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Abstract Despite advances in our knowledge about glioblas-
tomamultiforme (GBM) pathology, clinical challenges still lie
ahead with respect to treatment in GBM due to high preva-
lence, poor prognosis, and frequent tumor relapse. The impli-
cation of microRNAs (miRNAs) in GBM is a rapidly
expanding field of research with the aim to develop more
targeted molecular therapies. This review aims to present a
comprehensive overview of all the available literature, evalu-
ating miRNA signatures as a function of prognosis and sur-
vival in GBM. The results are presented with a focus on
studies derived from clinical data in databases and indepen-
dent tissue cohorts where smaller samples sizes were investi-
gated. Here, miRNA associated to longer survival (protective)
and miRNAwith shorter survival (risk-associated) have been
identified and their signatures based on different prognostic
attributes are described. Finally, miRNAs associated with
disease progression or survival in several studies are identified
and functionally described. These miRNAs may be valuable
for future determination of patient prognosis and could possi-
bly serve as targets for miRNA-based therapies, which hold a
great potential in the treatment of this severe malignant
disease.
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Introduction

Glioblastoma multiforme (GBM) is a severe type of brain
cancer characterized by its large growth potential and very
poor clinical outcome. It is one of the most aggressive and
incurable types of cancer reflected in a median survival of less
than 1 year of all GBM cases and a 5-year survival rate of less
than 5% [1, 2]. GBM affects 2–3 per 100,000 persons per year
making it a rare type of cancer, but still, it accounts for 16% of
all brain tumors and 54 % of all clinically diagnosed gliomas
in the USA [2]. The clinical presentation of GBM depends on
the location of the tumors and generally involves focal neuro-
logical deficits, headaches, and seizures. Tumors are most
commonly found in the frontal lobes of the supratentorial
compartments; however, they are not restricted to these areas,
as illustrated by GBM tumors found in other parts of the
central nervous system (CNS), such as the spinal cord and
brainstem [3].

GBM can be subdivided into de novo-occurring tumors,
termed primary GBM, or tumors developed from lower-grade
astrocytomas, termed secondary GBM. The most prominent
occurring subtype of GBM is the primary tumors. These
tumors are often characterized by amplification or overexpres-
sion of the epidermal growth factor receptor (EGFR) (40–
60 % of all primary GBM tumors) combined with genetic
alterations in the EGFR gene, which results in mutated forms
of this receptor [1]. This is opposed to secondary GBM, which
is characterized by progressive addition of mutations in p53,
platelet-derived growth factor receptor, and the retinoblastoma
gene [4–6]. Nevertheless, this distinctive division ofmutations
into the different GBM subtypes is not definitive [3].

Determination of disease prognosis is most often based on
histological classification combined with information on pa-
tient age and tumor size and location. These factors have all
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been defined as indicators of patient survival and treatment
outcome, but due to the sustained poor overall survival of
GBM patients, new arrays of prognostic indicators have been
requested to aid in the clinical decision making [1]. In recent
years, several molecular biomarkers have been characterized
including chromosomal aberrations, methylation status of the
methyl guanine methyl transferase (MGMT) promoter, muta-
tions in important genes (isocitrate dehydrogenase 1 (IDH1),
EGFR, and p53), and dysregulation of microRNAs [7]. Loss
of heterozygosity in chromosomes 9p and 10q is associated
with decreased survival, while co-deletion of 1p and 19q
correlates with better treatment response and longer survival
[7]. Hypermethylation of the MGMT promoter leads to lower
expression levels of MGMT, which sensitizes GBM tumors to
chemotherapeutic treatment and thus is associated with a
significantly better patient outcome [8, 9]. Improvement of
the disease condition is also observed in patients with muta-
tion in the IDH1 gene, which is most often found in secondary
GBM. Furthermore, the expressional profile of specific
microRNA signatures also correlates with overall survival,
time to progression, and treatment success [10–12].

The Fundamentals of MicroRNAs

MicroRNA (miRNA) is a class of non-coding single-stranded
RNA comprised of approximately 22 nucleotides with the
ab i l i ty to nega t ive ly regu la te gene express ion
posttranscriptionally [13, 14]. miRNAs bind to the 3′ untrans-
lated regions (UTRs), and sometimes 5′UTRs, of their

messenger RNA (mRNA) targets, to which they exhibit im-
perfect complementarity, hence, enabling one miRNA to in-
hibit translation of multiple genes [15, 16]. The first miRNA
was discovered in 1993 in Caenorhabditis elegans and denot-
ed lin-4 [17]. Later, upon the discovery of let-7, found to be
conserved in several species, miRNA regulation was recog-
nized as an omnipresent phenomenon in eukaryotic organisms
[18, 19]. miRNAs are acknowledged as crucial micro-
modulators of normal cellular homeostasis, and accordingly,
dysregulation of miRNAs have been associated with a wide
range of pathological conditions, such as cancer [20], cardio-
vascular disease [21, 22], and autoimmune [23] and neurode-
generative disorders [24]. Expression of miRNAs in patho-
logical specimens or biofluids, compared to non-pathologic
samples, is subject to great scientific efforts [25]. This poses
interesting perspectives in terms of novel diagnostic and prog-
nostic approaches and is inherently the initial step in
uncovering the role of individual miRNAs in the context of
different diseases, eventually paving the way for novel
miRNA-based therapies.

MicroRNA Biogenesis

To understand the context of miRNA as a potential prognostic
tool in patients with GBM, the essential steps in the biogenesis
of miRNAs and the modes by which they exert their repres-
sion on downstream targets are summarized (see Fig. 1).

The linear biogenesis of miRNA begins with the transcrip-
tion of miRNA genes by RNA polymerase II/III, giving rise to

Fig. 1 The biogenesis of miRNA requires RNA polymerase II/III for the
transcription of pri-miRNA. The pri-miRNA product is then cleaved by
the Drosha-DGCR8 complex into pre-miRNA. The pre-miRNA is
exported to the cytoplasm by Exportin-5 in the presence of Ran-GTP
co-factor. Once in the cytoplasm, the pre-miRNA is cleaved by the Dicer-
TRBP complex into a miRNA duplex, which is unwound into two
products: a guide strand bound to Ago2, which is incorporated into the

RISC, and a passenger strand, which is degraded. Finally, the miRNA
binds to its target mRNAs resulting in mRNA target cleavage, transla-
tional repression, or mRNA decay. A more novel fate of the miRNAs is
the selective secretion via microvesicles or exosomes. Ran=Ras-related
nuclear protein; GTP=guanosine-5′-triphosphate; TRBP=TAR (HIV-1)
RNA binding protein; Ago2=Argonaute protein 2; RISC=RNA-induced
silencing complex
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a primary transcript called pri-miRNA, which is subsequently
polyadenylated and capped. The transcript then folds into a
hairpin-loop structure via intrastrand base-pairing [26]. This
structure is cleaved by the Drosha/DGCR8 complex to be-
come pre-miRNA and transported out of the nucleus by
Exportin-5 in a Ran-GTP-dependent process [27]. In the cell
cytoplasm, the RNAse-III enzyme known as Dicer cleaves the
pre-miRNA of which only one strand (known as guide strand)
is incorporated into the RNA-induced silencing complex
(RISC), the cytoplasmic effector machine of miRNA. The
passenger strand is subsequently degraded [28]. The RISC is
comprised of Dicer, double-stranded RNA-binding factor, and
Argonaut protein 2 (Ago2). The posttranscriptional RNA
silencing is facilitated via imperfect complementary binding
of miRNA attached to RISC, to the respective mRNA 3′UTR,
resulting in translational inhibition [29]. Additionally,
miRNAs are selectively excreted via lipoproteins or
microvesicles, potentially functioning as a mode of intercel-
lular communication. This last notion is important in relation
to the nature of sampling material in the sense that plasma
miRNA patterns might be a useful diagnostic and/or prognos-
tic marker of ongoing pathological processes [30, 31]. For a
more comprehensive review of miRNA biogenesis, please
refer to Winter et al. [26].

MicroRNA Expression in Glioblastoma Multiforme

miRNAs can be regarded as cancer biomarkers when their
variation in expression identifies the cancerous state. To date,
almost all tumor tissue analyzed by miRNA profiling has
provided distinct miRNA profiles compared to normal tissue
[32]. These differential profiles can be further associated with
prognostic factors and disease progression [33–35]. In GBM,
the number of studies pertaining to miRNA expression and
functional characterization has grown and miRNA signatures
are refining GBM classification, differentiating between the
different grades and stages, providing key regulatory links to
disrupted signaling pathways such as those facilitating cell
growth. This has lead to a more in depth understanding about
GBM pathology [36].

Early studies show that miRNA expression in tumor sam-
ples seems lower, and this could be a function of cellular
differentiation status [32, 37]. It appears that the most com-
mon dysregulation of miRNA in GBM is observed to be
overexpression, based on the systematic literature review pub-
lished by Møller et al. Here, for example, miR-17, miR-21,
miR-93, miR-221, and miR-222 have been intensively inves-
tigated with respect to both their expression and functionality,
but the functional properties of the vast majority remains
completely unknown [38]. The most extensively investigated
miRNA is miR-21, which is consistently reported to be
overexpressed in GBM in a grade-specific manner [12,
39–68]. At least for GBM, miR-21 appears to be the major

anti-apoptotic and pro-survival factor that is linked to shorter
progression-free survival [12, 69, 70].

Expression profiling of miRNA in patient tissue and inves-
tigation of their putative function using in vitro primary cul-
tures and in vivo studies have provided an insight not only into
the genes that are regulated by respective miRNA, but also the
pathways that are disrupted, many of which are hallmarks of
GBM biology (reviewed by Lakomy et al. [12]). The pattern
of miRNA expression, whether its up or downregulation, is
now becoming a recognized tool in addition to gene expres-
sion profiling to stratify GBM patients into different groups
[36]. Here, the miRNA cohorts are smaller and miRNA sig-
natures pertaining to overall or progression-free survival are
starting to evolve, albeit they are still very much dependent on
the individual patient history, tumor size, age, and treatment
regimen.

Overall and Progression-Free Survival as Clinical Endpoints
in Glioblastoma Multiforme

In the literature, both overall survival (OS) and progression-
free survival (PFS) are widely used end points to assess the
predictive factor of a given miRNA signature; however, the
two terms do not provide equal information [71–73]. When
evaluating a treatment response, OS is used as a measure of
the end result including the complete disease history and
possible other factors affecting the lifespan. The PFS is more
specific in its measure of the effect of a specific treatment in
the form of tumor control or radiographic response.
Reviewing the literature and trying to draw conclusions are
therefore challenging when both OS and PFS are applied [74].
The response assessment criteria for GBM has been devel-
oped over the course of several decades as a result of technol-
ogy advances in imaging and expanded knowledge on tumor
biology. Before 1990, the Levin and WHO Oncology
Response Criteria, which primarily was based on contrast-
enhanced computer tomography, was the standard assessment
methods [75]. These were substituted by the standardized
McDonald Criteria, which took into account that contrast
enhancement could be affected by clinical factors such as
the use of corticosteroids [76]. TheMcDonald Criteria incor-
porated the clinical assessment (neurology status) of the pa-
tient in the designation of response to therapy as being a
complete response, partial response, or stable or progressive
disease. With the arrival of magnetic resonance imaging and
new therapeutic options, the response assessment criteria was
developed further and standardized with regard to all aspects
of imaging, timing, and evaluation techniques. Especially the
introduction of bevacizumab, a monoclonal antibody targeting
VEGF-A and a resulting increased risk of pseudoprogression
interpreted as disease progression stimulated the modification
and lead to the Revised Assessment in Neuro-Oncology
(RANO) Criteria in 2010 [77–80]. Because of this
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development over the last 20 years, caution should be taken in
the comparison of particular PFS data.

Aim of the Review

This review is aimed at providing an up-to-date account
of the miRNA expression profiles in tumor tissue asso-
ciated with prognosis and survival in GBM. It is meant
as an updatable list of studies and signatures that have
been linked to the progression of GBM, to give an
account of the miRNAs, which have been reported to
be suitable as a prognostic factor for short- or long-term
survival. Plasma miRNA expression has also been asso-
ciated with survival in GBM, but this is not within the
scope of this review [25]. Based on the literature, the
studies are stratified into those based on publicly avail-
able databases and those conducted on independent tis-
sue cohorts. These data sets have been extensively
reviewed and combined to derive a signature or pattern
of miRNAs, which has a prognostic potential. The
miRNAs reported to have a protective or risk-
associated profile have been highlighted in relation to
GBM. Finally, the studies that have reported a miRNA
signature with respect to prognosis have been compared
to find common miRNA profile across the different
studies.

Methodology and Delimitations

A Medline database search on “microRNA, glioblasto-
ma, survival, prognosis and progression” (typed:
“(microRNA OR miRNA) AND (glioblastoma OR glio-
ma) AND (survival OR prognosis OR progression)”)
was performed (date of last search entry: November
26, 2013). The results contained a total of 270 papers;
125 of these were chosen based on title and abstract
content. Of the remaining, 100 papers were cell culture
studies and 45 were reviews or review like and were
therefore excluded. A total of 125 papers were reviewed
for miRNA expression level in GBM correlated to sur-
vival and/or progression, 25 involved database studies,
and 35 contained studies on GBM tissue (not database-
derived). The miRNA profiles, often presented in the
form of signatures, were extracted from the papers. This
review summarizes the studies investigating miRNAs in
GBM and explores their correlation to clinical outcome
and highlights the functional characteristics of the
miRNAs linked to protection (i.e., longer survival) or
risk (i.e., shorter survival). The miRNAs that are includ-
ed in the signature of more than one study and involved
in the progression of GBM have been identified, and
their functional role, if known, is discussed.

Prognostic MicroRNA Signatures in Glioblastoma
Multiforme

MicroRNA Signatures Derived from Database Mining

A total of 25 studies were based on database entries. For the
individual studies, the database accessed, cohort size, cohort
factor, and normalization methodology along with miRNA
signature were documented (Table 1). The majority of the
studies used The Cancer Genome Atlas (TCGA) (http://
cancergenome.nih.gov). However, four studies used the
Chinese Glioma Genome Atlas (CGGA) (http://www.cgga.
org.cn), which uses the Illumina Human v2.0 miRNA
Expression BeadChip microarray platform [11, 81–83]. The
study by Ma et al evaluated two large cohorts of data, the
CGGA with 198 samples containing low-grade gliomas and
91 GBMs and an additional cohort of 128 samples, with low-
grade gliomas and 68 GBMs to validate the array data. High
expression of miR-196b was conferring poor prognosis when
stratifying the patients into highmiR-196b expression and low
miR-196b expression groups [82]. Following a similar exper-
imental setup,Wu et al. looked at 91 GBMpatients taken from
the array data and validated their findings in a cohort of 60
GBMpatients. Here, they focused onmiR-328, showing that a
low level of expression was conferring poor prognosis [83].
The TCGA dataset has also been used for developing a new
method for predicting the outcome based on miRNA expres-
sion; however, only one of the studies provided the miRNA
identified [84].

While a few studies gave rise to a defined multiple-miRNA
signature, eight of the studies looked at a single miRNA. For
example, two studies evaluated the functionally well-
characterized miRNA, miR-10b. Gabriely et al. showed that
miR-10b was expressed in GBM tissue while not present in
normal brain tissues. Using TCGA data, they investigated the
association between the expression of miR-10b and clinical
outcome and found that miR-10b correlated with survival
although with stratified conditions, the association was insig-
nificant. When the correlation with survival for miR-10b was
assessed together with miR-10a, however, the association
with survival was significant regardless of stratification;
hence, high levels of miR-10 conferred poor survival [85].
Guessous et al. also found a correlation between high levels of
miR-10b and poor survival by analyzing the TCGA data and
further reported on a functional role of miR-10b in GBM stem
cells [86].

Since the majority of the studies use the TCGA dataset in
analyzing the expression of miRNAs in GBM, the platform
for generating the data was the same. The only differences
seen were in the downstream analysis, other clinically prog-
nostic factors, and the type of filtering applied. Expression
analysis was conducted on Agilent 8×15 K Human miRNA
microarrays, with data available at four levels. The first level
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is the raw non-normalized data from the array (level 1), and
the second level (level 2) is the processed normalized signal.
The third level (level 3) is the segmented data, assemblies of
the processed data from single samples, and grouped by
probed loci to form larger contiguous regions. The fourth level
(level 4) is the summary, a quantified association across clas-
ses of samples and associations based on molecular abnormal-
ities, sample characteristics, and/or clinical variability. Not all
studies state the level of data they use, but most use the third
level. Only one study, looking at a ten-miRNA signature, used
level 1 and quantile-normalized the expression data. Here,
they segregated patients in to high- and low-risk groups and
identified seven miRNAs associated with high risk of disease
progression and three miRNAs that were found to be protec-
tive [87]. A more elaborate study by Delfino et al. used
quantile-normalized data (although it does not specify the
level of the data set analyzed) and identified 45 miRNAs in
the TCGA data across race, gender, recurrence, and therapy
linked to survival [71]. Using level 2 data with multiarray
algorithm normalization, Zinn et al. looked at 78 patients and
included a Volume (tumor volume), Age, and Karnofsky
Performance Score (VAK) classification to dichotomize the
patients into VAK A (good prognosis) and VAK B (poor
prognosis). A total of five miRNAs were associated with
short-term survival (miR-566, miR-505, miR-345, miR-484,
and miR-92b), and three miRNAs were associated with long-
term survival (miR-511, miR-369-3p, and miR-655) [88].

Though the normalization was not standard for all studies
along with the variation in cohort size, most of them used
normalized data from the TCGA database and therefore had
the same material. The cohort size, however, ranges from 170
to 580 (mean=329±121) and is a function of the cohort
factors that are investigated. For example, factors such as
age, grade, MGMT methylation, chemotherapy regimen,
IDH1 mutation, or grade sub-classification are just some
examples of where the investigation is based on prior knowl-
edge of clinical data correlated with expression and survival
[11, 36, 83, 89, 90]. In addition to the TCGA, a number of the
studies have used independent GBM tissue validation cohorts
for identifying differentially expressed miRNAs with respect
to cohort factors [82, 83, 91].

MicroRNA Signatures Derived from Independent Tissue
Cohorts

The studies performed on independent sample sets can gener-
ally be characterized as being validation of database findings,
validation of literature findings, or novel array-based determi-
nation of miRNA profiles of clinical interest in GBM
(Table 2). A total of 35 studies identified miRNA signatures
associated to survival, and many of these have used tissues to
validate signatures previously found in datasets described in
the last section and contained in Table 1. The majority of

studies (n=30) use PCR-based methods when validating
miRNA expression, while several studies use different types
of arrays. The PCR-based methods require normalization, and
most of the studies use RNU6B, though there are a few studies
that use others, such as hsa-miR-16 or RNU5A [51, 92].

The starting material used in the studies was either tissue or
formalin-fixed paraffin-embedded (FFPE) tissue with a vari-
able cohort size (min=12, max=253, mean=91±59). With
regard to sample preparation, de Biase et al. have shown that
there is no difference in the miRNA expression obtained from
tissue and FFPE tissue, and some studies also use both types
to validate their findings [93]. Twenty-five studies focused on
single-miRNA candidates, while the remainder focused on
expression profiles of several miRNAs (min=1, max=30,
mean=3±5).

While most of the studies focus on smaller miRNAs
signatures, Niyazi et al. present a larger cohort of miRNA
as a putative survival signature. They used a top-down
approach, where they filtered the miRNAs based on the
variance in expression across the samples and chose the 30
most dysregulated miRNAs. These miRNAs were used to
stratify the samples into two patterns, which correlated with
short- and long-term survival [94]. This approach was also
applied in several database studies, limiting the number of
miRNAs down to a specific signature [51, 84, 90, 91].
Others looked at pre-selected miRNAs already linked to
GBM pathogenesis in the literature [92, 95, 96]. Zhang
et al. found that miR-221 and miR-222 expression was
significantly increased in high-grade gliomas compared with
low grade, positively correlated with degree of glioma infil-
tration. This corresponded well to the fact that overexpres-
sion of miR-221 and miR-222 increased cell invasion [12].
In addition, Quintavalle et al. showed that miR-221 and
miR-222 were upregulated in GBM patients and that they
target MGMT mRNA thereby inducing greater
temozolomide-mediated cell death [92].

Of all the studies, 12 of them utilized both databases and
independent tissue cohorts. They all link an expression of
one or more miRNAs to survival; however, some studies
categorize a given miRNA to be protective or risk-
associated. Three studies used hazard ratio to assess whether
a specific miRNA was protective or risk-associated, while
Wang et al. used a Significance analysis of microarray
(SAM) and Li et al. used the Cox-regression coefficient to
designate the miRNAs [11, 84, 87, 90]. Interestingly, large
variations can be found in the choice of control tissues
across the individual studies, ranging from purchased RNA
from normal brains to tissues from epilepsy patients or
patients with cerebral trauma. Such differences in control
tissues might also be a factor in the incoherency between the
miRNA signatures found in the different studies (Table 2).
In addition, only few studies specify their use of the terms
OS and PFS, which also makes direct comparison difficult.
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MicroRNA Reported to be Protective or Risk-Associated

A number of studies provided miRNA signatures associated
with survival or progression in GBM and reported that indi-
vidual miRNAs of these signatures could be regarded as either
protective or risk-associated. These miRNAs and their func-
tional role in GBM pathogenesis and progression are present-
ed in Table 3.

Clinically Protective MicroRNAs

In the group of the protective miRNAs (n=22), only two
miRNAs, miR-544 and miR-1227, have not been described
previously in relation to miRNA alterations in GBM patho-
genesis. Eleven of the protective miRNAs were significantly
increased in studies comparing GBM specimens to normal
brain tissue, while only six were significantly downregulated.
Surprisingly, three of these miRNAs are well described as
miRNAs with an oncogenic potential and have several vali-
dated targets considered to be tumor suppressor genes. This
includes the extensively investigated miR-17-5p, which
in vitro has been shown to increase angiogenesis and growth
when overexpressed and decrease viability and proliferation
when inhibited, making it unlikely that this miRNA, at least
solely, should be considered protective [97]. As to miR-19a,
miR-19b, and miR-106a, there is currently an inconsistency in
the literature regarding their role in GBM development. The
functional data available on miR-106a shows that overexpres-
sion by transfection of GBM cell lines causes a significant
decrease in proliferation and an increase in apoptosis, likely
mediated by the suppression of E2F1, supporting the notion of
it being tumor suppressive [98]. More in line with what would
be expected, miRNAs with previously investigated tumor
suppressive capabilities are present on the list whereby miR-
128a and miR-181d are most notable. miR-128 has been
investigated in 13 studies demonstrating its wide range of
oncogenic mRNA targets and its ability to inhibit angiogene-
sis and proliferation and even to significantly decrease total
tumor volume in vivo [12, 40–42, 48, 56, 62, 66, 67, 99–103].
Similarly, although, less extensively investigated is miR-
181d, which has been shown to target the oncogenes Bcl-2
and K-Ras whereby apoptosis is increased and proliferation
decreased. miR-181d transfection is demonstrated to decrease
in vivo tumor size and has been shown to increase the sus-
ceptibility to the chemotherapeutic agent, temozolomide [104,
105].

Risk-Associated MicroRNAs

Within the cohort of miRNAs described as risk-associated
(n=22), nine have not been previously associated with
miRNA modulation in GBM. Of the 13 miRNAs mentioned
in the literature, ten are overexpressed in GBM specimen,

three are underexpressed, and four have been functionally
characterized. miR-34a is well studied in numerous GBM cell
lines and shown to increase cell differentiation and decrease
total tumor volume in a xenograft mouse model of GBM [106,
107]. The less investigated miR-146b is similarly known to
decrease in vitro invasiveness, migration, proliferation, and
tumor volume in mice [108, 109]. Both miR-34a and miR-
146b are, in terms of isolated functional characteristics, not
associated with risk of GBM progression (Table 3). The
oncogenic miRNAs, miR-221 and miR-222, clinically asso-
ciated with risk, have been studied in relation to a diverse list
of cancers including GBM. They inhibit a number of common
gene targets such as PUMA and P57 both involved in apo-
ptosis. When overexpressed in vitro, both miR-221 and miR-
222 potentiate classic cancer hallmarks, i.e., proliferation,
angiogenesis, and invasion. In vivo studies have revealed that
miR-221 or miR-222 overexpression is associated with in-
creased tumor growth, a situation that can be reversed with
administration of corresponding antagomirs [110, 111].

Out of 44 miRNAs reported to be protective or risk-
associated, only eight were not previously described as sig-
nificantly modulated in GBM samples. This demonstrates a
relatively broad coverage in terms of the miRNAs investigated
purely to assess miRNA modulation in GBM pathogenesis
without correlating the data to clinical outcome (Table 3). No
general patterns apply to these cohorts of protective and risk-
associated miRNAs, as such, several miRNAs, which are
described as oncogenic from a functional standpoint, are
present within the cohort of protective miRNAs and vice
versa. This comparison between in vitro functionality and
clinical implication of GBM-related miRNAs illustrates that
although a specific miRNA may have a specific set of func-
tional characteristics when artificially over or underexpressed
in isolated in vitro models, this is not necessarily a good
indicator for the multifactorial clinical progression of GBM.
For more elaborate details of the functional characterization of
miRNAs involved in GBM, please refer to Møller et al. [38].

MicroRNAs Included in Several Signatures

Based on the multiple-miRNA signatures identified from both
tissue and database studies pertaining to survival, the miRNAs
found in multiple studies were identified (Table 4). Most of
the miRNA found in signatures are specific for the given
study. Thirteen of the miRNAs were identified in more than
one study; however, no miRNAs were identified in more than
three studies. Through miRNA array analysis, Niyazi et al.
found a 30-miRNA signature in an independent cohort, which
divided the samples into short- and long-term survival [94].
Furthermore, Zhang et al. and Srinivasan et al. used similar
methods and the same database, but the overlap between these
studies was poor [87, 91].
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Table 3 miRNAs reported to be protective or risk-associated

miRNA Reference Function in GBM Validated targets Reference

hsa-miR-9 [112] Overexpressed (5),
oncogenic properties

CAMTA1 [39, 40, 64, 66, 156]

hsa-miR-17-5p [87, 112] Overexpressed (9),
oncogenic properties

POLD2, TGFβ-RII, CTGF,
CAMTA1, PTEN

[39, 40, 42, 66, 67, 97, 156, 157]

hsa-miR-19a [112] Disputed expression in GBM (6) CTGF [39, 42, 66, 67, 97, 157]

hsa-miR-19b [112] Disputed expression in GBM (4) [42, 66, 67, 157]

hsa-miR-20a [87, 112] Overexpressed (5),
oncogenic properties

TGFβ-RII, CTGF [39, 40, 42, 67, 97]

hsa-miR-99a [112] Overexpressed (2),
oncogenic properties

[66, 67]

hsa-miR-106a [87, 112] Disputed expression in GBM (5) E2F1 [42, 48, 51, 66, 98]

hsa-miR-128a [112] Underexpressed (13),
tumor suppressive

WEE1, p70S6K1, Msi1,
E2F3a, Bmi-1,
EGFR, PDGFRα

[12, 40–42, 48, 56, 62, 66, 67, 99–103]

hsa-miR-128b [112] Underexpressed (7) WEE1 [41, 42, 48, 56, 62, 67, 158]

hsa-miR-139 [112, 159] Underexpressed (5) [40, 42, 60, 67, 158]

hsa-miR-181d [90, 160] Underexpressed (1),
tumor suppressive

Bcl-2, K-Ras [104, 105]

hsa-miR-183 [112] Underexpressed (2) [42, 64, 67, 148, 161]

hsa-miR-217 [112] Overexpressed (2) [42, 67]

hsa-miR-301 [112] Overexpressed (2) [42, 67]

hsa-miR-324-5p [112] Overexpressed (1) [56]

hsa-miR-328 [83] Underexpressed (2) [39, 42]

hsa-miR-374 [112] Overexpressed (1) [40, 66]

hsa-miR-497 [112] Overexpressed (1) [67]

hsa-miR-524-5p [84, 90] Overexpressed (1) [67]

hsa-miR-544 [84] Overexpressed (1) [67]

hsa-miR-628-5p [84] [66]

hsa-miR-1227 [90] No studies

hsa-miR-15a [159] Overexpressed (4) [39, 62, 66, 67]

hsa-miR-31 [87] No studies

hsa-miR-34a [112] Underexpressed (5),
tumor suppressive

SIRT1, c-Met, Notch1/2,
PDGFRA, Msi1

[100, 106, 162–164]

hsa-miR-34b [112] No studies

hsa-miR-146b [87] Underexpressed (5),
tumor suppressive

[108, 109]

hsa-miR-148a [87, 112] Overexpressed (1) [64]

hsa-miR-155 [112] Overexpressed (6) [40, 42, 45, 66, 67, 165]

hsa-miR-193a [87] Overexpressed (1) [42, 67]

hsa-miR-200b [87] Overexpressed (2) [67]

hsa-miR-221 [87, 112] Overexpressed (11),
oncogenic properties

P27, Akt, PUMA, P57,
PTPμ, Cx43, TIMP3,
MGMT

[41, 48, 62, 63, 110, 111, 113, 166–169]

hsa-miR-222 [87, 112] Overexpressed (9),
oncogenic properties

P27, Akt, PUMA, P57,
PTPμ, Cx43, TIMP3,
MGMT

[41, 48, 62, 110, 111, 166–169]

hsa-miR-297 [91] No studies

hsa-miR-299-3p [91] Underexpressed (1) [42]

hsa-miR-346 [91] No studies

hsa-miR-518b [91] Overexpressed (1) [67]

hsa-miR-541* [91] No studies

hsa-miR-551a [91] No studies

hsa-miR-566 [91] Overexpressed (1) [67]

hsa-miR-661 [91] Overexpressed (1) [67]
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It is striking that the database studies do not reveal better
coherency; however, this could be attributed to the cohort
factors studied or the filtering of the miRNAs during the
analysis. The tissue studies represent independent cohorts;
however, many of the database studies have validated their
results in independent cohorts, whereby the cohort factors
could be the prime source for the lack of overlap.
Additionally, Ilhan-Mutlu et al. chose to investigate seven
well-characterized miRNAs (miR-10b, miR-21, miR-181b,
miR-181c, miR-195, miR-221, miR-222) and found that none
of them correlated with survival [95] contradicting other stud-
ies [87, 112]. Therefore, the 13 miRNAs identified in more
than one signature could be more applicable in their prediction
of survival and of great interest in relation to GBM prognosis.

Functional Analysis of the MicroRNAs Included in Several
Signatures

The majority of the 13 miRNAs included in more than one
signature have been functionally characterized in GBM and
associated with the expression of validated target genes
(Table 5). The most well-characterized miRNA in GBM is
miR-21, which functions as an oncogenic miRNA. miR-21
has numerous validated target genes that it represses in GBM
and therefore it is interesting that this miRNA is included in
two signatures. The target genes of miR-21 include genes
associated with proliferation (e.g., PTEN and PDCD4), inva-
siveness (e.g. TIMP3 and RECK), and susceptibility to chemo
and radiation therapy (e.g., hMSH2), factors, which are all
characteristics of GBM tumors [44, 48, 59, 70]. The same
characteristics of GBM tumor growth are also modulated by
miR-221 and miR-222, both of which appear in three signa-
tures. Being less well characterized than miR-21, miR-221
and miR-222 still have several validated target genes includ-
ing some important tumor suppressor genes such as P27, P57,
TIMP3, and Cx43 [96, 111, 113, 114].

In addition to the oncogenic miRNAs identified in more
than one signature, different tumor suppressor miRNAs were
also found in several signatures. miR-195 has validated target
genes, including some cyclins and E2F3, which are associated
with cell proliferation [115, 116]. Hence, a low expression of
this miRNA should in theory correlate with a favorable

clinical outcome, which is in fact reflected in the clinical data
[12]. Another interesting miRNA shown in more than one
signature is miR-136, which has very little functional charac-
terization, but the current validated target genes include the
important oncogene, Bcl-2 [117]. Several of the 13 miRNAs
(miR-155, miR-17-5p, miR-181b, miR-195, miR-20a, miR-
21, miR-221, and miR-222) are known to modulate the mes-
enchymal mode of migration and invasion (MMMI), which is
an important characteristic of GBM cells [38, 118]. Three of
the miRNAs identified in more than one signature have no
functional characterization and could possibly reveal numer-
ous relevant target genes to substantiate the importance of the
13 miRNAs in future determination of patient prognosis.

Perspectives on MicroRNA-Based Therapies
for the Treatment of Glioblastoma Multiforme

Given the fact that several miRNA signatures associated with
OS or PFS have been identified and that these miRNAs have
functional characteristics with importance in GBM progres-
sion, a therapeutic concept taking advantage of such correla-
tions seems inherent. The use of miRNA-based therapies in
the treatment of GBM is still in its primary phases with
exciting basic research being published frequently [119].

Approaches for utilizing miRNAs in such treatment regi-
mens includes both inhibition of oncogenic miRNAs (e.g.,
miR-21) or overexpression of tumor suppressor miRNAs
(e.g., miR-146b) with different types of carriers to facilitate
delivery directly to the tumor tissue [120, 121]. Systemic
administration of a liposome-encapsulated tumor suppressor
miRNA, miR-7, led to a significant tumor size reduction in a
xenograft mouse model of GBM. In addition, several key
oncogenes were downregulated upon the tumor suppressor
miRNA delivery [122]. Another more sophisticated type of
lipid-based delivery was exploited by Griveau et al. where
locked nucleic acid miRNA inhibitors against miR-21 con-
ferred increased radiosensitivity in U87MG cells [120].
miRNA carriers have also been generated with polymer-
based technology, using poly(amido amine) to encapsulate
miR-7 for delivery to U251 cells, which resulted in a higher
transfection efficiency than liposomal delivery [123].

Table 3 (continued)

miRNA Reference Function in GBM Validated targets Reference

hsa-miR-768-3p [112] Overexpressed (1) [67]

hsa-miR-936 [91] No studies

hsa-miR-1238 [91] No studies

MicroRNAs described as either protective (ital) or risk-associated (bold) compared with their corresponding functional characteristics. The terms
overexpressed and underexpressed refers to miRNA expression data comparing GBM samples to normal brain tissue. Disputed expression signifies that
different studies present contradictory results. The numbered parentheses are numbers of studies supporting the observation

906 Mol Neurobiol (2014) 50:896–913



Of particular interest in solving the problems with efficient
drug delivery to the brain, both in malignancies and neurode-
generative diseases are the use of exosomes as drug carriers
[124]. Exosomes are endogenous vesicular structures with a
diameter ranging from 40 to 120 nm produced by all cells in
the body [125]. They are characterized by expression of
specific proteins in the membrane (especially tetraspanins)
and their ability to deliver proteins, mRNA and miRNAs
[126]. The delivered mRNAs and miRNAs are fully function-
al and can be translated into protein or inhibit mRNA targets
in the recipient cells [127, 128].

The potential of exosomes to deliver functional RNAs to
cells was utilized by Alvarez-Erviti et al., who provided
interesting evidence as to how exosomes might be used to
deliver drugs across the ever troubling blood-brain barrier.
Immature dendritic cells were transfected to produce
exosomes that expressed a neuron-specific targeting peptide
on their surfaces to facilitate specific delivery of the exosome
cargo. These exosomes successfully delivered both GAPDH-
and BACE1-siRNA across the blood-brain barrier resulting in
specific gene silencing in the neuronal tissue [129]. Using a
somewhat similar approach, Ohno et al. showed that
exosomes targeted to EGFR could deliver the tumor suppres-
sor miRNA, let-7a, to a xenograft breast cancer model after
intravenous administration. Furthermore, let-7a suppressed

the growth of the tumor underscoring the relevance of using
exosomal delivery in malignant diseases [130].

Evidence is now emerging showing that exosomal de-
livery of interfering RNAs could be relevant in the treat-
ment of GBM. GBM cell lines were shown to be resistant
to treatment with anti-miRs against the oncogenic miRNA,
miR-9, described in Table 3. However, if these GBM cells
were co-cultured with anti-miR-transfected mesenchymal
stem cells (MSCs) or cultured in the presence of anti-
miR-transfected MSC-exosomes, miR-9 was significantly
downregulated. This decrease in miR-9 expression made
the GBM cells more susceptible to treatment with the
chemotherapeutic drug, temozolomide [131]. Katakowski
et al. also produced exosomes in MSCs, which were
transfected with a miR-146b expression vector. The
resulting miR-146b-containing exosomes were injected into
xenograft GBM tumors, leading to a significant reduction
in tumor volume compared to vehicle-treated controls
[121]. Interestingly, it has previously been shown that
miR-146b negatively correlates with survival in GBM
[87]. The use of exosomes in the treatment of GBM
may have a great potential and should be substantiated
with more evidence including choice of relevant miRNA
cargo and direct targeting of GBM cells to facilitate intra-
venous administration.

Table 4 miRNA signatures correlating with survival in GBM

Reference miRNA

Bozdag et al. [89] Ebv-miR-BART1-5p, Ebv-miR-BHRF1-2, Hcmv-miR-UL70-5p, hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-147,
hsa-miR-223, hsa-miR-302c, hsa-miR-325, hsa-miR-422b, hsa-miR-453, hsa-miR-507, hsa-miR-552, hsa-miR-558,
hsa-miR-620, hsa-miR-649, hsa-miR-661

Hua et al. [135] hsa-miR-19a, hsa-miR-93, hsa-miR-221, hsa-miR-222

Lakomy et al. [12] hsa-miR-21, hsa-miR-128a, hsa-miR-181c, hsa-miR-195, hsa-miR-196a, hsa-miR-196b, hsa-miR-221, hsa-miR-222

Li et al. [84] hsa-miR-15a, hsa-miR-139-5p, hsa-miR-524-5p, hsa-miR-544, hsa-miR-628-5p

Niyazi et al. [94] hsa-let-7a, hsa-let-7f, hsa-let-7g, hsa-let-7i, hsa-miR-26a*, hsa-miR-29b, hsa-miR-30b, hsa-miR-124, hsa-miR-129-3p,
hsa-miR-136, hsa-miR-195, hsa-miR-210, hsa-miR-374b, hsa-miR-409-3p, hsa-miR-487b, hsa-miR-539, hsa-miR-555,
hsa-miR-578, hsa-miR-590-3p, hsa-miR-595, hsa-miR-720, hsa-miR-1260, hsa-miR-1282, hsa-miR-1286, hsa-miR-
1305, hsa-miR-2113, hsa-miR-3065-3p, hsa-miR-3132, hsa-miR-3163, hsa-miR-4286

Qiu et al. [138] hsa-miR-130a, hsa-miR-155, hsa-miR-210, hsa-miR-323, hsa-miR-326, hsa-miR-329

Srinivasan et al. [87] hsa-miR-17-5p, hsa-miR-20a, hsa-miR-31, hsa-miR-106a, hsa-miR-146b, hsa-miR-148a, hsa-miR-193a, hsa-miR-200b,
hsa-miR-221, hsa-miR-222

Wang et al. [11] hsa-miR-9, hsa-miR-17-5p, hsa-miR-19a, hsa-miR-19b, hsa-miR-20a, hsa-miR-34a, hsa-miR-34b, hsa-miR-99a,
hsa-miR-106a, hsa-miR-128a, hsa-miR-128b, hsa-miR-139, hsa-miR-148a, hsa-miR-155, hsa-miR-183, hsa-miR-217,
hsa-miR-221, hsa-miR-222, hsa-miR-301, hsa-miR-324-5p, hsa-miR-374, hsa-miR-497, hsa-miR-768-3p

Zhang et al. [90] hsa-miR-181d, hsa-miR-297, hsa-miR-299-3p, hsa-miR-346, hsa-miR-541*, hsa-miR-551a, hsa-miR-661, hsa-miR-936,
hsa-miR-1238

Zhang et al. [91] hsa-miR-181d, hsa-miR-566, hsa-miR-524-5p, hsa-miR-518b, hsa-miR-1227

Zhi et al. [51] hsa-miR-21, hsa-miR-106a, hsa-miR-181b

Zinn et al. [88] hsa-miR-92b, hsa-miR-345, hsa-miR-369-3p, hsa-miR-484, hsa-miR-505, hsa-miR-511, hsa-miR-566, hsa-miR-655

Overview of the miRNA signatures reported in database studies and independent tissue cohort studies correlated with survival or progression of GBM.
The miRNAs marked in ital were detected in two or more studies
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Concluding Remarks

This review presents the studies investigating the expression
of specific miRNAs or miRNA signatures with respect to their
correlation to clinical progression of GBM. A large part of the
studies utilize data from the same databases (TCGA or
CGGA), but they do not necessarily reveal the same results.
This is because the extracted data and the filtering based on
clinical information differ across individual studies, which
makes comparison difficult (Table 1). The studies using indi-
vidual tissue cohorts also reveal different miRNA signatures
with only some consistency between them. Such varying
results may be caused by several factors, including miRNAs
investigated, type of array platform utilized, cohort size, and
especially the choice of control tissue. Comparing miRNA
expression data to control tissue obtained from another type of
diseased brain (i.e., epilepsy) might be problematic because it
may induce variations in the miRNA expression data com-
pared to studies using non-diseased normal brain tissue.

Furthermore, imperfect description of terminology with re-
gard to OS and PFS may also add complexity to the compar-
ison of the different miRNA signatures. Several studies report
some miRNAs to have a protective or risk-associated profile
with respect to their correlation with clinical outcome in
GBM. Interestingly, several of these miRNAs have validated
functions in vitro and in vivo, which are opposite to the way
that they should mediate either protection or risk. Therefore,
the in vitro and in vivo studies available for numerous
miRNAs are not necessarily good indicators for the multifac-
torial clinical progression of GBM (Table 3). However, many
of the miRNAs reported to be either protective or risk-
associated or the miRNAs included in several signatures do
in fact have validated targets and functional characteristics,
which are in line with their correlation to clinical progression
or survival of GBM (Tables 3, 4, and 5). Having been associ-
ated with disease progression or survival in several studies,
these miRNAs may be valuable for future determination of
patient prognosis and could possibly serve as targets for

Table 5 Functional characteristics of miRNAs found in several signatures

microRNA Validated targets Functional role when
1: overexpressed,
2: inhibited

No. of signatures
included

Reference to functional
studies

hsa-miR-106a E2F1, SLC2A3 1: proliferation↓, apoptosis↑ 2 [98, 132]

hsa-miR-136 AEG-1, Bcl-2 1: apoptosis↑ 2 [117]

hsa-miR-148a No validated targets No functional analysis performed 2

hsa-miR-155 GABRA-1, FOXO3a 1: proliferation↑, apoptosis↓, invasion↑ 3 [170, 171]

hsa-miR-17-5p POLD2, TGFβ-RII,
CTGF, CAMTA1,
PTEN

1: angiogenesis↑, growth↑, invasion↑,
migration↑, chemosensitivity↓

2: viability↓, apoptosis↑, proliferation↓

2 [39, 97, 156,
157, 172]

hsa-miR-181b FOS, MEK1, IGF-1R 1: xenograft growth↓, chemosensitivity↑,
invasion↓, proliferation↓, migration↓

2 [81, 173, 174]

hsa-miR-195 E2F3, CCND3, Cyclin D1,
Cyclin E1

1: invasion↓, proliferation↓, xenograft growth↓ 3 [115, 116]

hsa-miR-20a TGFβ-RII, CTGF 1: angiogenesis↑, growth↑
2: viability↓, proliferation↓

2 [97, 157]

hsa-miR-21 RECK, TIMP3, APAF1,
ANP32A, SMARCA4,
Caspases, PTEN, Cdc25A,
HNRPK, TAp63, Spry2,
LRRFIP1, PDCD4, hMSH2

1: invasiveness↑, radiosensitivity↓
2: invasiveness↓, apoptosis↑, viability↓,
proliferation↓, in vivo tumor volume↓,
chemosensitivity↑, radiosensitivity↑

2 [41, 43, 44, 46–50,
52–55, 58, 59, 68,
70, 175]

hsa-miR-210 No validated targets No functional analysis performed 2

hsa-miR-221 P27, Akt, PUMA, P57, PTPμ,
Cx43, TIMP3, MGMT

1: proliferation↑, invasiveness↑, in
vivo tumor volume↑, apoptosis↓,
migration↑

2: proliferation↓, apoptosis↑, in vivo
tumor volume↓, radiosensitivity↑

3 [92, 96, 110, 111, 113, 114,
167, 168, 176]

hsa-miR-222 P27, Akt, PUMA, P57, PTPμ,
Cx43, TIMP3, MGMT

1: proliferation↑, invasiveness↑, in vivo
tumor volume↑, apoptosis↓, migration↑

2: proliferation↓, apoptosis↑, in vivo
tumor volume↓, radiosensitivity↑

3 [92, 96, 110, 111, 113, 114,
167, 168, 176]

hsa-miR-566 No validated targets No functional analysis performed 2

miRNAs found in several signatures and their functional characteristics. Each miRNA is noted along with their validated targets, their functional role,
and how many signatures they appear in. Regarding the functional role, 1 designate the functional role of the miRNAwhen it is overexpressed and 2 the
functional role when it is inhibited in vitro or in vivo
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miRNA-based therapies, which hold a great potential in the
treatment of this severe malignant disease.
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