulation of their activity in a specific
clinical status within various cell and tissue types requires fur-
ther research which would confirm these potential correlations.

Overview of the Role of CX3CL1 and CX3CR1
in the Physiological Functioning of the Brain
and Spinal Cord

CX3CL1/CX3CR1 Axis—Neuroanatomical
Ultrastructural Location and Regional Distribution

The analysis of in vitro experiments performed on cellular
models and knowledge about transgenic mouse and rat
models facilitates deep insight into the pattern of CX3CL1
and CX3CR1 expressionwithin the CNS. In order to comprise
the extensive neuroanatomical distribution of CX3CL1 and
CX3CR1, it needs to be noted that high levels of CX3CL1
chemokine are constitutively produced by neurons within the
telencephalon and diencephalon and particularly in the cere-
bral cortex, hippocampus, amygdala, basal ganglia, thalamus,
and olfactory bulb [127–129]. A particularly high level of
expression of CX3CL1 mRNA transcripts is present in the
hippocampal formation demonstrating the highest

concentration in CA1, CA2, and CA3 regions and in the ce-
rebral cortex—layers II, III, V, and VI [127–129]. The hypo-
thalamus and mesencephalon are the areas where the levels of
mRNA expression for CX3CL1 are very low or even below
detectable limits [127–129]. A similarly low expression level
was noted within the metencephalon and myelencephalon
encompassing the pons, cerebellum, and medulla oblongata
[127–129]. Interestingly, mRNA expression for CX3CL1 is
mainly associated with expression within the gray matter and
the lack of its expression within the white matter, e.g., within
the corpus callosum and fimbria/fornix (FF) structures [129,
130]. CX3CL1 expression within the spinal cord is limited to
neurons in the dorsal horn and dorsal root ganglia (DRG)
[131, 132]. Interestingly, it remains controversial that endo-
thelial cells in the brain and the spinal cord, as opposed to
those in other locations, do not present constitutive CX3CL1
expression on the surface, which suggests that it is rather de-
pendent on the activation occurring as a result of an inflam-
mation in certain CNS pathologies [127, 129, 133, 134].
Constitutive mRNA expression for CX3CL1 and CX3CR1
is also described by astrocyte cells (GFAP+) [135, 136]. In
the ventricular system, CX3CL1 and CX3CR1 expression is
connected with the choroid plexus (CP) [137, 138]. CX3CL1
occurs physiologically in the CSF at the concentration which
is approximately 500-fold below serum concentration [139]. It
is widely accepted that CX3CR1 demonstrates a relatively
homogeneous expression via microglial cells in the brain
and the spinal cord which, at the same time, do not demon-
strate mRNA expression for CX3CL1 [127–129, 135]. Apart
from the abundant presence of CX3CR1 receptor within
microglial cells it is also important to note its expression via
neurons [140–142].When analysing the presence of CX3CR1
both on neurons and on microglial cells, it is important to note
the possibility of distinguishing between the direct modulating
effect of CX3CL1 on neurons and its indirect effect via pre-
viously activated microglial cells [142, 143]. Making such a
distinction is possible by the analysis of the effect of CX3CR1
activation on glutamatergic transmission which results in the
inhibition of phosphorylation of α-amino-3-hydroxy-5-meth-
yl-4-isoxazolepropionic acid (AMPA) receptor and, more pre-
cisely, its glutamate receptor 1 (GluR1) subunit associated
with calcium oscillator, increased Ca2+ entry, and the reduc-
tion of excitatory postsynaptic current (EPSC) amplitude
[144, 145]. It was also noted that CX3CL1 inhibits hippocam-
pal long-term potentiation (LTP) in CA1 region through aden-
osine A3 receptor (A3R) activity [146]. Differences in mRNA
expression for CX3CL1 and CX3CR1 are also correlated
with age, where the reduction in CX3CL1 expression and
level and the increase in CX3CR1 level within the hippo-
campus are accompanied by an increase in microglial activ-
ity through the phosphorylation of protein kinase B (Akt)
and activation of the phosphatidylinositol-4,5-bisphosphate
3-kinase (PI3-K) pathway [147].
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CX3CL1/CX3CR1 Axis in the Context of Homeostatic
Bidirectional Cross Talk Between Neurons and Microglia

Regarding both the neuroanatomical CX3CL1 and CX3CR1
distribution in the context of bidirectional interaction between
neurons and microglial cells, it can be noted that the CX3CL1/
CX3CR1 signaling axis probably has a crucial role in modu-
lating the homeostasis of these multilevel interactions
throughout the ontogenetic development of mammals [148].
Microglia, which seem to be constantly active, undergo tonic
signaling through the CX3CL1/CX3CR1 axis under physio-
logical conditions, which facilitate the maintenance of its cells
in a quiescent state and maintain homeostasis in the neuronal
network [148, 149]. The phenomenon seems to corroborate
the fact that structural connectivity reflects functional connec-
tivity, particularly influencing synaptic transmission in specif-
ic neuroanatomical areas, in processes like learning, memory,
and behavior [58, 150]. However, the unambiguous determi-
nation of the role of the CX3CL1/CX3CR1 axis as inflamma-
tory or anti-inflammatory seems controversial in the context
of functioning within the CNS [148]. Microglia, which is the
non-neuronal element of the CNS, includes specific residual
macrophages performing the function of a specific sensor sen-
sitive to injuries and developing pathologies in the neural tis-
sue, e.g., an injury or a neoplastic, autoimmune, or infectious
process [151, 152]. Under physiological conditions, CX3CL1
seems to inhibit microglial activation, while in particular pa-
thologies a paradoxical promotion of inflammatory response
may occur [151, 153, 154]. The factors which determine the
specific type of neuroprotective or neurotoxic response are
most probably dependent on the type of the primary destruc-
tive factor, CNS area, and the local concentration of CX3CL1
and CX3CR1 [148]. The disruption of homeostatic paracrine
and autocrine interactions of the CX3CL1/CX3CR1 axis in
the context of neuron-microglia communication may be seen
as one of fundamental elements in the pathogenesis of CNS-
related diseases [155] (Fig. 3). The understanding and deter-
mination of the precise location of the CX3CL1/CX3CR1
signaling axis as a physiological element of cell properties
within the CNS still require further detailed research.

Role of CX3CL1 and CX3CR1 Axis
in the Pathophysiology of Traumatic Brain
and Spinal Cord Injury

Expression Pattern of the CX3CL1 and CX3CR1

The properties of CX3CL1 and CX3CR1 and also of the re-
maining chemokines and their receptors are still the focus of
research on humans and various animal models, to present
their potential role and possibility of implementation in the
clinical therapy of TBI and SCI. The analysis of data available

in the professional literature demonstrates the scarcity of stud-
ies conducted in patients and the domination of animal model
and cell culture approach.

Traumatic Brain Injury

Available studies concerning the level of CX3CL1 and
CX3CR1 expression in the course of TBI present data includ-
ing both clinical trials with patients suffering from severe head
injuries and also data obtained from animal model and cell
culture studies (Table 1). Rancan et al., who conducted a study
in patients with head trauma and in mice after standardized
cortical experimental contusion, were the first to analyze the
posttraumatic profile of CX3CL1/CX3CR1 axis expression in
TBI [156]. The study group included 12 patients (n=12) with
Glasgow Coma Scale (GCS) of ≤8 on admission and with
visible changes in computed tomography scans according to
Marshall classification [157]. The patients had intraventricular
catheters (IVCs) for the direct measurement of ICP. CSF
drainage was performed when the pressure was over 15 mm
Hg. The control group for CSF analysis included five patients
(n=5) without neuropathologies, and as regards serum analy-
sis, there were eight (n=8) healthy volunteers. The levels of
CX3CL1 in CSF obtained in the control group were 12.6 to
57.3 pg/mL, while in the study group, they were 29.92 to
535.33 pg/mL demonstrating the most abundant values on
the day of admission, with a gradual decreasing tendency
during 14 days of the study. CX3CL1 levels in the serum of
the control group patients were 21.288 to 74.548 pg/mL,
while in the study group, they amounted to 3.1 to 59.159 pg/
mL. Therefore, the authors reported that physiologically, the
concentration of CX3CL1 in humans is higher in the serum
than in the CSF and the values are reversed as a result of TBI,
correlating with BBB dysfunction and suggesting the possi-
bility of shifting CX3CL1 from the serum to the CSF. The
second part of the study was performed on a mouse model
(n=40). No differences were observed as regards CX3CL1
levels and the expression of its mRNA in the study group
and sham-operated control group. However, the authors noted
an elevated level of mRNA for CX3CR1 in the study group
which gradually increased between the trauma and the seventh
day of the experiment. Helmy et al. conducted a study which
consisted in the determination of cytokine profile in patients
with TBI [158]. They performed cerebral microdialysis (CM)
with two types of perfusates, such as crystalloid perfusate and
3.5 % human albumin solution (HAS) and the serum coming
from sampled arterial and venous blood. The qualified pa-
tients (n=12) had the GCS of ≤8 on admission and typical
changes in the computed tomography scan. With crystalloid
perfusate, the median CX3CL1 concentration was 9.21 pg/
mL, and with 3.5 % HAS, it was 20.39 pg/mL. The median
microdialysate concentration/arterial plasma ratio was 0.96.
Gaetani et al. performed an analysis of human brain samples
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harvested during decompressive craniotomy for TBI and after
spontaneous intracranial hemorrhage (ICH) [159]. They were
studied in terms of CX3CL1 and CX3CR1 expression. The
level of CX3CL1 expression demonstrated upregulation in the
neural compartment compared to samples from the control
group harvested during gyrectomy, which was a part of a sur-
gery for unruptured intracranial aneurysyms (UIAs). It was
demonstrated that the level of CX3CL1 expression correlated
with lower ICP within the glial compartment. CX3CR1 expres-
sion was observed in lower concentrations both in neurons and
glia, while its higher concentrations in neurons were analyzed
with regard to the GCS of patients on admission. Fahlenkamp

et al. analyzed organotypic hippocampal slice cultures in a
mouse model [160]. The cultures were subjected to in vitro
mechanical dropweight trauma of moderate severity in the
CA1 region to assess local cytokine and chemokine reaction.
The results demonstrated the downregulation of the expression
of transcript mRNA for CX3CL1 with simultaneous upregula-
tion of the expression of transcript mRNA for CX3CR1.

Spinal Cord Injury

The analysis of CX3CL1 and CX3CR1 expression levels in
the course of SCI has only been possible to perform with
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studies conducted on animal models (Table 2). Detloff et al.
conducted a series of experiments concerning behavioral and
cellular responses after thoracic (Th8) SCI with the use of
electromagnetic impactor in rats, occurring below the level
of injury in the lumbar spinal cord (L5) [161]. It was demon-
strated that within L5 dorsal horn, the level of CX3CL1 pre-
sented no changes after 7, 21, and 35 days following the SCI,
while the level of mRNA expression for CX3CL1 decreased
after 35 days following the SCI. The level of mRNA expres-
sion for CX3CR1 was elevated compared to control groups.
Donnelly et al. conducted a study on a mouse model with SCI
in the thoracic spine (Th9–Th10) [162]. It was demonstrated
that the local mRNA expression for CX3CL1 was decreased
between days 1 and 7 after SCI, and it reached its normal level
after 14 days. On day 28, it had a markedly elevated level.
However, mRNA expression for CX3CR1 was reduced be-
tween days 1 and 3 after SCI. Then, the expression gradually
increased between days 3 and 28 in comparison with control
groups. The expression of CX3CL1 remained unchanged for
6 weeks after SCI, while CX3CR1 demonstrated an increased
expression starting on the third day after SCI which
corresponded with the level of expression of its mRNA.
Cizkova et al. reported spatial changes in the expression of
CX3CR1 within rostro-caudal axis after SCI on the rat model
after 3 days, with the spinal cord damaged in the thoracic
region (Th8–Th9) with the use of modified balloon compres-
sion technique (2-French Fogarty catheter) [163]. It was noted
that the CX3CR1 expression significantly increased after
3 days in the study group (n=4) in comparison with sham-
operated control group (n=4) where CX3CR1 expression was
homogeneous and poorly pronounced. The expression was
particularly intensified within the gray and white matter of
the rostral segment (Th2–Th6) compared to the caudal seg-
ment (Th12–L3). Blomster et al. (2013) analyzed CX3CL1
concentrations in the serum of the blood sampled with cardiac
puncture from the left ventricle (LV) in mice subjected to SCI
in the thoracic spine (Th9) [164]. It was demonstrated that
7 days after, SCI mice (n=6) presented a slightly elevated
CX3CL1 concentration in comparison with a group of non-
injured (n=5) and sham-operated (n=5) controls.

Implication on Systemic and Local Mechanisms Involved
in the Course of Traumatic Brain and Spinal Cord Injury

Regarding the kinetics of the changes of CX3CL1 and
CX3CR1 expression occurring as a result of TBI and SCI, it
becomes obvious that the regulation within this signaling axis
should be regarded as an endogenous mechanism of the con-
trol of an inflammation resulting from this type of injuries
(Table 3). CNS trauma triggers the local activation and migra-
tion of microglia, enhances the secretion of inflammatory me-
diators like cytokines and chemokines, and creates a specific
inflammatory environment, which also results in the T
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infiltration of peripheral immune cells [165, 166]. As regards
the possible destruction and regeneration of CNS tissues, the
presence of activated macrophages seems to be of key impor-
tance. In spite of the fact that the macrophages are of different
origin and, partially, phenotype, they are similar in numerous
aspects [167–169]. The sources of the activated macrophages
include both microglia and the population of monocytes mo-
bilized from circulation originating from bone marrow and
splenic reservoir [164, 169]. Both cell types demonstrate a
similar morphology and the expression of similar superficial
markers [170]. The analysis of a mouse model in terms of the
superficial expression of receptor markers demonstrated that
microglia are immunophenotypically described as Ly6Clow/
CX3CR1high/CD45low/Iba-1+, while circulating monocytes
are described as two subpopulations, such as inflammatory
monocytes (classically activated, M1) defined as Ly6Chigh/
CX3CR1low/CCR2high and anti-inflammatory monocytes (al-
ternatively activated, M2) defined as Ly6Clow/CX3CR1high/
CCR2low [171–175]. Human counterparts of Ly6Chigh and
Ly6Clow monocytes are defined as CD14++/CD16− and
CD14+/CD16++ [175, 176]. The main source of knowledge
regarding the direct functioning of the CX3CL1/CX3CR1 ax-
is in TBI and SCI is studies on animal models which were
subjected to substitution on one or both CX3CR1-coding al-
leles using gene for the green fluorescent protein (GFP) in this
way obtaining heterozygotes (CX3CR1+/GFP) or knockout
(KO) homozygotes (CX3CR1GFP/GFP). If we analyze studies
by Donnelly et al. and Blomster et al. (2013) at a different
angle, we may note that the modulation of monocyte activa-
tion via changes in the CX3CL1/CX3CR1 signaling axis on
chimeric mouse models with SCI may affect their course [162,
164]. In the study of Donnelly et al., it was observed that the
bone marrow of CX3CR1GFP/GFP chimeric mouse, contrary to
wild-type (WT) mouse, presents a negative effect on the re-
cruitment and maturation of macrophages defined as Ly6Clow/
iNOS+/MHCII+/CD11c− at the site of injury along with their
capacity of the production of inflammatory cytokines and ox-
idative metabolites, with a positive effect on the recruitment of
macrophages defined as Ly6Chigh/CCR2+/MHCII−/CD11c+

[162]. Microglia activation was also altered, which was
expressed as the reduced production of mRNA for interleukin
6 (IL-6) and inducible nitric oxide synthase (iNOS) with the
absence of changes in the production of mRNA for interleukin
1 beta (IL-1β) and TNFα. Moreover, when using the stan-
dardized Basso Mouse Scale (BMS), CX3CR1GFP/GFP mice
demonstrated a faster and sustained resumption of mobility,
unlike WT mice [177]. Blomster et al. (2013) performed a
study on the bone marrow of CX3CR1GFP/GFP mouse chi-
meras [164]. They noted that CX3CR1 deficiency contributed
to an increased recruitment of monocytes with no effect on
their distribution and content at the site of injury. The BMS of
CX3CR1GFP/GFP mice indicated the deteriorated recovery of
locomotor function in comparison with WT mice. AnotherT
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study conducted by Blomster et al. (2011) concerning olfac-
tory bulbectomy (OBX) in CX3CR1GFP/GFP mice showed
some properties of the CX3CL1/CX3CR1 axis in the course
of TBI, because a model injury of olfactory system revealed
some aspects if the injury did not result from a direct impact,
but from surgical intervention [178]. An increased recruitment
of monocytes was observed in the olfactory neuroepithelium
of CX3CR1GFP/GFP mice in comparison with WT mice. The
level of mRNA expression for ADAM10 was slightly in-
creased, while no changes were noted in mRNA expression
for ADAM17 which were independent from the genotypes of
the mice in the study. Significant changes were noted as
regards the expression of inflammatory cytokines, which
was demonstrated as an increased expression of mRNA for
IL-1β, IL-6, and TNFα in CX3CR1GFP/GFP mice in compar-
ison with WT mice. Morganti et al. studied TBI on a mouse
model using CX3CR1GFP/GFP chimeras [179]. They observed
neurotoxic responses at acute (24 h) and chronic (3 months)
stages after controlled cortical impact (CCI). It was noted that
24 h after an injury, the inflammatory response in
CX3CR1GFP/GFP mice was decreased which manifested as
reduced IL-1β, IL-6, TNFα, and iNOS expression in compar-
ison with WT mice. The analysis of hippocampal-dependent
cognitive function 3 months following an injury revealed that
CX3CR1GFP/GFP mice made fewer mistakes in the radial arm
water maze (RAWM) test than WT mice. As regards changes
in synaptic conductance, it was demonstrated that a quantita-
tive change of a NR2B subunit of N-methyl-D-aspartate
(NMDA) receptor occurred within the hippocampus of a
WT mouse, while it was not observed in CX3CR1GFP/GFP

mice. Other investigated differences in both types of mice
include the effect on the activity of Src kinase, p44/42 MAP
kinase, postsynaptic density protein 95 (PSD-95), and tau pro-
tein phosphorylation. Zanier et al. conducted a similar study
on CX3CR1−/− mouse model [180]. The mice were subjected
to CCI, and a number of parameters were compared after
4 days and 5 weeks following the TBI. It was noted that 4 days
after the injury, there were no changes in IL-1β and TNFα
expression in CX3CR1−/−mice in comparison withWTmice.
However, there was a reduction in iNOS expression with si-
multaneous unchanged level of CD11b+ marker. During the
fifth week, the expression of IL-1β and TNFα still remained
unchanged, but the expression of iNOS and CD11b+ marker
increased.Moreover, the levels of expression of interleukin 10
(IL-10) and insulin-like growth factor 1 (IGF-1) were also
assessed. After 4 days and during the fifth week, their expres-
sion was lower in CX3CR1−/− mice in comparison with WT
mice, and their elevated levels were noted only 1 day after
TBI. As regards the neurological outcome, CX3CR1−/− mice
demonstrated superior results on day 4 after TBI in compari-
son with WT mice in neuroscore test [181]. However, during
week 5, their results were poorer. Regarding numerous param-
eters assessed in this study, it was stated that blocking

CX3CL1/CX3CR1 axis conduction leads to positive effects
soon after TBI, but the long-term outcome is poorer. Another
valuable study with a similar methodology is one conducted
by Febinger et al. on the mouse model of KOCX3CR1GFP/GFP

homozygotes which were subjected to CCI [182]. The mice
were compared as regards the assessed parameters in two time
intervals since the injury, both in the acute phase (24 h to
15 days) and in the chronic phase (15 to 30 days) with partic-
ular emphasis put on the assessment of locomotor activity,
motor learning, anxiety behavior, and cognitive function with
the following tests: neuroscore, open field, elevated plus maze
(EPM), rota-rod, and Morris water maze (MWM). It was not-
ed that in the acute phase, the CX3CR1GFP/GFP chimeric mice
demonstrated superior results in comparison with WT mice in
neuroscore test, while in the chronic phase, there was a reverse
trend in which WT mice accomplished superior results. No
differences between individual genotypes were demonstrated
in mice undergoing open field and EPM test after 30 days
since the injury. At the same time, the results of rota-rod and
MWM tests were poorer in CX3CR1GFP/GFP mice compared
to WT mice. The observation of the degree of neuronal loss
with Fluoro-Jade B+ and NeuN+ staining demonstrated that
CX3CR1GFP/GFP homozygotes lost fewer neurons in the acute
phase in comparison with WT mice. However, in the chronic
phase, the trend was reversed. The analysis of cytokine level
showed the reduced expression on days 7 and 15 after CCI for
IL-1β, reduced IL-4 and IL-6 on day 15, and reduced iNOS
on day 7. No changes were observed as regards the expression
of transforming growth factor beta (TGF-β) on day 7 follow-
ing the injury. The authors, just like Zanier et al., suggested
that the inhibition of CX3CL1/CX3CR1 axis conduction may
be a potential therapeutic target in the acute phase after an
injury basing on the analysis of the studied parameters and
the activity and proliferation of microglia, observing the
CD11b+ cell count on days 15 and 30 after the injury and
the kinetics of the expression of superficial markers for spe-
cific subtypes of activated microglia (YM1, CD206, CD68,
and MARCO) within the studied tissues. Regarding the im-
mune response occurring in case of ICH which is a com-
mon consequence of TBI, we need to mention the find-
ings of Taylor et al. [183]. They used chimeric
CX3CR1GFP/GFP mice in which ICH was modeled via
the injection of whole blood into the striatum. It was
demonstrated that in this model, CX3CR1 deficiency did
not affect monocyte recruitment, functional recovery, or
immune response manifested as the changes of cytokine
expression levels.

Potential Therapeutic Options

The analysis of the literature shows that the possibility of
linking CX3CL1 and CX3CR1 concentrations with such

Mol Neurobiol (2017) 54:2167–2188 2179



prognostic factors as BBB dysfunction, ICP, and GCS seems
particularly promising in the clinical aspect [156, 159].
Regrettably, the scarcity of studies conducted so far make it
impossible to determine the details of the functional role of
CX3CL1 and CX3CR1 in the pathomechanism of TBI and
SCI and unambiguous qualification of this signaling axis as
neuroprotective or neurotoxic. According to the literature de-
scribing the mouse model of KO CX3CR1GFP/GFP homozy-
gotes, the inhibition of CX3CL1/CX3CR1 axis conduction
contributes to an intensified recruitment of monocytes at the
injury site in the majority of cases, which leads to varied
effects as regards the expression of other cytokines (IL-1β,
IL-6, TNFα) and iNOS. Therefore, scoring and testing bring
heterogeneous results of the cognitive and motor neurological
functions of the evaluated animals. The discrepancies in the
interpretation of study results and a paucity of research on
patients result from differences in the modeling of animal
experiments and the difficulty obtaining uniform patient
groups qualified for the study, because CNS injuries occur
unexpectedly and are a highly heterogeneous group of inju-
ries. The present authors believe that it is necessary to conduct
multicenter research comprising larger patient groups and to
analyze other parameters, such as concomitant inflammatory
diseases or patients’ drug history, which may significantly
contribute to overcoming the difficulty obtaining more reli-
able results. According to the current state of knowledge about
CX3CL1 and CX3CR1 both as regards physiological and
pathological CNS conditions, it is still fundamental and valid
to determine the role of this signaling axis precisely in indi-
vidual medical conditions and to search for a proper

therapeutic approach. It implies a distinct necessity to seek
new types of immunomodulatory therapies. It seems that
inhibiting more than one chemokine signaling axis in TBI,
SCI, and other neuropathologies might have a positive effect
on the specificity of obtained results and provide researchers
with new data concerning the role of chemokines in the CNS
and cells of various immunophenotypes which infiltrate in-
jured neural tissue. Seemingly, a factor which plays a particu-
larly significant role may be the effect on the inflammatory
environment developing at the time of injury via modulating
the microglia cell phenotype in individual phases following
the injury in order to direct the polarization of its activity
toward the neuroprotective aspect [180, 182]. The use of a
selective CX3CR1 antagonist (AZD8797) may be a promis-
ing treatment of TBI and SCI in this case [184, 185].
Moreover, if we bear in mind the fact that the migration of
mesenchymal stem cells (MSCs) is also dependent on
CX3CL1/CX3CR1 axis, then their potential administration,
either intravenously or directly to the cerebral ventricles, with
or without simultaneous inhibition of the CX3CL1/CX3CR1
axis in various periods since the injury, might contribute to the
success of this type of therapy. However, additional research is
necessary [186–191]. Glucocorticoid (GC) administration is
another pharmacological modality in TBI and SCI, which has
been very well-known and commonly used for many years.
However, it is still disputable as regards the effectiveness and
long-term consequences [192–195]. Regarding the influence
of GC on CX3CL1/CX3CR1 axis functioning, it needs to be
emphasized that GC administration may contribute to the re-
duction of mRNA expression both for CX3CL1 and also
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Fig. 4 Overview and summary
of potential CX3CL1/CX3CR1
axis-associated therapeutic
options for management of
traumatic brain and spinal cord
injury. GC glucocorticoids, MSC
mesenchymal stem cells; (+) refer
to activation and (−) to inhibition
of CX3CL1/CX3CR1 axis by
acting on protein expression and
CX3CL1/CX3CR1 interaction
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CX3CR1 [196]. It may be due to the effect of GC on IL-
1β expression level or the activity of NF-κB transcription
factor [196]. In the light of this analysis, it is difficult to
state whether GC modulation of the CX3CL1/CX3CR1
axis is a neuroprotective or neurotoxic therapeutic option
in case of CNS trauma. Regrettably, the effect of GC and
other pharmacological agents on the CX3CL1/CX3CR1
axis in the course of TBI and SCI has not been widely
discussed. A thorough analysis of the role of the
CX3CL1/CX3CR1 axis, particularly in the context of
TBI and SCI, and the possibility of its modulation with
drugs and immunomodulatory treatment may bring tangi-
ble benefits associated with the understanding of this type
of injury and the possibility of comprehensive influence
exerted on the immune response in order to obtain supe-
rior clinical results (Fig. 4).

Conclusions and Future Perspectives

Traumatic CNS injuries pose a significant problem and a chal-
lenge for the modern society due to their multidimensional
character, necessary interdisciplinary approach, and the ab-
sence of efficient treatment options. More and more attention
has been paid to phenomena occurring during the secondary
injury, with a very important element being the local and sys-
temic immune response associated with the migration of im-
mune system cells and the secretion of cytokines and
chemokines. The role of conduction related to the CX3CL1/
CX3CR1 axis, which is analyzed in this paper, has been well-
known in the context of physiological regulation between
neurons and microglia, which confirms its position as one of
the most important neurochemokines. However, its role has
not been widely discussed as regards TBI and SCI. According
to available professional literature, the expression of CX3CL1
and CX3CR1 undergoes dynamic regulation both in the
course of TBI and SCI. The regulation occurs both at the
transcriptional and post-translational levels which results from
the changes in the levels of CX3CL1 and CX3CR1 proteins
and dedicated mRNA transcripts. The general tendency as
regards mRNA expression indicates that CX3CR1 undergoes
regulation to a larger extent than CX3CL1 which seems to be
more dependent on the regulation at the post-translational lev-
el. The post-translational expression of CX3CL1 may be con-
ditioned by the following factors: BBB and BSCB dysfunc-
tion, proteolytic cleavage by ADAM10 and ADAM17 prote-
ases, rapid binding to CX3CR1, and penetrating between
three compartments including the extracellular space, CSF,
and circulating blood [156, 197, 198]. According to the ma-
jority of studies, the significant increase in the expression of
CX3CR1 and its mRNA after an injury may be justified by the
increased monocyte infiltration and increased activity and mi-
gration of microglia (CX3CR1+) and also in the local changes

of the immunophenotype of these cells [162, 164, 178, 199,
200]. Moreover, it needs to be mentioned that there are poten-
tial limitations of fluorescent mouse model which was most
commonly used in studies. The limitations are associated with
the insertion of GFP protein in the CX3CR1 promotor which
leads to haploinsufficiency and the reduced superficial expres-
sion of CX3CR1 in heterozygotes which are commonly used
as control groups [201]. A significant aspect which impedes
the understanding whether the influence of the CX3CL1/
CX3CR1 axis is the same as regards the injuries of the whole
CNS is the fact that there are substantial morphological and
associated neuroinflammatory response differences between
the brain and the spinal cord [46, 202]. It seems that in this
case, the most important factors are the differences in the
quantity, distribution and phenotype of microglia cells, per-
meability of BBB and BSCB after injury, and the quantity of
recruited immune cells [46, 202]. Until now, the analysis of
CX3CL1/CX3CR1 axis properties in other neuropathologies
has not brought an unambiguous answer concerning its posi-
tive or negative consequences. The positive effects may in-
clude CX3CR1 deficiency in the course of ischemic stroke
[203–205]. However, in conditions like Parkinson’s disease
or amyotrophic lateral sclerosis (ALS), CX3CL1 deficiency
is associated with the worst outcome [206, 207]. The analysis
of CX3CR1 deficiency models in Alzheimer’s disease still
leaves some ambiguity [208–210]. The analysis of profes-
sional literature demonstrates that CX3CL1/CX3CR1 axis
is an attractive potential therapeutic target due to its prop-
erties of an inflammatory response regulator, which may
facilitate the introduction of immunomodulatory therapies
that, depending on the needs, may enable selective inten-
sification or inhibition of an inflammatory response in the
course of various neuropathologies with the final aim of
obtaining superior clinical results. Thus, after discussing
the structure and function of CX3CL1/CX3CR1 axis, the
physiological function within the CNS, and its role in the
course of TBI and SCI, it may be stated that in spite of a
variety of existing and available studies, it is still neces-
sary to conduct further multicenter-detailed research to
determine the accurate location of this signaling axis in
the pathogenesis of secondary injury development and,
consequently, to develop new possible therapeutic
methods.
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