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Abstract Since adult neurogenesis became a widely accept-
ed phenomenon, much effort has been put in trying to
understand the mechanisms involved in its regulation. In
addition, the pathophysiology of several neuropsychiatric
disorders, such as depression, has been associated with
imbalances in adult hippocampal neurogenesis. These im-
balances may ultimately reflect alterations at the cell cycle
level, as a common mechanism through which intrinsic and
extrinsic stimuli interact with the neurogenic niche proper-
ties. Thus, the comprehension of these regulatory mecha-
nisms has become of major importance to disclose novel
therapeutic targets. In this review, we first present a com-
prehensive view on the cell cycle components and mecha-
nisms that were identified in the context of the homeostatic
adult hippocampal neurogenic niche. Then, we focus on
recent work regarding the cell cycle changes and signaling
pathways that are responsible for the neurogenesis imbal-
ances observed in neuropathological conditions, with a par-
ticular emphasis on depression.
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Introduction

The view that no new neurons can be added to the adult
brain was deconstructed over the past years. Neurogenesis
in the adult smammalian brain is now a widely accepted
neuroplastic event [1–3] that enables the brain to adapt to
intrinsic and extrinsic stimuli. In fact, during the past few
years, a large amount of data has provided evidence that the
production, differentiation and survival of neurons in the
adult brain have significant implications for several physio-
logical processes, such as memory and learning [4–6].
Moreover, many studies have linked neurogenesis deregula-
tion with the emergence of several pathological features in
neuropsychiatric disorders. However, the role of neurogenesis
in these disorders is yet to be completely established. Present-
ly, much effort is devoted to the generation of behavioral and
molecular data that establish a mechanistic link between
neurogenesis and disease-state, so that ultimately directed
therapeutic interventions can be designed.

Adult stem cells are responsible for tissue integrity, by
adding new cells to the networks or by promoting the
capacity to repopulate mature differentiated tissues as their
constituting cells die due to damage or degeneration. The
complex process of producing new cells throughout an
organism’s lifespan may rely on a common denominator—
the cell cycle regulatory machinery (Fig. 1). However, the
specificity of this transversal phenomenon in each tissue or
cell type offers a wide spectrum of responses to a particular
stem cell niche. In this review we aim to provide a compre-
hensive and integrated view of the cell cycle regulation in
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the adult hippocampal neurogenic niche both in basal con-
ditions and in disease (namely, in depression). With this, we
offer a perspective on how the cell cycle machinery may
constitute an interesting and still largely unrecognized link
between alterations in postnatal hippocampal neurogenesis
and disease, highlighting its relevance for the discovery of
new molecular targets for the treatment of neurobiological
disorders.

Neurogenesis in the Adult Mammalian Brain

Adult neurogenesis is the process by which neural progen-
itors divide mitotically to produce new neurons in the adult
brain. This complex process involves several steps beyond
cell division; namely, the commitment of the new cell to a
neuronal phenotype, the migration and maturation of the
cells, and the establishment of appropriate synaptic contacts
that culminate with a full integration on the pre-existent
network. Well described, adult neurogenesis is known to
occur at least in two different regions of the mammalian
brain: the subependymal zone (SEZ) of the lateral ventricles,
and the subgranular zone (SGZ) of the hippocampal dentate
gyrus (DG) [7]. In both regions, astroglial cells act as the
source of adult progenitor cells [8, 9]. The neuroblasts born
in the SEZ migrate along the rostral migratory stream

(RMS) becoming mostly mature GABAergic granule and
periglomerular interneurons in the olfactory bulb (OB). The
cells born in the adult SGZ migrate into the granular cell
layer (GCL) of the DG and differentiate into glutamatergic
granule cells [7]. Additionally, although disputable [10, 11],
several reports describe the generation of new neurons in
other regions of the adult brain, including the cortex [12,
13], the amygdala [14–16], the hypothalamus [17, 18], the
striatum [19, 20] and the substantia nigra [21, 22]. However,
in all these areas, neurogenesis appears to occur at very low
levels or under non-physiological conditions [23].

Adult Hippocampal Neurogenesis

Neurogenesis in the adult DG occurs from a progenitor pop-
ulation residing in a narrow layer of about three nuclei wide,
the SGZ. The first type of progenitor cells, defined as
multipotent, are the neural stem cells (NSCs or type_1 cells).
These cells express nestin and glial fibrillary acidic protein
(GFAP), among other markers, and can be divided in two
subtypes based on their orientation in the SGZ: radial
astrocytes/NSCs (rA) and horizontal astrocytes/NSCs (hA).
Radial NSCs, morphologically characterized by having a
single radial process, are slow dividing cells, whereas
horizontal NSCs have a short horizontal process and

Fig. 1 Cell cycle regulation in the adult hippocampal neurogenic
niche. Some niche-specific cell cycle regulators in the adult hippocam-
pus have been identified. Cdk6-cyclin D2 and Cdk4-cyclin D1 com-
plexes promote the expansion of the neural progenitor pool. P21 and
p27 Cdk inhibitors have a role in proliferation arrest, both at the G1
and G2 phase. E2F1 has an important role in the neurogenic process by
inducing the expression of genes involved in cell proliferation and

differentiation. Cdk5 activity is associated with cell cycle reentry
inhibition in postmitotic neurons. Signaling pathways, such as Notch,
BMP, Shh and Wnt, are also involved in proliferation regulation, and in
the balance between proliferation induction and stem cell quiescence
maintenance. Nevertheless, several key molecules remain to be identi-
fied in this process in the context of adult hippocampal neurogenic
niche (represented by a question mark). Rb retinoblastoma protein
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divide faster than rA [24, 25]. Either one or both of these cell
subtypes will then divide asymmetrically into one daughter
cell and one progenitor cell, both of which already committed
to a neuronal lineage. These latter cells, designated by transit
amplifying neural progenitors (tANPs, or type_2 cells), are
mitotically active and divide to give rise to neuroblasts (also
known as type_3 cells). This last stage corresponds to a
transition from a slow proliferating neuroblast, which is
exiting the cell cycle, to a postmitotic immature neuron, that
will migrate a short distance into the GCL. Neuroblasts
transiently express markers of the neuronal lineage, such
as the calcium-binding protein calretinin, doublecortin
(DCX) and polysialylated-neural cell adhesion molecule
(PSA-NCAM) [10, 26]. The newborn cells will then fully
maturate into granule neurons, elongating their axons to-
wards the hippocampal Cornus Ammonis 3 (CA3) area
[23] and making the appropriate axonal connections [26].
These adult-born neurons become integrated in the pre-
existing neuronal network 4 to 8 weeks after their birth [3,
27–29] (Fig. 2a).

Importantly, not all cells expressing immature neuronal
markers develop into fully mature neurons [30]. In fact, if not
recruited to perform any function, the great majority of these
newly-born cells are eliminated by apoptosis once they exit
cell cycle [31, 32]; a mechanism that until recently was largely
undescribed. However, a recent report by Lu et al. [33], has

very elegantly shown that DCX-positive neuronal progenitors
present a phagocytic activity in the DG as well as in the SEZ,
with important implications for the neurogenic process [33].

The generation of new neurons in the hippocampal niche
of the adult brain, depends on the harmonization of several
processes and cellular activities, which include proliferation,
cell cycle exit, activation of survival/death pathways, migra-
tion through the GCL and differentiation/maturation of the
newborn neurons [34]. These processes are regulated by
both intrinsic and extrinsic factors that are ultimately re-
sponsible for the modulation of the neurogenic phenome-
non. While there are numerous focused studies on several of
these steps, little is known about the cell cycle regulation in
the context of adult hippocampal neurogenesis and its re-
percussions for disease states. Here, to provide an integrated
view, we will consider the “expanded cell cycle” [35],
taking into consideration some of the most well-described
mitogenic signals and the interacting signaling pathways.

Cell Cycle Regulation in the Adult Hippocampal
Neurogenic Niche

Providing important clues on the regulation of the adult
neurogenic process, the expression of cell cycle proteins
and their regulation have been extensively explored in the
context of embryonic development [36–40]. On one hand,

a b c

Fig. 2 a Neurogenesis in the hippocampus comprises several steps,
including proliferation of neural stem cells and transit amplifying
neural progenitors in the subgranular zone (SGZ), cell cycle exit,
neuroblasts migration throughout the granule cell layer (GCL), and
maturation of the newborn neurons. b,_c Cell cycle regulators impli-
cated in neurogenesis imbalances observed in animal models of de-
pression and in the pro-neurogenic effects of antidepressant drugs and
other stimuli. b Neurogenesis imbalances have been observed in ani-
mal models of depression. These imbalances are attributed to an
increased expression of p27 Cdk inhibitor (green arrow) in the DGs
of animal models of depression. P27 inhibits neural progenitor cells
proliferation in this neurogenic niche. Cdk5 is involved in the

development of depressive-like signs in an animal model of depres-
sion. The increased activity of Cdk5 (green arrow), together with the
translocation of p35 activator to the membrane, was observed in
chronic mild stress (CMS) exposed animals. c The pro-neurogenic
actions of antidepressant drugs and stimuli, such as physical exercise,
have also been correlated with alterations in the “expanded cell
cycle.”Antidepressants are able to specifically inhibit p21 expression
(red arrow) in the DG, while increasing neurogenesis. Additionally,
signaling pathways with recognized effects over the cell cycle regula-
tion, such as Wnt, Notch and BMP, were implicated in the modulation
of adult hippocampal neurogenesis in the context of depression and
antidepressant stimuli
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some of the mechanisms are common to both embryonic
and adult brain; however, there are essential differences
between them especially regarding niche properties. Where-
as during development, the cellular environment is highly
specialized to support proliferation, in the adult hippocam-
pus the environmental context includes a population of fully
mature and functionally active neurons [7, 37], thus provid-
ing a different set of both intrinsic and extrinsic signals. In
fact, in the adult mammalian brain, the vast majority of
neuronal cells are in a quiescent differentiated state (G0
phase of the cell cycle), which is probably promoted by an
increase in the expression of region-specific Cdk inhibitors
[34, 41, 42]. Nonetheless, the expression of cell cycle pro-
teins in the postnatal brain and their definite role in this
neurogenic niche are still being unveiled [36].

Contrary to the traditional concept that postmitotic ma-
ture neurons are stably maintained in a quiescent differenti-
ated state, recent, albeit still controversial, evidence has
demonstrated that in some disease conditions, such as
Alzheimer’s disease [43, 44], traumatic brain injury [45]
and cerebral hypoxia-ischemia [46], these cells are capable
of responding to mitogenic signals and reenter the cell cycle
[35, 47]. However, apparently these neurons neither finish
dividing nor revert to their G0 quiescent state, ultimately
undergoing apoptotic cell death and suggesting that they
lack the factors needed for cell cycle progression [35].

It is important to mention, at this point, that the expression
of cell cycle proteins in neuronal populations is not always
associated with cell proliferation or cell cycle reentry. Indeed,
a small number of studies have demonstrated that the expres-
sion of key cell cycle components may be associated with
other neuronal processes, such as neuronal migration, dendrite
morphogenesis, synaptic maturation and plasticity [48, 49].
Nonetheless, a few cell cycle molecules and signaling path-
ways have been implicated in the regulation of adult hippo-
campal neurogenesis. Moreover, their deregulation is often the
cause for neurogenesis imbalances observed in several disor-
ders, such as depression. As such, we will first provide a brief
overview on these molecules and its functions in the context
of adult hippocampal neurogenesis.

Cell Cycle Regulators

The cell cycle consists of a succession of events that lead to
cell division. It comprises four distinct consecutive phases:
the first gap (G1) phase, during which cells prepare for
DNA replication in the synthetic (S) phase, followed by a
second gap (G2) phase and mitosis (M). A highly coordi-
nated network of molecules mediates progression through
these four phases. There are two major classes of cell cycle
regulators that cooperate in order to promote cell cycle
progression: cyclins and cyclin-dependent kinases (Cdks).
Cdks are serine/threonine kinases stably expressed during

cell cycle progression that must bind to cyclins, their regu-
latory subunits, whose expression levels vary throughout the
cell cycle phases, to form active catalytic heterodimers [50,
51]. Each Cdk is able to associate with different cyclins,
which will in turn determine the proteins to be phosphory-
lated by a specific Cdk–cyclin complex (Fig. 1).

Several studies support the view that most cell cycle regu-
lators are functionally redundant [52] and the need for a
particular molecule is dependent on the cell type and on the
niche [53]. This holds also true for the hippocampal neuro-
genic niche. As an example, studies on the role of Cdk4 and
Cdk6 in the adult hippocampus unraveled a crucial role for
Cdk6, but not Cdk4, in controlling the expansion of neuronal
committed progenitors and thus the rate of neuronal produc-
tion [54]. In fact, the absence of Cdk6 was shown to induce
the lengthening of the G1 phase causing premature cell cycle
exit and differentiation [54]. These findings lead to the “cell
cycle length hypothesis” [55], which states that proliferative
divisions exhibit a short G1 phase whereas neurogenic di-
visions are characterized by longer G1 phases. In a molecular
perspective, it is proposed that the ability of a cell fate deter-
minant to induce any cellular response is related with the time
it has to act during G1 [55, 56]. Additionally, overexpression
of the Cdk4–cyclin D1 complex in the adult mouse hippo-
campal niche was shown to increase the expansion of neural
progenitor cells (NPCs), in a specific and cell–autonomous
manner, while inhibiting neurogenesis [57]. Indeed, stopping
the overexpression of the Cdk4–cyclin D1 complex was ac-
companied by an overproduction of new neurons, corroborat-
ing its effect on the expansion of the neural progenitors at the
expense of neuronal differentiation. Moreover, no effects were
observed in the survival and maturation patterns of DCX+
immature neurons [57]. Altogether, results suggest that the
Cdk4–cyclin D1 complex is able to decrease the cell cycle
length of cells that characteristically present longer cell cycles,
whereas it is not able to change the short-length cycles [57]. In
line, it is proposed [55, 58] that beyond the cell cycle length
itself, it is the length relative variation that may be underlying
the changes in the fate of a given cell [57]; however, more
studies are needed to clarify this subject.

Cyclins, another important class of cell cycle regulators,
are also implicated in the adult neurogenic phenomenon.
Indeed, three types of cyclins D (D1, D2 and D3), which
control Cdk4/6 activity, were already identified in mammals
[59]. Although most cells express more than one cyclin D,
several studies have demonstrated cell type-dependent roles
for each of them [60–62]. One paradigmatic example of
such specificity in the adult brain is the demonstration that
cyclin D2, but not cyclin D1, knock-out (KO) mice, have a
marked reduction of cell proliferation in the DG, measured
by BrdU incorporation [59]. Other studies have corroborat-
ed this inability of cyclin D1 to promote neurogenesis in the
hippocampus in the absence of cyclin D2 [63, 64].
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Cell cycle progression is also negatively regulated, at a
post-translational level, by two families of cyclin-dependent
kinase inhibitors: the Inhibitor of kinase 4/Alternative read-
ing frame (Ink4/ARF) family and the CDK inhibitory
protein/Kinase inhibitory protein (Cip/Kip) family. These
intracellular proteins are responsible for slowing or arresting
the progression through the cell cycle, by blocking impera-
tive events. The expression pattern and function of some of
these Cdk inhibitors in the context of adult neurogenesis
have also been characterized. P27kip1 (p27) is an important
Cdk inhibitor, that induces cell cycle exit in proliferative
cells [65]. In accordance, p27 expression decreases when
cells are exposed to mitogenic signals, allowing their en-
trance in the S phase [66]. In the context of adult hippocam-
pal neurogenesis, p27 protein is expressed in the SGZ of
mice [67] and rats [64]; interestingly, many of the p27 cells
co-express DCX in this region [67]. In vitro assays, using
cultured NPCs, showed rapid increases in p27 expression
following differentiation by growth factor withdrawal, thus
confirming its role in cell cycle arrest and NPCs differenti-
ation [67]. Additionally, deletion of p27 promoted an in-
crease in the proliferative pool of NPCs [67], in accordance
with previously published results in the SEZ [68]. These
data were corroborated by in vivo assays showing an in-
creased number of BrdU positive cells in the SGZ and in the
SEZ of p27 KO mice. These results, together with the
increased levels of proliferating cell nuclear antigen
(PCNA) expression in the KO animals, further suggest that
the absence of p27 promotes NPCs proliferation in both
adult neurogenic niches [67]. Adding to the p27 studies,
Pechnick et al. [69, 70] carried out two separate studies
exploring the function of p21cip1 (p21) in the mouse hip-
pocampus. Using a BrdU incorporation paradigm (one in-
jection every 2h in a total of three injections, and sacrifice
24 h after the first injection), the authors showed, both in
vivo and in vitro, that the absence of p21 lead to an increased
proliferation of hippocampal neurons. Ultimately, the work
suggests that p21 is responsible for blocking cell cycle
progression in the adult hippocampal SGZ [69, 70]. Inter-
estingly, p21 expression is restricted to neuronal committed
progenitors [70], unlike p27 that reveals no distinction on
lineage preference [67]. Strikingly, the results are not in
agreement with a previous report in which p21 deletion
showed no impact on the proliferation of neural progenitors
in basal conditions [71]. However, it is worth mentioning
that a different BrdU incorporation paradigm was used in
this latter study. Indeed, the use of BrdU incorporation
approaches has limitations as a direct measure of prolifera-
tion because does not always discriminates among effects
that may underlie an increased S phase labeling; for exam-
ple, G1/G2 phase shortening, increase in the growth fraction
and lengthening of S phase [56]. The appropriate controls,
the use of additional thymidine analogs and endogenous

markers of proliferation should improve the analyses and
may give a broader picture on the cell cycle regulatory
mechanisms.

A final word to mention E2F1, an element that is part of a
broad family of transcription factors involved in the regula-
tion of cell cycle progression [42], but also with important
roles in the adult neurogenic process. Contrary to what is
described for most members of this family, E2F1 has been
reported to induce cell death, by forcing postmitotic cells to
re-entry cell cycle [42, 72]. In the context of adult
neurogenesis, E2F1 was shown to be important for cell
proliferation and differentiation. Using a single BrdU injec-
tion paradigm, 2h before sacrifice, Cooper-Kuhn et al. [72]
showed that E2F1-deficient mice have decreased cell pro-
liferation and diminished neurogenesis, both in the hippo-
campal DG and the SVZ. These authors also described a
decrease of about 60-70 % in apoptotic cells, in the hippo-
campal neurogenic niche of E2F1-deficient mice compared
to wild-type (WT), further corroborating the role of this
gene in regulating cell death in the context of adult
neurogenesis [72]. Figure 1 depicts the cell cycle regulators
described in the context of adult hippocampal neurogenesis.

Signaling Pathways

Cell cycle entry promotion and initial progression through
G1 phase is induced by mitogens or growth factors present
in the extracellular environment [64, 73, 74]. The interplay
between cell cycle regulation and cell fate determination is
also a topic of great relevance [56]. In particular, the G1
phase length is crucial for the switch from proliferation to
differentiation and is modulated by cell cycle regulators and
cell fate determinants [56]. Thus, signaling from the niche is
suggested to be responsible for key processes in the regula-
tion of adult neurogenesis homeostasis, including: the bal-
ance between quiescence versus proliferation, the mode of
cell division, and the prevention of stem cell depletion [75,
76]. In this section we will briefly describe some of the
signaling pathways activated in the adult hippocampal neu-
rogenic niche.

The role of Notch signaling in NPCs in the adult hippo-
campus was investigated in vivo through inducible gain- and
loss-of-funct ion experiments . Act ivated Notch1
overexpression induced proliferation of endogenous progen-
itors, whereas inhibition or ablation of Notch1 signaling
promoted cell cycle exit, inducing the transition from neural
stem or progenitor cells to transit-amplifying cells or neu-
rons [77]. On the other hand, in maturing neurons, Notch1
proved to be relevant for survival and structural plasticity
modulation [77].

Bone morphogenetic proteins (BMPs) are other key reg-
ulatory components of the adult hippocampal neurogenic
niche, restricting the proliferation of the stem cell pool,
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through BMP receptor-IA (BMPR-IA) activation, and thus
maintaining the equilibrium between stem cell proliferation
and quiescence [75]. Downregulation of endogenous BMP
signaling promoted an increased proliferation of SOX2+
cells by recruiting quiescent radial cells into the cell cycle.
Moreover, the canonical BMP signaling pathway is
reactivated shortly after neuronal fate commitment, possibly
to promote cell cycle exit of newly born neurons [75].

Sonic hedgehog (Shh) is an evolutionarily conserved
secreted protein that plays an important role in many aspects
of developmental control [78], as well as in adult hippocam-
pal neurogenesis [79]. Shh signaling pathway was shown to
induce a dose-dependent proliferative response in progeni-
tors in vitro, whereas inhibition of Shh signaling reduced
proliferation in vivo. These studies confirmed Shh signaling
pathway as an important regulator of adult hippocampal
neural progenitors [79], suggesting also its involvement in
cell cycle regulation.

Like Shh, Wnt proteins are also well-known key regula-
tors of NSC behavior during embryonic development [80].
Wnt signaling has been reported as a regulator of adult
hippocampal neurogenesis [81], through the activation of
the proneural gene NeuroD1 [82]. Activation of NeuroD1 is
important for the generation of granule cells in the hippo-
campus and cerebellum [83], possibly by promoting cell
cycle exit.

Altogether, these data highlight the complex orchestra-
tion of the cell cycle process in the context of adult hippo-
campal neurogenesis, as well as the interplay between cell
cycle regulators and upstream molecular signaling path-
ways. Interestingly, there is a certain level of functional
redundancy among cell cycle regulatory components, pos-
sibly as an evolutionary mechanism to prevent severe dam-
age upon deficiency of one of these molecules. On the other
hand, most of these studies point to tissue and cell specific-
ity as a hallmark of these systems, proving that these regu-
lators may operate at different levels of the cell cycle and
implying the need for their fine tuning in the homeostatic
control of adult hippocampal neurogenesis.

Cell Cycle Regulation in Neuropathological Scenarios

The molecular mechanisms and pathways regulating adult
hippocampal neurogenesis in response to deleterious stimu-
li, and the contrasting actions of pro-neurogenic drugs, are
still largely undisclosed. It is legitimate to consider that
these alterations in adult neurogenesis may be attributable
to direct or indirect changes in cell cycle regulatory mech-
anisms. As such, the cell cycle machinery is possibly a
convergent pathway through which intrinsic and extrinsic
factors, such as stress and toxins, manifest their effects.
Indeed, cell cycle deregulation in the context of adult
neurogenesis has been associated with the pathogenesis of

neurodegenerative disorders, such as Alzheimer’s disease
[84] and Parkinson’s disease [85], neuropsychiatric dis-
eases, as is the case of schizophrenia [86] and major depres-
sion [87], and injury, namely stroke [88, 89]. These changes
in cell cycle dynamics, as observed in several disease states
[90–92], further reinforce the need for additional studies
examining the role of core cell cycle players as targets for
disruption. Next, we will briefly explore the case of depres-
sion as a paradigmatic example of how cell cycle deregula-
tion can lead to the development of pathological traits.

Major Depression

Major depression is a chronic and debilitating disease, and
one of the most common psychiatric disorders in modern
society. It is estimated that about 16 % of the population will
be affected by this disease once or several times during
lifetime [93]. Like other psychiatric disorders, depression
is a complex and heterogeneous clinical entity [94], depen-
dent on the interaction between genetic susceptibility [95,
96] and environmental factors [97]. Depressive patients
present symptoms of depressed_mood, learned helplessness,
anhedonia and impaired cognition, and present a high co-
morbidity with anxiety disorders [94].

Strikingly, depression is characterized by several patho-
physiological alterations in the brain such as differences in
size of specific brain regions, changes in neuronal morphol-
ogy, neurochemical and signaling alterations, and changes
in genetic and epigenetic regulation [98, 99]. Knowledge of
the etiopathogenesis of depression has progressed substan-
tially in the last years [100], in part due to studies employing
animal models. Animal models of depression use known
etiological factors (etiological validity) to induce behavioral
and neurobiological symptoms in animals similar to those of
the human disease (face validity). Moreover, a valid animal
model for the formulation of hypotheses and for the devel-
opment of novel therapeutic strategies should respond to
clinically effective treatments (predictive validity) [94,
101]. There are several animal models of depression: chron-
ic mild stress (CMS), social stress, early life stress, fear
conditioning and olfactory bulbectomy [97]. Although none
of them can fully recapitulate the complexity and heteroge-
neity of the human disease, they are considered robust
approaches to study the depression in humans. For example,
the CMS animal model presents alterations in the three
behavioral domains known to be affected in depressive
patients, i.e., mood, anxiety and cognition [94]. Despite this
large contribution of data from studies in animal models of
depression, and from post-mortem studies of human brains,
the neurobiological basis of this disorder is still poorly
defined. Importantly, the fact that approximately half of
the patients presenting clinical depression show incomplete
remission or relapse after treatment with the currently
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available antidepressants [97] further reinforces the need for
finding new molecular targets and more efficient treatments.

There are currently several leading hypotheses that at-
tempt to elucidate the neural and molecular mechanisms of
depression. The monoamine hypothesis of depression [102]
has been the most prevalent. The main support of this
hypothesis is the fact that most classic antidepressants in-
duce an increase of the serotonin and noradrenaline levels
[103]. More recently, additional studies have shown that
other mechanisms are implicated in the neurobiology of this
disorder; this is mostly based on the observation that other
factors are altered in depressed individuals [87, 104, 105]
and on the efficacy of new antidepressants, in which the
mechanisms of action do not rely on the monoamine trans-
mission systems [106–109]. Thus, several other hypotheses
on the etiology of depression have been put forward, includ-
ing: the neurotrophin hypothesis, the cytokine hypothesis,
the hypothalamic pituitary adrenal (HPA) axis modulation
hypothesis and the neurogenic hypothesis. Although none
of these are mutually exclusive, in this discussion we focus
mostly on the role of adult hippocampal neurogenesis and
on the molecular processes that can regulate it at the cell
cycle level.

The Neurogenic Hypothesis of Depression and Cell Cycle
(De)regulation

Studies showing reduced hippocampal neurogenesis in sev-
eral animal models of depression [110–112] constitute the
basis for the neurogenic hypothesis of depression. Impor-
tantly, all major classes of antidepressants [87, 113], and most
of the environmental factors that confer antidepressant-like
behavioral effects, such as environmental enrichment [114,
115], physical activity [115] and learning [7], are also known
to promote hippocampal neurogenesis. These facts have lead
to the proposal that neurogenesis may have a role in the
etiopathogenesis of depression; however, the currently avail-
able data strongly reinforces the need for restructuring this
possibly oversimplified view. Indeed, the functional implica-
tions of decreased neurogenesis for the precipitation and
maintenance of the depressive state are yet to be completely
established, as the experimental approaches and time frames
of analysis diverge. Some studies have implicated
neurogenesis in the emergence of behavioral deficits observed
in animal models of depression and in the actions of antide-
pressants [116–118]. While, other studies showed that at least
the short-term mood-improving actions of antidepressants
depend on neuronal remodeling in the hippocampus and pre-
frontal cortex (PFC), rather than on neurogenesis [110].More-
over, recently published data from our lab showed that the
appropriate incorporation of new cells in the adult rat hippo-
campus is a key factor for the long-term spontaneous recovery
from depressive-like behavior as well as for the action of

antidepressants [119]. Using a longer experimental time
frame, to allow the full differentiation and integration of
newborn cells in the pre-existing neuro-glial circuitry, it was
possible to fate-map the new cells generated during antide-
pressants treatment and understand their impact in distinct
behavioral dimensions [119]. These findings further reinforce
the need for an integrated time-dependent overview of the
neurogenic phenomenon with great emphasis on the function-
al role of newly generated cells in the adult hippocampus.
Importantly, most of the stimuli affecting adult neurogenesis,
are also responsible for inducing changes at the cell cycle level
in the progenitor cells of the hippocampal niche. Some of the
most relevant reports on cell cycle regulation in the context of
adult hippocampal neurogenesis and stress-related disorders
have disclosed a major role for Cdk inhibitors [64, 69, 70].
Heine et al. [64] evaluated the role of p27 in the regulation of
the cell cycle in the DG of rats following exposure to stress.
After 3 weeks of chronic exposure to unpredictable stress, rats
presented significantly decreased numbers of proliferating
cells, measured by ki67 immunostaining, and increased num-
bers of p27 positive cells in the SGZ. Notably, this effect was
not observed upon acute stress exposure. Moreover, the pro-
liferation levels returned to normal after a 3-week recovery
period from chronic stress, suggesting a transient p27-
dependent G1 arrest in the SGZ cells of chronically stressed
animals [64]. Somehow unexpectedly, neither cyclin-E nor
cyclin-D1 protein levels were significantly altered in these
animals when compared to controls [64].

Other animal studies have focused their attention on the
role of Cdk inhibitors regarding the pro-neurogenic action
of antidepressants [69, 70]. Pechnick et al. [69]showed that
naïve mice chronically treated with imipramine, a tricyclic
antidepressant, not only show increased neurogenesis in the
DG but also decreased the expression of p21 Cdk inhibitor
in the SGZ, when comparing to saline-treated controls. In a
more recent study, the same group analyzed the effects of
chronic administration of other classes of antidepressants on
SGZ p21 expression and neurogenesis; all antidepressants
tested (fluoxetine, imipramine and desipramine) were able
to specifically inhibit p21 expression in the mice DG and
this effect was linked to increased neurogenesis [70]. Unex-
pectedly, no change was noted in p27 expression following
antidepressants administration [70], possibly suggesting
specific roles for each of these Cdk inhibitors following
different stimuli. It is worth mentioning that Pechnick et
al. did not include an animal model of depression in their
studies, possibly accounting for these results. Together, the-
se findings support the involvement of cell cycle molecules
in the mechanistic association between stress and the action
of antidepressants, in the context of neurogenesis regulation.

A recent study has implicated the cyclin dependent ki-
nase 5 (Cdk5)/p35 complex in the development of
depressive-like behavior and in the action of antidepressants
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[120]. Cdk5 still has no recognizable function in the
progression of the cell cycle [37, 47], although structur-
ally similar to other Cdks. In fact, Cdk5 expression and
activity occur almost exclusively in postmitotic neurons,
both in the developing and in the adult brain [37]. This
kinase works as a cell cycle inhibitor in postmitotic
neurons, repressing aberrant cell cycle reentry, a phe-
nomenon linked to the development of several neurode-
generative disorders [37, 121]. Cdk5 regulation requires
activators that are specifically expressed in postmitotic
neurons. One of these activators is p35, a regulatory
subunit that translocates from the cytosol to the mem-
brane to induce Cdk5 activity [120, 121]. In a recent
study, it was reported an increased Cdk5 kinase activity
together with the translocation of p35 to the cell mem-
brane, in the DG of rats exposed to CMS. They also
observed that inhibition of Cdk5 specifically in the DG,
but not in the CA1 or CA3 of the hippocampus,
prevented the CMS-induced behavioral impairments, fur-
ther suggesting the involvement of the Cdk5/p35 com-
plex in the etiology of depressive-like behavior.
Remarkably, p35 overexpression blocked the antidepres-
sant behavioral effects of venlafaxine, a selective sero-
tonin reuptake inhibitor (SSRI) antidepressant [120].
These data suggest an association between Cdk5 activity
and the development of stress-related disorders [120],
similar to what has been previously described for some
neurodegenerative disorders [121]. Moreover, the studies
may also suggest that the effect of Cdk5 activation is
attributable to the impairments typically observed in
hippocampal neurogenesis induced by CMS exposure
[120]. Complementary studies with analyses of cell pro-
liferation and neurogenesis would help to better define
Cdk5 function in the adult hippocampus. Figure. 2b and
c show the schematic representations of the adult

hippocampal neurogenesis changes observed in animal
models of depression and after antidepressant treatment,
and the corresponding cell cycle alterations.

Changes in the signaling pathways known to be in-
volved in the modulation of adult hippocampal
neurogenesis have also been indirectly associated with
the development of depressive-like behavior in animal
models. Indeed, Wnt knockdown-mediated neurogenesis
ablation was shown to impair several hippocampal-
dependent cognitive functions, such as long-term reten-
tion of spatial memory and object recognition memory
[122]. Importantly, these cognitive behavioral deficits
were linked with depression onset and maintenance [94,
123]. Wnt signaling was further implicated in the actions
of fluoxetine, an SSRI antidepressant; chronic treatment
with this antidepressant was able to stimulate the expres-
sion of Wnt3a protein in the hippocampal DG. However,
Wnt activity appears to be preferentially implicated in
fluoxetine’s reported induction of neural plasticity and
not in its pro-neurogenic actions [124].

Notch and BMP signaling have also been shown to be
mediators of the pro-neurogenic actions of physical exercise.
Physical exercise is a stimulus with recognized antidepressant
effects [125, 126]. Moreover, it has been consistently reported
to robustly induce adult hippocampal neurogenesis, by pro-
moting the proliferation of progenitors and the survival and
maturation of newborn neurons [127-130]. More recently,
some studies investigated the molecular signaling correlates
of these cellular events [131-133]. Using thymidine analogs
incorporation paradigms, Brandt et al. showed that voluntary
exercise (i.e., mice that had access to a running wheel) pref-
erentially promotes the proliferation of DCX+type_3 precur-
sor cells and Notch1-dependent cell cycle exit. Since Notch1
is known to induce proliferation and inhibit differentiation in
earlier NPCs (type_1 and 2a cells) [77], it is interesting to

Table 1 Summary of the cell cycle and signaling alterations implicated in neurogenesis imbalances observed in animal models of depression and
mediating the pro-neurogenic effects of antidepressant drugs and stimuli

Experimental model Proliferation/neurogenesis in
the hippocampal DG

Molecular changes Reference

Cell cycle regulators

CUS exposed mice ↓ ↑ p27kip1+cells in the SGZ of the DG [64]

Naïve mice chronically treated with fluoxetine,
imipramine and desipramine

↑ ↓ p21cip expression in the SGZ of the DG [69, 70]

CMS exposed rats treated with venlafaxine,
mirtazapine, and aripiprazole

(Not assessed) ↑ Cdk5 activity and translocation of p35
activator to the membrane

[120]

Signaling pathways

Naïve animals chronically treated with
fluoxetine

↑ ↑ Wnt3a expression [124]

Voluntary exercise in mice (antidepressant
stimulus)

↑ ↑ Notch1 activity in DCX+cells (cell cycle
exit promotion)

[132]

SGZ subgranular zone, DG dentate gyrus, CUS chronic unpredictable stress, CMS chronic mild stress, DCX doublecortin [64, 69, 70, 120, 124, 132]
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notice these contrasting pro-neurogenic functions in more
committed progenitors [132]. Altogether the findings support
the use of experimental designs that specifically address the
role of molecular determinants in each hippocampal cell type.
Table 1 summarizes the most relevant studies regarding the
cell cycle and signaling alterations implicated in adult hippo-
campal neurogenesis imbalances in the context of depressive-
like behavior.

Conclusions and Perspectives

Sixty years after the first report of ongoing neurogenesis in
the adult brain, we are now at the point of evaluating the
physiological relevance of the incorporation of new neurons
in pre-existing neuronal networks. The integrated studies on
adult neurogenesis in its various stages—progenitor cells pro-
liferation, cell cycle exit, migration and differentiation—have
brought new players into the complex network of factors and
molecular mediators that directly or indirectly participate in
the process. Nonetheless, we were not yet able to establish the
precise molecular cascades that regulate the homeostasis in
adult neurogenic niches. Therefore, the future of this field of
research needs to build up an integrated view of the molecular
processes, by specifically targeting candidate molecules using
conditional approaches to overcome the limitations of
full_KO models. This approach will allow the exclusion of
possible compensatory mechanisms promoted during embry-
onic development, a strategy that seems to be of particular
importance in the case of cell cycle regulators. Additionally,
most of the literature on the regulation of adult neurogenesis
relies on the use of thymidine analogs incorporation, such as
BrdU. The use of these strategies to study cell cycle regulation
in the context of adult hippocampal neurogenesis requires
careful interpretation of the data. In this way, the appropriate
controls and additional strategies should be considered to
ensure that the results definitely reflect the generation of
new neural cells. Moreover, caution is needed when compar-
ing different studies, as distinct experimental paradigms may
draw contrasting conclusions.

More than a physiological phenomenon, adult hippocam-
pal neurogenesis is a process by which the etiology of many
neurodegenerative and neuropsychiatric disorders may be
unraveled. More importantly, the neurogenic process is a
substrate from which new molecular targets for treating
these disorders may arise. The diverse ways of approaching
the topic provide unique perspectives on how neurogenesis
may be implicated in homeostatic responses and in the
development of pathological states. The data reviewed here
strongly supports that both direct and indirect cell cycle
regulatory events may constitute relevant pieces to elucidate
the complex mechanisms underlying the response to anti-
and pro-neurogenic stimuli, in both basal conditions and in

disease. These reports further emphasize the pertinence of
modulating cell cycle regulators as targets for the develop-
ment of new therapeutic approaches for disorders associated
with neuroplastic imbalances.

Particularly in the case of major depression, new theories
beyond monoamines have created a broader picture on how
etiological factors are translated into disease and the action
of antidepressants into the alleviation of the most common
symptoms. In this context, much of the mechanisms are now
being explored, including those interfering with adult hip-
pocampal neurogenesis. However, the study of depression
still represents a challenge for research since it involves the
interplay between an individual’s genetic predisposition and
molecular responses to environment. Certainly, the discov-
ery of new molecular mediators will give us important clues
on susceptibility or predisposition targets, promoting the
establishment of novel disease models, in a feedback loop
that would nourish the field with new perspectives.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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