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Abstract Bergmann glia (BG), a specific type of radial astro-
cytes in the cerebellum, play a variety of vital functions in the
development of this structure. However, the possible role of
BG in the development of abnormalities observed in individ-
uals with autism spectrum disorder (ASD) seems to be
underestimated. One of the most consistent findings observed
in ASD patients is loss of Purkinje cells (PCs). Such a defect
may be caused by dysregulation of glutamate homeostasis,
which is maintainedmainly by BG.Moreover, these glial cells
are involved in long-term depression (LTD), a form of plas-
ticity which can additionally subserve neuroprotective func-
tions. The aim of presented review is to summarize the current
knowledge about interactions which occur between PC and
BG, with special emphasis on those which are relevant to the
survival and proper functioning of cerebellar neurons.
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Introduction

The cerebellum is well known for its role in motor behavior.
Moreover, there is growing evidence that this part of the brain is
involved in various cognitive and affective processes [1, 2] and

that its dysfunctions may be linked to various psychiatric dis-
orders [3], including autism spectrum disorder (ASD) [4, 5].

The characteristic features of this syndrome such as deficit
in social interactions or hypersensitivity to sensory stimuli [6]
indicate the cerebral cortex as a potential locus of pathology.
Nevertheless, significant anatomical pathology can also be
seen in the cerebellum of ASD patients, including a reduction
in the total volume, atrophy of the folia, [7, 8], and small foci
of dysplasia [9]. Loss of Purkinje cells (PCs), the principal
neurons in the cerebellum, is the most consistent cellular ab-
normality found in ASD [10, 11]. Importantly, this deficit has
not resulted from decreased proliferation but from the loss of
the PC in the later stages of development [12].

Bergmann glia (BG) is a type of radial glia specific for the
cerebellum. While BG somata are localized in the Purkinje
cell layer, their processes form a dense palisade extending
through molecular layer of the cortex. Similar to protoplasmic
astrocytes in other parts of the brain, BG processes cover
synapses on Purkinje neuron dendrites [13], what suggests
its participation in the regulation of synaptic transmission.
Paradoxically, BG is the most ignored population of cerebellar
cells. It is hard to find these cells in the textbook diagrams
depicting the structure of the cerebellar cortex connections.
Although each PC is linked to BG, the number of publications
related to this glia is only 5–6 % of those on PC (according to
Pubmed and Google Scholar search).

In this paper, we will present arguments in favor of the
hypothesis that abnormalities in the interaction between BG
and PC may lead to the emergence of autism spectrum disor-
ders. First of all, we will briefly summarize our knowledge
about the role of BG in the development and maintenance of
the proper functioning of the cerebellum, with particular focus
on glutamatergic transmission. Then, we will discuss the in-
volvement of these cells in long-term depression (LTD). This
phenomenon is usually regarded as a basic mechanism of
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cerebellar-dependent learning; however, it was also proposed
that LTD serves a neuroprotective functions [14]. In the last
part, we consider the possible causes of abnormal interactions
between cerebellar cells and the effects of these anomalies for
the functioning of the entire brain.

Bergmann Glia and Purkinje Cell Interactions

BG play crucial role in regulation of cerebellum develop-
ment—migration, cells’ maturation, and synaptogenesis
[15–20].

On the other hand, BG requires continuous association
with PC for the development of its own normal pheno-
type. For example, the presence of PC is necessary to
maintain high levels of sn-glycerol-3-phosphate dehydro-
genase—an enzyme involved in several metabolic path-
ways including lipid synthesis and energy metabolism
[21]. Dynamic transformation of BG fibers and the ex-
pression of the glutamate transporter (GLAST) correlate
with dendritic outgrowth and synapse formation of cere-
bellar PC [22]. Neuron-derived fibroblast growth factor 9,
neuron-specific Delta/Notch-like EGF-related receptor,
and sonic hedgehog protein are vital for mediating
neuron-glia interaction and promote differentiation of
BG and its GLAST expression [23–26].

Interactions between BG and neurons are very complex.
Tables 1 and 2 present known elements of BG interactome.
List of receptors reveals that these glial cells can react to nu-
merous neurotransmitters, not only for those released by cer-
ebellar neurons. On the other hand, action of BG
gliotransmitters is not limited to PC. However, detailed dis-
cussion on these interactions is beyond the scope of this
article.

Clearing of Glutamate

Causes of PC degeneration in ASD are still not fully under-
stood. One of the most common causes of neuronal death is
elevated extracellular glutamate level [55–57].

EAAT1 (GLAST) and EAAT2 (GLT-1) are astroglial trans-
porters responsible for more than 80 % of total glutamate up-
take in the CNS [58–60]. Reduction of GLAST and GLT-1
expression results in increased extracellular glutamate level
and excitotoxicity leading to severe neurodegeneration [61].

GLAST stands for majority of glutamate transporters in
the cerebellum; its amount is six times higher than GLT-1
and ten times higher than neural glutamate transporter—
EAAT4 [62, 63]. The highest density of GLAST is pre-
sented in BG where it reaches ∼18,000 molecules per μm3

[62, 63]. GLAST-deficient mice present mild motor
discoordination and increased cerebellar damage after cer-
ebellar injury [64]. Lack of this transporter affects also PC
innervation pattern, resulting in higher number of PC

multiply innervated by climbing fibers (CF) in compari-
son to the wild-type mice [64]. Pharmacological blockade
of these transporters prolongs PC α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR)-me-
diated excitatory postsynaptic current (EPSC) after both
CF and parallel fiber (PF) stimulation and favors gluta-
mate spillover into neighboring synapses [65]. Those ob-
servations indicate that GLAST plays an essential role in

Table 1 Bergmann glia receptors

Agonist Bergmann glia receptors References

Glutamate Ca2+-permeable AMPAR,
mGluR1, mGluR5

[27]

Purines P2Y, P2X7 [28]

Serotonin 5-HT2A [29]

Noradrenaline α1A [30]

Histamine H1 [31]

Acetylcholine M2 [32]

GABA GABAA, GABAB [33]

CRF CRF-R1, CRF-R2α [34]

Endothelin ETB [35]

T3 TRα1 [36]

BDNF TrkB [37]

Angiotensin II AT1R [38]

VEGFR VEGFR-3 [39]

HGF c-Met-IR [40]

CGRP CGRPR [41]

Pathogen-associated
molecules

Toll-like receptor 3 [42]

Melatonin MT2 [43]

Chemokines CCR1 [44]

PTN PTPζ [45]

Delta Notch1, Notch2 [25, 46]
Delta-like 1

DNER

FGF FGFR1 [47]

Shh ShhR [24]

Table 2 Substances
released from Bergmann
glia

Substances released
from Bergmann glia

References

D-Serine [48]

L-Glutamate [49]

L-Glycine [50]

GABA [51]

Taurine [52]

S100B [53]

PTN [45]

Gdf10 [24]

Il-1β [54]
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establishing morphological and functional one-to-one re-
lationship between CF and PC [66].

Despite the fact that GLAST expression is sixfold higher
than GLT-1 [63], GLAST knockout mice exhibit only minor
motor discoordination [64] and reveal no significant alteration
of CF-mediated EPSC in PC [67, 68]. Also, deletion of GLT-1
alone does not significantly affect cerebellar development
[69]. However, knockout of both GLAST and GLT-1 disrupts
cerebellar folium formation and results in prenatal death [70,
71]. This raises a possibility that GLT-1 may compensate for
the downregulation or loss of the GLAST [71].

GLAST in Direct Intracellular Signaling

GLAST may play an active role in direct intracellular signal-
ing. In cultures of chick BG, glutamate triggers two temporal-
ly separated pathways affecting GLAST functions. In the “ear-
ly” pathway, glutamate uptake by GLAST activation triggers
Na+ influx that stimulates Na+/Ca2+ exchanger resulting in
Ca2+ influx. This process leads to inhibition of GLAST trans-
lation (through mTOR pathway) and to downregulation
GLAST expression in plasma membrane (through cytoskele-
tal re-arrangements). In the “late” pathway, glutamate binding
to its receptors downregulates GLAST transcription in Ca2+/
PKC-dependent manner [72].

What is intriguing in these findings is that glutamate action
leads to downregulation of its own transporters, resulting in an
inhibition of anti-excitotoxic system. The BG reaction to glu-
tamate appears to be different to that observed in astrocytes, in
which glutamate upregulates GLAST activity [73, 74].
However, these observations should be confirmed with further
studies, at least in mixed cultures in which BG would be in
contact with neural cells.

AMPAR on BG

BG is involved in glutamate signaling not only by glutamate
transporters but also by its expression of Ca2+-permeable
AMPAR. This type of AMPA receptors contains GluA1 and
GluA4 subunits. In the adult cerebellum, GluA1 subunit is
exclusively localized to BG [75]. Conversion of those recep-
tors into Ca2+-impermeable type by delivery of GluA2 gene
results in retraction of the glial processes from PC. Retraction
of the glial processes (with its glutamate transporters) results
in increase in the distance between PC and BG membranes.
This leads to similar consequences as GLAST (−/−) mutation
inmicemodel: multiple innervation of PC byCF and impaired
uptake of glutamate in both CF and PF synapses [76].
Consistently, overexpression of calcium-permeable AMPAR
resulted in elongation of processes [77]. Further in vivo stud-
ies confirmed that mice knockout for AMPAR revealed sim-
ilar retraction of BG processes and altered clearance of gluta-
mate resulting in disrupted duration and decay of PF-evoked

PC EPSCs. Furthermore, mice showed deficits in motor func-
tions and motor learning [78].

Activation of AMPAR inhibits K+ conductance of the glia
[79] likely due to the inhibition of gap junctional coupling
[80]. In cultured chick cerebellar BG, AMPAR has also been
shown to participate in downregulating transcription of
GLAST [81].

Importantly, BGAMPAR are not activated “classically” by
glutamate spillover from synaptic cleft but through specially
dedicated extrasynaptic release sites (Fig. 1) [82–84], which
exhibit a form of frequency-dependent plasticity due to the
lack of fast vesicle recycling mechanism. Thus, during repet-
itive stimulation, exhaustible pool of vesicles in ectopic sites
become depleted, resulting in the lack of glutamate released
into BG-enriched AMPAR sites (Fig. 1) [85]. Repetitive stim-
ulation of CF or PF at 0.1–1 Hz results in “long-term depres-
sion of neuron to glia transmission,” reducing Ca2+ currents in
BG. This depression becomes persistent when PF stimulation
reaches more than a few minutes, leading to inhibition of
AMPAR Ca2+ currents [86]. This plasticity is not only
activity-dependent but also input-specific because CF and
PF inputs can be independently depressed [86].

Cerebellar Long-Term Depression

LTD refers to the long-term attenuation of neurotransmission
within the synapse after prolonged stimulation with an appro-
priate pattern. In the cerebellum, LTD occurs at excitatory
synapses between PC and PF. Single PC receives excitatory
glutamatergic input from hundreds of PF and from one CF.
LTD is induced by simultaneous and repetitive stimulation
from parallel and CF or by particular input from PF alone
[87, 88]. LTD is expressed as long-term attenuation of gluta-
matergic transmission in PF-PC synapses by internalization of
AMPAR in PC [87].

In 1997, Llinas et al. [14] proposed that LTD does not
reflect motor learning process but a neuroprotective function
defending PC from Ca2+ mediated excitotoxicity. One PC
forms approximately 500 glutamatergic synapses with one
CF [89] and up to 200,000 with PF [90], which situate PC at
constant risk of Ca2+ influx from permanent synaptic bom-
bardment. Overwhelming intracellular Ca2+ elevation leads
to PC death or damage of its dendritic arbor. LTD occurs as
a result of excessive excitation of PC and through the rise of
intracellular Ca2+ leads to PKC activation, phosphorylation of
AMPAR, and its internalization [14, 87]. Thus, LTD results in
decreased responsiveness of PC to further glutamate stimula-
tion [14]. However, this alternative view of LTD as a damage
control mechanism did not achieve adequate attention.
Despite experiments indicating that cerebellum-dependent
learning such as eyeblink conditioning can actually be per-
formed in mouse models lacking of LTD [91, 92], this
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phenomenon is still regarded mainly as a cellular substrate of
cerebellar motor learning [93].

Shibuki et al. [94] demonstrated one of the first pieces of
evidence that LTD requires BG, using mice devoid of glial
fibrillary acidic protein (GFAP). This cytoskeletal protein is
highly expressed in BG [94]. GFAP-deficient mice present
impaired cerebellar LTD. This abnormality was not related
to changes in synapse number or shape, altered protein expres-
sion, impairments in transmission of PF and CF, nor alter-
ations in BG morphology [94]. The results indicated GFAP
as a significant factor, needed for proper communication be-
tween BG and PC, enabling occurrence of LTD. GFAP may
affect glutamatergic signaling because GFAP-null mice pre-
sented upregulation of both total and synaptosomal levels of
EAAT2 protein in cerebellum [95]. It has been proposed that
increased EAAT2 expression may limit LTD response by fa-
cilitating uptake of glutamate [95].

Importantly, stimulation of CF and PF at 1 Hz in order
to evoke LTD in PC resulted in long-term depression of
AMPAR currents in BG from both inputs [86]. Thus,

during LTD, BG AMPAR is probably paradoxically cut
off from their main source of glutamate. So, if the mech-
anism of AMPAR-derived downregulation of GLAST also
exists in vivo, this would mean that during LTD, this
process will be inhibited. This inhibition would avoid ini-
tiating GLAST reduction during states that threaten
excitotoxicity and favor signaling involved in GLAST up-
regulation. Consistently, Balakrishnan et al. [85] suggests
that glutamate is released from ectopic sites of fibers
which are firing unusually slowly. Those fibers alert BG
through AMPAR, resulting in encompassing of those
faulty connections by BG processes. Probably, GLAST
downregulation occurs in those synapses leading to
strengthening of glutamate transmission.

Another mechanism involved in BG AMPAR regulation
relies on the control of neuronal glutamate transporter,
EAAT4, which represents one of the smallest fraction of glu-
tamate transporters in cerebellum [63]. EAAT4 are expressed
in PC, with the highest density in the dendritic and spine
membranes facing BG (Fig. 1) [96]. EAAT4 is likely to affect

Fig. 1 Bergmann glia
interactions
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extrasynaptic but not synaptic glutamate concentration [97].
Interestingly, higher expression of EAAT4 is inversely corre-
lated with a degree of BG AMPAR activation after PF stimu-
lation [97]. This could result in different BG AMPAR activa-
tion in regions with high or low expression of EAAT4, leading
to differences in the level of encompassing PC synapses by
BG processes in those regions [97]. This could affect regional
differences in innervation of PC by CF, and GLAST regula-
tion, which can correspond with the fact that variations in
EAAT4 expression contribute to PC vulnerability to
excitotoxic death [98]. The role of EAAT4 in regulating the
structure of BG processes is enforced by the observation that
in mice, its expression rises after birth, reaching maximum at
the third week of age which corresponds to the time of matu-
ration of BG ensheathment to PC synapses [97]. Additionally,
EAAT4 are expressed closely to PCs’ mGluR1 receptors,
which are crucial for LTD [99]. It has been shown that inhibi-
tion of EAAT4 facilitates cerebellar synaptic LTD, indicating
its important role in plasticity [100].

Sasaki et al. [49] showed that the role of BG in LTD
may be far more active than we thought. Photostimulation
of BG in transgenic mice expressing channelrhodopsin-2
specifically in those cells resulted in an increase in extra-
cellular K+, release of glutamate, and inducing LTD at PF-
PC synapses. Glutamate released from BG activated
mGluR1 on PC [49], which is essential for inducing this
form of synaptic plasticity [101]. Processes of BG are
located immediately adjacent to the mGluR1 on PC
(Fig. 1) in the areas highly protected by neuronal gluta-
mate transporters [102]. This arrangement raises a possi-
bility that summation of glutamate from neuronal spill-
over and glial release may be required to overcome this
protection to activate the mGluR1 [49] and enables gluta-
mate originating from glia to act safer, by more direct
action on the specific area covered with those receptors.
A fact that stimulation of BG was sufficient factor to
evoke LTD emphasizes important role of this cell in
LTD and cerebellar functions.

PCs have specific orphan receptors GRID2 (δ2 gluta-
mate receptor, GluD2). Mutations in GRID2 gene were
associated with ASD [103] (Table 3). These receptors
are necessary for induction of LTD in the cerebellum
(but not in the other parts of brain) [118]. Despite its
name, GRID2 does not actually bind glutamate.
Kakegawa and coworkers [119] have shown that D-
serine may be an endogenous ligand for these receptors.
It is derived mainly from BG after burst stimulation of PF
in immature cerebellum [119]. Glutamate has been shown
to activate BG serine racemase (which converts L-serine
to D-serine) through AMPA receptors via glutamate
receptor-interacting protein (GRIP) [120]. GRIP binds to
serine racemase, enhancing its activity and release of D-
serine [120]. Activation of GRID2 by D-serine results in

rapid endocytosis of AMPA receptors and depressed ex-
citatory postsynaptic currents in PC [119]. This process
may stand for additional neuroprotective mechanism in-
ducing LTD during early postnatal period.

Bergmann Glia and ASD

Reviewed studies indicate that BG is an important element of
the system responsible in evoking LTD. Since BG functions
and its participation in LTD exhibit neuroprotective effects,
dysfunction of this system may contribute to development of
various pathologies, including, inter alia, ASD.

Vulnerability of PC cells has been proposed to play a role
in the etiology of ASD [57]. The hypothesis that dysregulation
of glutamate transporters is one of the leading causes of neu-
ronal dysfunction in those patients [56] corresponds with clin-
ical observations which have shown that glutamate antago-
nists may reduce autistic symptoms [121]. ASD patients show
that increased blood glutamate level correlated positively with
increased glutamate level in the left cerebellum [122]. Several
glutamate neurotransmitter system abnormalities have been
found in cerebellum of individuals with ASD. Glutamic acid
decarboxylase 65 and 67 kDa, the enzymes that catalyze de-
carboxylation of glutamate to GABA are significantly reduced
in cerebellum and parietal cortex of ASD patients [123].
Postmortem samples revealed increased levels of EAAT1
and 2. Interestingly, EAAT1 protein increased threefold in
autism cerebellum compared with controls. Those changes
may reflect reaction due to elevated extracellular glutamate
concentration. Furthermore, patients with ASD revealed sig-
nificantly decreased level of AMPAR density, despite in-
creased messenger RNA (mRNA) of GluA1. Those alter-
ations may be associated with increased levels of proteins
associated with AMPAR: GRIP and protein of band 4.1N
[55].

4.1N and GluA1 reveal similar spatiotemporal pattern of
expression. Both proteins are colocalized in intracellular or-
ganelles and cytoskeleton of BG [75], and they may form
trimeric complex to regulate AMPAR localization and immo-
bilization [75, 124]. Expression of 4.1N in BG becomes de-
tectable when BG wraps PC [75]. A possible interpretation of
this observation is that despite a global decrease in AMPAR
density in ASD cerebellum, upregulated 4.1N and GluA1may
represent specific increase of AMPAR in BG.

Studies concerning participation of glia in cerebellar pa-
thology in autism are scarce. Some of them indicate absence
of glial hyperplasia [125, 126]; others reveal the presence of
slight Bergmann gliosis and increase in GFAP level [127,
128]. Purcell et al. [55] identified increase in GFAP mRNA
in patients’ cerebellum. Recent study reports over twofold
higher expression of GFAP in cerebellum of individuals with
ASD than in healthy controls providing evidence for astroglial
reaction [129]. GFAP level has been found to be three times
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higher in cerebrospinal fluid (CSF) of ASD patients in com-
parison to healthy controls [130]. Additionally, increased in-
cidence of GFAP autoantibodies was found in ASD [128].
Due the fact that GFAP seems to be associated with regulation
of glutamate transporters, it is likely that dysregulation
of GFAP expression may contribute to glutamate system
abnormalities [95].

Also, a decrease in astrocytic aquaporin 4 (AQP4), a trans-
membrane water channel protein, has been reported in cere-
bellum of autistic patients [131]. It has been shown that this
protein is crucial for recently described mechanism of brain
parenchyma clearance (so-called glymphatic system [132]).
According to experiments of Illif et al. [132], cerebrospinal
fluid enters the parenchyma along perivascular spaces that
surround penetrating arteries. Knockout in Aqp4 gene results
in ∼70 % reduction in efficiency of this mechanism [132].
Thus, it is possible that decreased aquaporin 4 in cerebella of
ASD patients may contribute to disrupted interstitial solute
clearance in this brain region, alternating extracellular levels
of substances involved in neurotoxicity.

Transcriptional profiling of BG [117] revealed that those
cells express several genes associated with ASD (Table 3).
Many of them are directly or indirectly connected to gluta-
matergic transmission.

One of them is adenomatous polyposis coli (APC) gene,
coding a multifunctional protein widely expressed in neurons
and glial cells throughout the brain. APC protein is involved
in plethora of processes, such as regulation of axon outgrowth,
neuronal differentiation, and radial glial polarity [133]. Its
heterozygous deletion or polymorphism is associated with
ASD [106, 134]. APC protein regulates, among others, the
canonical Wnt/beta-catenin signaling pathway [135], which
seems to be involved in development and maturation of BG,
which occurs simultaneously with PC dendritogenesis and
synaptogenesis [136]. It is worth mentioning that mutations
in CTNNB1 (beta-catenin) or WNT genes also are linked to
this disease [137, 138].

Insight on the role of APC in the cerebellum was brought
byWang et al. [133] who proved the crucial and selective role
of this protein in maintaining the morphology and function of
BG. Mice in which APC gene was inactivated in GFAP-
expressing cells showed marked abnormalities in BG mor-
phology (but not in astrocytes in other parts of the brain).
Since then, radial fibers of BG shortened significantly with a
marked reduction of branching collaterals. BG bodies
translocated into the molecular layer, loss the contact with
the pia, and transformed into stellate-shaped cells. During
middle age, PC loss was significant, especially in lobules
VI, VII, and VIII where disruption of BG morphology was
most severe (which actually overlap with the most disrupted
lobules in neuropathology of autism [10]). Wang et al. [133]
suppose that degeneration of PC is caused by deprivation of
glial control of glutamate clearance.

Anomalies in BG found in mouse models are similar to
those reported in study of Wegiel et al. [9]. In some of the
autistic brains, they observed dispersion of BG somata within
the molecular layer and total loss of its vertical fibers.
Morphologically, these cells were similar to cortical astro-
cytes. Simultaneously, underdevelopment of PCwas observed
in dysplastic regions. Unfortunately, the genetic background
of analyzed cases was not determined in this study. As far as
we know, there is no postmortem studies evaluating BG in
humans with disrupted APC.

Conclusions

Autism spectrum disorder can be caused by a variety of ge-
netic and environmental factors, which concomitant action
results in structural and functional abnormalities in various
parts of the brain. In the cerebellum, the most marked patho-
logical changes seen are underdevelopment or degeneration of
PC. We have presented above data pointing to the hypothesis
that abnormalities in PC can be caused by lack of appropriate
support from BG. Like astrocytes, BG can protect PC from
excitotoxicity by the clearance of glutamate. Moreover, cere-
bellar LTD (seen as a neuroprotective mechanism) requires
BG to occur. Recent findings which revealed that disruption
of BG functions leads to PC degeneration indicate a previous-
ly overlooked causative mechanism for ASD phenotypes. We
suppose that therapies targeting BG can be efficient for
treating some pathological features of ASD.
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