Skip to main content

Advertisement

Log in

Therapeutic Intervention of Learning and Memory Decays by Salidroside Stimulation of Neurogenesis in Aging

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cognition in all mammals including human beings declines during aging. The cellular events responsible for this decay involve a reduction of neurogenesis in the dentate gyrus. Here, we show that treatment with a nature product from a traditional Chinese medicine, namely salidroside restores the capacity of the dentate gyrus to generate new neurons and intercepts learning and memory decays in mice during aging. We uncover that new neurons in aging mice have functional features of an adult granule neuron by forming excitatory synapses with their putative targeting neurons. Genetic inhibition of synaptic transmission from new neurons abolishes the therapeutic effects of salidroside in behavioral tests. We also identify that salidroside targets CREB transcription for the survival of new neurons in the dentate gyrus of old mice. Thus, salidroside is therapeutically effective against learning and memory decays via stimulation of CREB-dependent functional neurogenesis in aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mattson MP, Chan SL, Duan W (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 82(3):637–672. doi:10.1152/physrev.00004.2002

    Article  CAS  PubMed  Google Scholar 

  2. Goldman SA (2004) Directed mobilization of endogenous neural progenitor cells: the intersection of stem cell biology and gene therapy. Curr Opin Mol Ther 6(5):466–472

    PubMed  Google Scholar 

  3. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317. doi:10.1038/3305

    Article  CAS  PubMed  Google Scholar 

  4. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. doi:10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  5. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):1219–1227. doi:10.1016/j.cell.2013.05.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034. doi:10.1038/4151030a

    Article  PubMed  Google Scholar 

  7. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, Schinder AF (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11(8):901–907. doi:10.1038/nn.2156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Vivar C, Potter MC, Choi J, Lee JY, Stringer TP, Callaway EM, Gage FH, Suh H, van Praag H (2012) Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun 3:1107. doi:10.1038/ncomms2101

    Article  PubMed Central  PubMed  Google Scholar 

  9. Deshpande A, Bergami M, Ghanem A, Conzelmann KK, Lepier A, Gotz M, Berninger B (2013) Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci U S A 110(12):E1152–1161. doi:10.1073/pnas.1218991110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14(2):186–191. doi:10.1016/j.conb.2004.03.001

    Article  CAS  PubMed  Google Scholar 

  11. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science (New York) 325(5937):210–213. doi:10.1126/science.1173215

    Article  CAS  Google Scholar 

  12. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472(7344):466–470. doi:10.1038/nature09817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Rodriguez Barrera V, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1):188–201. doi:10.1016/j.cell.2012.01.046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Alonso M, Lepousez G, Sebastien W, Bardy C, Gabellec MM, Torquet N, Lledo PM (2012) Activation of adult-born neurons facilitates learning and memory. Nat Neurosci 15(6):897–904. doi:10.1038/nn.3108

    Article  CAS  PubMed  Google Scholar 

  15. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95(6):3168–3171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476(7361):458–461. doi:10.1038/nature10287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kheirbek MA, Klemenhagen KC, Sahay A, Hen R (2012) Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 15(12):1613–1620. doi:10.1038/nn.3262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science (New York) 301(5634):805–809. doi:10.1126/science.1083328

    Article  CAS  Google Scholar 

  19. Eisch AJ, Petrik D (2012) Depression and hippocampal neurogenesis: a road to remission? Science (New York) 338(6103):72–75. doi:10.1126/science.1222941

    Article  CAS  Google Scholar 

  20. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130(6):1146–1158. doi:10.1016/j.cell.2007.07.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kim JY, Liu CY, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott JH, Weinberger DR, Song H, Ming GL (2012) Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148(5):1051–1064. doi:10.1016/j.cell.2011.12.037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lee SW, Clemenson GD, Gage FH (2012) New neurons in an aged brain. Behav Brain Res 227(2):497–507. doi:10.1016/j.bbr.2011.10.009

    Article  PubMed Central  PubMed  Google Scholar 

  23. Cameron HA, McKay RD (1999) Restoring production of hippocampal neurons in old age. Nat Neurosci 2(10):894–897. doi:10.1038/13197

    Article  CAS  PubMed  Google Scholar 

  24. Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2003) Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A 100(24):14385–14390. doi:10.1073/pnas.2334169100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bizon JL, Lee HJ, Gallagher M (2004) Neurogenesis in a rat model of age-related cognitive decline. Aging Cell 3(4):227–234. doi:10.1111/j.1474-9728.2004.00099.x

    Article  CAS  PubMed  Google Scholar 

  26. van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci Off J Soc Neuroscie 25(38):8680–8685. doi:10.1523/JNEUROSCI. 1731-05.2005

    Article  Google Scholar 

  27. Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS (1999) Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol 39(4):569–578

    Article  CAS  PubMed  Google Scholar 

  28. Tang Y, Vater C, Jacobi A, Liebers C, Zou X, Stiehler M (2014) Salidroside exerts angiogenic and cytoprotective effects on human bone marrow-derived endothelial progenitor cells via Akt/mTOR/p70S6K and MAPK signalling pathways. Br J Pharmacol 171(9):2440–2456. doi:10.1111/bph.12611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Zhang JK, Yang L, Meng GL, Yuan Z, Fan J, Li D, Chen JZ, Shi TY, Hu HM, Wei BY, Luo ZJ, Liu J (2013) Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One 8(2):e57251. doi:10.1371/journal.pone.0057251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Chen SF, Tsai HJ, Hung TH, Chen CC, Lee CY, Wu CH, Wang PY, Liao NC (2012) Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One 7(9):e45763. doi:10.1371/journal.pone.0045763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Sheng QS, Wang ZJ, Zhang J, Zhang YG (2013) Salidroside promotes peripheral nerve regeneration following crush injury to the sciatic nerve in rats. Neuroreport 24(5):217–223. doi:10.1097/WNR.0b013e32835eb867

    Article  PubMed  Google Scholar 

  32. Qu ZQ, Zhou Y, Zeng YS, Lin YK, Li Y, Zhong ZQ, Chan WY (2012) Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One 7(1):e29641. doi:10.1371/journal.pone.0029641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467(1):1–10. doi:10.1002/cne.10874

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Zhen YF, Pu Bu Ci R, Song LG, Kong WN, Shao TM, Li X, Chai XQ (2013) Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus. Behav Brain Res 244:70–81. doi:10.1016/j.bbr.2013.01.037

    Article  CAS  PubMed  Google Scholar 

  35. Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ (2010) Running enhances spatial pattern separation in mice. Proc Natl Acad Sci U S A 107(5):2367–2372. doi:10.1073/pnas.0911725107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Malenka RC (2003) The long-term potential of LTP. Nat Rev Neurosci 4(11):923–926. doi:10.1038/nrn1258

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto M, Wada N, Kitabatake Y, Watanabe D, Anzai M, Yokoyama M, Teranishi Y, Nakanishi S (2003) Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J Neurosci Off J Soc Neuroscie 23(17):6759–6767

    CAS  Google Scholar 

  38. Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC, Kavalali ET (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science (New York) 294(5544):1117–1122. doi:10.1126/science.1064335

    Article  CAS  Google Scholar 

  39. Yang EJ, Ahn YS, Chung KC (2001) Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J Biol Chem 276(43):39819–39824. doi:10.1074/jbc.M104091200

    Article  CAS  PubMed  Google Scholar 

  40. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250. doi:10.1146/annurev.neuro.28.051804.101459

    Article  CAS  PubMed  Google Scholar 

  41. Hattiangady B, Rao MS, Shetty GA, Shetty AK (2005) Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol 195(2):353–371. doi:10.1016/j.expneurol.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  42. Zhu DY, Lau L, Liu SH, Wei JS, Lu YM (2004) Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 101(25):9453–9457. doi:10.1073/pnas.0401063101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nakagawa S, Kim JE, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman RS (2002) Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci Off J Soc Neuroscie 22(22):9868–9876

    CAS  Google Scholar 

  44. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12(5):578–584. doi:10.1002/hipo.10103

    Article  PubMed Central  PubMed  Google Scholar 

  45. Merrill DA, Karim R, Darraq M, Chiba AA, Tuszynski MH (2003) Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. J Comp Neurol 459(2):201–207. doi:10.1002/cne.10616

    Article  PubMed  Google Scholar 

  46. Kempermann G, Kuhn HG, Gage FH (1997) Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci U S A 94(19):10409–10414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Tashiro A, Makino H, Gage FH (2007) Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci Off J Soc Neuroscie 27(12):3252–3259. doi:10.1523/JNEUROSCI. 4941-06.2007

    Article  CAS  Google Scholar 

  48. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci Off J Soc Neuroscie 16(6):2027–2033

    CAS  Google Scholar 

  49. Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52(2):135–143. doi:10.1002/ana.10262

    Article  PubMed  Google Scholar 

  50. Wang J, Liu S, Fu Y, Wang JH, Lu Y (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6(10):1039–1047. doi:10.1038/nn1119

    Article  CAS  PubMed  Google Scholar 

  51. Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS, Fu Y, Liu F, Lu Y (2004) Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43(1):43–55. doi:10.1016/j.neuron.2004.06.017

    Article  PubMed  Google Scholar 

  52. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M, Jia N, Lew F, Chan SL, Chen Y, Lu Y (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234. doi:10.1016/j.cell.2009.12.055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Yang Y, Shu X, Liu D, Shang Y, Wu Y, Pei L, Xu X, Tian Q, Zhang J, Qian K, Wang YX, Petralia RS, Tu W, Zhu LQ, Wang JZ, Lu Y (2012) EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. Neuron 73(4):774–788. doi:10.1016/j.neuron.2012.02.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Guo W, Allan AM, Zong R, Zhang L, Johnson EB, Schaller EG, Murthy AC, Goggin SL, Eisch AJ, Oostra BA, Nelson DL, Jin P, Zhao X (2011) Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat Med 17(5):559–565. doi:10.1038/nm.2336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors greatly thank Ping Zhang (HUST) for drug treatments and Ling-Qiang Zhu (HUST) for the comments on this manuscript. This work was supported by the National Natural Science Foundation of China (81130079 YL, 91232302 YL, 81301165 HJ) and China Postdoctoral Science Foundation (2014M552047 HJ).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Wang or Youming Lu.

Additional information

Huijuan Jin, Lei Pei, and Xiaogang Shu contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Pei, L., Shu, X. et al. Therapeutic Intervention of Learning and Memory Decays by Salidroside Stimulation of Neurogenesis in Aging. Mol Neurobiol 53, 851–866 (2016). https://doi.org/10.1007/s12035-014-9045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9045-6

Keywords

Navigation