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Abstract The identification of causative mutations in the
(pro)granulin gene (GRN) has been a major breakthrough in
the research on frontotemporal dementia (FTD). So far, all
FTD-associated GRN mutations are leading to neurodegener-
ation through a “loss-of-function” mechanism, encouraging
researchers to develop a growing number of cellular and
animal models for GRN deficiency. GRN is a multifunctional
secreted growth factor, and loss of its function can affect
different cellular processes. Besides loss-of-function (i.e.,
mostly premature termination codons) mutations, which cause
GRN haploinsufficiency through reduction of GRN expres-
sion, FTD-associatedGRNmissensemutations have also been
identified. Several of these missense mutations are predicted
to increase the risk of developing neurodegenerative diseases
through altering various key biological properties of GRN-

like protein secretion, proteolytic processing, and neurite out-
growth. With the use of cellular and animal models for GRN
deficiency, the portfolio of GRN functions has recently been
extended to include functions in important biological process-
es like energy and protein homeostasis, inflammation as well
as neuronal survival, neurite outgrowth, and branching. Fur-
thermore, GRN-deficient animal models have been estab-
lished and they are believed to be promising disease models
as they show accelerated aging and recapitulate at least some
neuropathological features of FTD. In this review, we sum-
marize the current knowledge on the molecular mechanisms
leading to GRN deficiency and the lessons we learned from
the established cellular and animal models. Furthermore, we
discuss how these insights might help in developing therapeu-
tic strategies for GRN-associated FTD.
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Introduction

Frontotemporal dementia (FTD) predominantly affects peo-
ple below the age of 65 years. The average age-at-onset
varies between 45 and 65 years with a mean onset age in the
1950s [1]. There is no apparent gender preference and
depending on the study, the prevalence varies from 10 to
20/100,000 inhabitants [2]. Therefore, FTD is nowadays
recognized as the second most common form of presenile
dementia after Alzheimer disease (AD). Clinically, patients
with FTD show progressive behavioral changes, language
impairment, and/or executive dysfunction caused by an
atrophy of the prefrontal and anterior temporal neocortex
[3]. Pathologically, most of the patients are characterized by
the presence of cellular inclusions of either the microtubule-
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associated protein tau or TAR DNA-binding protein-43
(FTD-TDP) in affected brain regions, leaving 10–15 % of
patients with a different underlying pathological inclusion
protein [4]. The number of FTD patients with a positive
family history is high (40–50 %) with just over 10 % of
these familial patients belonging to families with an autoso-
mal dominant inheritance of disease [5]. Although recent
genetic breakthroughs have increased the number of identi-
fied genetic causes for FTD, still >60 % of patients with
familial FTD cannot be explained by a mutation in one of
the currently known causative genes [6].

In this review, we focus on FTD-TDP caused by muta-
tions in the (pro)granulin gene (GRN) and the recent prog-
ress realized through the generation and characterization of
GRN-deficient cellular and animal models. We discuss the
insights in the molecular mechanisms underlying GRN de-
ficiency generated by these models and how current knowl-
edge might be used to design potential therapeutic strategies
for GRN-related FTD-TDP.

Genetics

In the mid-1990s, segregation studies in autosomal dominant
families suffering from FTD with parkinsonism linked to
chromosome 17 provided the first evidence of a genetic cause
located in the chromosomal region 17q21 [7, 8]. A few years
later, extensive mutation analyses resulted in the identification
of mutations inMAPT, a gene located on chromosome 17q21
and encoding the microtubule associated protein tau [9–11].
Today, 44MAPTmutations have been reported in 134 families
including deletions, intronic splice site, and missense muta-
tions [12, 13]. Nevertheless, in a large number of autosomal-
dominant FTD patients linked to 17q21, noMAPT mutations
could be identified. Systematic genetic studies in the 17q21
region ultimately led to the identification of mutations in
another gene, the (pro)granulin gene (GRN) located proximate
to MAPT and coding for a multifunctional growth factor [14,
15], Today, nearly half of the familial FTD patients can be
explained by mutations in MAPT and GRN [16].

A total of 69 pathogenic GRN mutations have been
reported in patients with FTD and related disorders [12, 17],
the majority of which are loss-of-function mutations, unam-
biguously suggesting that GRN haploinsufficiency is at the
basis of the disease pathogenesis. Loss of GRN can be
achieved at several levels, either affecting the gene itself, the
expression of its transcript or protein [18], the transport,
stability, or processing of the mature protein (Fig. 1).

Most mutations are nonsense or frameshift mutations in-
troducing a premature termination codon (PTC) followed by
degradation of the mutant transcript by nonsense-mediated
mRNA decay (NMD; Fig. 1a; reviewed in [19]). Other muta-
tions lead to genomic deletion of one whole copy of the gene
(Fig. 1b) [20, 21], affect a splice donor site (Fig. 1c) resulting

in the inclusion of the nuclear retention signal and degradation
of the mutant transcript in the nucleus [15, 22, 23] or destroy
the translation initiation codon preventing translation (Fig. 1d)
[14, 15, 24, 25].

Together, all loss-of-function mutations inGRN explain 5–
10 % of all FTD patients and near 25 % if the FTD patients
have a positive family history of disease [17]. Besides classi-
cal loss-of-function mutations, 52 missense mutations have
also been described. Twenty-six of those were only observed
in patients suggesting their association with FTD and indicate
a potential pathogenic effect [12]. The identified missense
mutations are scattered over the entire GRN protein (Fig. 2)
indicating that they either affect the function of the GRN
precursor protein [17] or its proteolysis into functional gran-
ulin peptides.

In addition to the chromosome 17q21 locus, another locus
on chromosome 9 has been linked in autosomal dominant
families to FTD often associated with motor neuron disease
[26], and was confirmed bymany research groups [25, 27–30].
Nevertheless, it took more than 10 years of collaborative
efforts to identify a pathological hexanucleotide repeat expan-
sion in the regulatory region of the C9orf72 gene explaining
the linkage to chromosome 9 [6, 31, 32]. In some FTD cohorts,
a mutation frequency of 6 % with expansions in C9orf72 was
observed, similar to the GRN mutation frequency (7 %) [6],
identifying C9orf72 as another major genetic cause of FTD.
Functional analyses showed that the repeat expansion reduced
mRNA expression in mutation carriers suggesting C9orf72
haploinsufficiency [6, 31]. Conversely, nuclear RNA foci pos-
itive for C9orf72 were also detected [31] pointing to multiple
biological mechanisms that might contribute to disease in
C9orf72 repeat expansion carriers. Rare mutations in the genes
coding for the TAR DNA-binding protein 43 (TDP-43 or
TARDBP), valosin-containing protein (VCP) and charged mul-
tivesicular body protein 2B (CHMP2B) also contribute to the
FTD genetic etiology (reviewed in [33]).

To explore if potential genetic susceptibility factors might
contribute to FTD, genome-wide association (GWA) studies
were used [34]. The first GWA study was performed on FTD
patients with confirmed TDP-43 neuropathology or clinical
diagnosed FTD patients carrying mutations in GRN that pre-
dict TDP-43 pathology. This resulted in the identification of
the first FTD risk gene, TMEM106B, coding for a type 2
transmembrane protein [35, 36]. Carriers of pathogenic GRN
mutations showed the strongest association with TMEM106B
pointing to a possible disease modifying effect of TMEM106B
in GRN-associated FTD carriers (reviewed in [37]). Initial
expression studies suggested a positive correlation with
TMEM106B mRNA expression [36]; however, this could
not be observed in clinically diagnosed FTD patients [38].
Until now, the functional biological link between GRN,
TMEM106B and TDP-43 remains unclear. So far, one study
showed a significant correlation of TMEM106B and GRN
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Fig. 1 Overview of GRN loss-of-function mechanisms and their func-
tional consequences. Loss of GRN can occur on the transcriptional (a,
c), genomic (b), and translational level (d, e). Posttranscriptional
mechanisms include cytosolic missorting (e), inefficient secretion (f),
altered proteolytic processing into individual GRN peptides (i), and
potentially also regulation of transcription via binding to cyclin T1 (g).
GRN missense mutations can affect its neurotrophic properties (h) and

eventually affect the pro-inflammatory response initiated by TNF-α
through alteration of the binding affinity of GRN to the TNF receptor
(j). Mutations in GRN might also affect binding of GRN to sortilin (k)
thereby influencing the levels of extracellular GRN or inflammatory
signaling cascades stimulated by CpG-DNA (l). SP signal peptide,
NMD nonsense-mediated decay, PTC premature termination codon

Fig. 2 Schematic representation of GRN showing the distribution of
GRN missense variants within the GRN precursor protein. Black,
missense mutations detected in patients; gray, missense mutations

detected in patients and/or controls; red, missense mutations with
functional evidence of their pathogenicity; blue asterisk, predicted
glycosylation sites. SP signal peptide, aa amino acid
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levels in plasma [39], and altered expression of microRNAs
(miRNA) from the miRNA-132 cluster has been suggested
to influence TMEM106B expression levels in FTD patients
[40]. However, until now cell culture experiments using
TMEM106B overexpression or knockdown showed no con-
sistent effects on GRN levels [35, 40, 41]. Another GWA
study indicated an association of FTD with the chromosomal
region 1p13 near the sortilin gene as a regulator of plasma
GRN levels [42]. Furthermore, on-going efforts using next-
generation sequencing technologies might discover additional
genetic causal and risk factors contributing to the FTD etiol-
ogy. Increasing knowledge of the genetic etiology of FTDwill
likely increase our understanding of the underlying disease
mechanisms and might help directing future functional bio-
logical studies to unravel disease pathways.

Clinical and Neuropathological Characteristics

FTD patients carrying a GRN mutation clinically present
with a large phenotypic variability even within one family
segregating the same mutation [43–45]. Despite this vari-
ability, patients generally present with behavioral changes,
including apathy and social withdrawal as the most promi-
nent clinical symptoms (reviewed in [46]). Some GRN mu-
tation carriers also show clinical symptoms characteristic for
AD, Parkinson disease (PD) [22], progressive nonfluent
aphasia [47] and corticobasal syndrome [48]. Even some
clinical overlap with psychiatric disorders was recently de-
scribed [49]. Due to this clinical heterogeneity and because
symptoms can change over time, it can be a challenging task
for neurologists to provide patients with the precise clinical
diagnosis. The age at onset in GRN mutation carriers is also
highly variable and ranges from 35 to 89 years with a mean
onset of around 60 years [46]. The penetrance of GRN
mutations is incomplete with approximately 50 % carriers
affected at age 60 and 90 % at 70 years [24]. Patients with
GRN-associated FTD have considerable frontal atrophy but
also temporoparietal atrophy is associated with GRN muta-
tions [50]. Mostly, asymmetric distributed hemispheric at-
rophy can be observed in GRN mutation carriers and based
on the asymmetric pattern, neuroimaging can differentiate
GRN and MAPT mutation carriers [51]. Further studies also
showed that FTD patients with a GRN mutation have a
faster rate of whole brain atrophy than patients with aMAPT
mutation resulting in smaller brain volumes in the GRN
carrier group [51, 52]. Interestingly, a study reported poten-
tial compensatory mechanisms of brain plasticity in both
presymptomatic GRN mutation carriers with normal cogni-
tive and behavioral performances as in FTD patients with
GRN mutations [53].

Neuropathologically, GRN-associated FTD is predomi-
nantly characterized by neuronal and glial cytoplasmic and/
or lentiform intranuclear inclusions (NCI or NII, respectively)

in the affected cortical regions, which are immunoreactive to
ubiquitin and TDP-43 but not to tau and alpha-synuclein [54].
Other consistent neuropathological features caused by GRN
deficiency are extensive astrogliosis, loss of myelin in the
underlying white matter, hippocampal sclerosis and irregular
dystrophic neurites [46]. Biochemically, GRN-associated
FTD is characterized by the accumulation of abnormally
phosphorylated TDP-43 and both TDP-43 full-length and C-
terminal fragments (CTFs) are recovered in detergent insolu-
ble urea fractions from affected brain regions [55–57]. The
exact mechanism how GRN haploinsufficiency is linked to
the generation of pathological TDP-43 is still not completely
understood, but evidence is accumulating that GRN deficien-
cy reduces the efficiency of cellular degradation processes and
in turn increases the general susceptibility towards cellular
stressors [58].

Progranulin: A Multifunctional Protein

Gene and Protein

In humans, the gene coding forGRN is located on chromosome
17 at cytogenetic band 17q21 and comprises 12 exons [59]
(Fig. 3). GRN is coding for a 593 amino acid long secreted
protein with a predicted molecular weight of 68.5 kDa. GRN
contains a signal sequence and seven and a half tandem repeats
of a unique 10–12 cysteine-containing motif called granulin
domains, a modular organization resembling the precursor of
the epidermal growth factor [60]. During maturation of GRN
the signal peptide gets cleaved off and mature GRN is secreted
as a glycosylated full-length protein with an apparent molecular
weight of 90 kDa, which can undergo proteolysis resulting in
the generation of individual granulin peptides [60].

The mouse homolog to human GRN (Grn) is located on
chromosome 11 [61], and both mouse and rat Grn code for a
589-amino acid protein displaying 75 % overall identity and a
similar modular structure [62]. Each granulin domain is
encoded by two neighboring exons suggesting the formation
of hybrid granulin-like proteins by alternative splicing [59].
Possible alternative spliced transcripts have been observed in
some cell lines [63], however, their expression in vivo and thus
biological relevance are still unknown. Several independent
research groups have purified and characterized individual
granulin peptides from different cells and organisms and named
them granulins [64] or epithelins [65] due to their association
with granulocytes or epithelial cells. The diverse functions of
GRN are already reflected in the different designations used in
the literature, i.e., proepithelin, GRN, granulin-epithelin pre-
cursor, acrogranin, 88 kDa glycoprotein, epithelial transform-
ing growth factor, or PC cell-derived growth factor [66–69]. In
this review paper, we use the official designated nomenclature
for the human (GRN and GRN) and murine (Grn and Grn)
gene and protein, respectively (http://www.genenames.org/).
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Gene and Protein Expression

Gene expression can be detected throughout the whole body
but GRN is predominantly expressed in epithelial and hema-
topoietic cells [60, 62]. Among the various analyzed tissues,
protein expression was particularly high in spleen, placenta,
and kidney [60, 70]. In the central nervous system (CNS),
GRN is expressed both in neurons and microglia but not in
astrocytes as observed in transgenic knock-in mice expressing
a reporter gene from the Grn locus [71]. Two additional
studies evaluating GRN mRNA and protein distribution,
showed GRN expression in various brain areas including the
cingulate and piriform cortices, the pyramidal cell layer and
dentate gyrus of the hippocampus, the amygdala, the ventro-
medial, and arcuate nuclei of the hypothalamus and the Pur-
kinje cell layer in the cerebellum [72, 73]. Expression of Grn
mRNA in the hypothalamus is inducible by androgens sug-
gesting an involvement of Grn in the masculinization of the
brain [74–76]. GRN expression can also be regulated by
miRNAs [77–80], which are posttranscriptional regulators of
gene expression, and brains of GRN associated FTD patients
show significant alterations in miRNA expression [40, 81].
Furthermore, increased methylation of the GRN promoter has

recently been suggested to correlate with GRN expression in
peripheral blood mononuclear cells [82] and further studies
are awaited evaluating whether GRN promoter methylation
can also be correlated with GRN expression in brains of FTD
patients. In microglia, GRN expression is largely increased
upon activation whereas in neurons it increases during matu-
ration [71]. Although baseline levels of GRN expression in
astrocytes were below the detection limit in most studies,
stimulation with Toll-like receptor (TLR) ligands and Th1
cytokines led to significant upregulation of GRN expression
in human primary astrocytes [83].

The reports on the expression of GRN in the brain during
normal aging are contradictory. One study, analyzing mice up
till 12 months of age, reported decreasedGrnmRNA levels in
an age-dependent manner in the hippocampus and hypothal-
amus as well as in the cerebral cortex [73], suggesting impor-
tant functional consequences for the early pathogenesis of
GRN-associated FTD. In contrast, a meta-analysis of a large
set of expression arrays reported increasedGRNmRNA levels
in association with aging in a large variety of tissues including
cortex and hippocampus [84]. It is possible though that
region-specific reduction of GRN expression contributes to
disease pathogenesis and the observed increases of GRN

Fig. 3 Schematic representation of the GRN locus on chromosome 17, the structure of the GRN gene, mRNA, and GRN protein as well as the
consensus amino acid sequence of a granulin domain

Mol Neurobiol (2013) 47:337–360 341



mRNA expression with age might reflect increased microglia
reactivity due to chronic low-level neuroinflammation, a fea-
ture observed also in the normal aged brain [85].

GRN Protein Structure

Dissecting the protein structure of human GRN by high-
resolution NMR shows that three of the granulin peptides
(granulin A, C, and F) contain relatively well-defined three-
dimensional structures in solutionwith a stable stack of twoβ-
hairpins in their N-terminal subdomains [86]. This is in accor-
dance with the previously reported more rigid stacked β-
hairpin granulin fold of crap granulin A [87]. In contrast, the
C-terminal subdomain of the granulins seems to be more
flexible [86]. While granulin A, C and F represent well-
folded peptides, the residual granulin peptides (granulins B,
D, E, and G) exist as poorly structured disulfide isomers [86].
Whether and how these structural differences are responsible
for the biological activity of the individual granulins or even
the GRN protein, requests systematic analysis in the future.

GRN as a Mitogen and Neurotrophic Protein

Since the initial reports on the identification of GRN, a large
body of literature has accumulated describing the mitogenic or
inhibitory effects of GRN and its proteolytically cleaved gran-
ulins on various cell types (for a recent review, see [88]).
Further evidence for the activity of GRN as an important
growth factor came from the numerous oncological studies
reporting increased GRN expression as a negative prognostic
factor in many different cancers [89]. The effect of GRN on
neuronal cells is less well described. Recently, extracellular
administration of GRN was reported to stimulate neurite out-
growth in cultured motor and cortical neurons [90], demon-
strating for the first time the neurotrophic properties of GRN.
In similar experiments, the putative loss-of-function outcome
of some FTD-associated GRN missense mutations could be
demonstrated [91–93]. Moreover, GRN was able to increase
neuronal survival [90] and to protect neurons from neuronal
apoptosis caused by Grn deficiency [94] or by toxic insults
[95], suggesting that GRN is a neuronal survival factor. Al-
though granulin E showed similar neurotrophic and neuro-
protective properties, it would not be surprising if some of the
other granulins would have opposing effects, as it was ob-
served on other cell types [86]. Further studies are awaited to
determine the actual contribution of the individual granulins
on neuronal homeostasis.

GRN Signaling

GRN is thought to exert its mitogenic effect through the
stimulation of both the mitogen-activated protein kinase
(MAPK) and the phosphatidylinositol 3-kinase pathways

[96–99]. In neurons, GRN was shown to stimulate the phos-
phorylation of Akt [91, 94, 95] and glycogen synthase kinase
(GSK)-3β [91, 95], while the effect on the MAPK pathway
was not consistently observed [91, 94, 95]. Furthermore, GRN
also affects insulin signaling in adipocytes downstream of the
insulin receptor [100], is the only growth factor that can
stimulate cells deficient for the insulin-like growth factor 1
(IGF-1) receptor [101] and can substitute for IGF-1 signaling
in the regulation of muscle growth [102]. Initial attempts to
find the GRN cell surface receptor by chemical crosslinking
techniques resulted in the identification of two classes of
binding sites on epithelial cells and fibroblasts: a high-
affinity site with a relatively low number of receptors per cell
and a low-affinity site with a larger number of receptors per
cell [103, 104]. One study estimated a size of ≈120 kDa for the
receptor [104], while another study reported the interaction of
GRN with a receptor of ≈170–175 kDa [105].

Sortilin, a 100-kDa type-1 membrane receptor involved in
lysosomal targeting [106] was identified as a high-affinity
neuronal receptor of GRN [107]. Sortilin facilitates rapid
endocytosis and delivery of GRN to the lysosomes through
binding of the GRN C terminus to the beta-propeller region of
sortilin [108] and thereby regulating extracellular levels of
GRN [42, 107]. Sortilin not only regulates the release of
pro-neurotrophins (proNT), but is also implicated, together
with p75NTR, in regulating signal transduction by proNTs
[109]. A study using hippocampal neurons from sortilin
knockout mice showed that the neurotrophic effect of GRN
is independent of sortilin since GRN stimulated neurite out-
growth was not affected in these neurons [92]. Hence, the
identification of additional cell surface receptors for GRN will
be a major step forward in understanding GRN-linked signal-
ing events.

GRN and Inflammation

Both the human and murine promoter contain several regula-
tory cis-elements that are possibly involved in cytokine and
growth factor regulated transcriptional gene expression [110],
and the involvement of GRN in inflammatory processes has
been well described [111–115]. GRN has a function during
wound healing, where it increases the accumulation of neu-
trophils, macrophages, blood vessels, and fibroblasts in the
wound [111]. Mediation of the inflammatory response
involves proteolytical processing of anti-inflammatory GRN
into pro-inflammatory granulins by the serine proteases neu-
trophil elastase and proteinase 3 [112, 115]. Some metallopro-
teinases (MMP-9, MMP-12, MMP-14, and ADAMTS-7) also
show substrate specificity for GRN [83, 116–118] and can act
as GRN convertases. Secretory leukocyte protease inhibitor
(SLPI) is known as a natural regulator of the proteolytic
process through binding to GRN and inhibiting the elastase-
mediated GRN proteolysis [115]. Accordingly, SLPI-deficient
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mice show impaired wound healing, most likely due to a
reduction of Grn caused by increased elastase activity [119].
Subcutaneous administration of GRN completely restored the
proper wound healing process in SLPI-deficient mice [115].
Furthermore, GRN was described as a potent inhibitor of the
inflammatory cytokine tumor necrosis factor alpha (TNF-α)
signaling [115, 120], whereas individual granulins A and B
are thought to be pro-inflammatory through the induction of
the pro-inflammatory cytokines interleukin-8, TNF-α, and
interleukin-1b expression [115, 121]. A further role for GRN
as a soluble co-factor for the delivery of CpG-oligonucleotides
to TLR 9 was described [122], but how exactly CpG-
oligonucleotide-bound GRN meets TLR9 in the endolysoso-
mal compartment is not known. One could speculate that
binding of GRN to sortilin and subsequent endocytosis might
be involved in this process [123].

In the CNS, GRN can act as a chemoattractant to recruit
and/or activate microglia followed by increased endocytosis
of extracellular peptides such as amyloid beta [124]. In-
creased GRN expression, especially in activated microglia,
is a consistent feature of human neurodegenerative condi-
tions [125–127] including FTD caused by GRN haploinsuf-
ficiency [14, 15, 128]. Grn was also among the top
upregulated molecules around amyloid plaques in AD
mouse models [129], and in activated microglia of models
of motor neuron degeneration [130–132].

Inflammatory mediators like TNF-α and TGF-β are in-
creased in the cerebrospinal fluid (CSF) but not in serum of
patients with FTD [133], and FTD patients with GRN muta-
tions have significantly higher circulating levels of IL-6
compared with FTD patients without a GRN mutation or
control individuals [134]. Similarly, Grn knockout mice
(Grn−/−) responded with an exaggerated production of pro-
inflammatory cytokines upon LPS stimulation and delayed
recovery of bacterial infections [114], suggesting that the
GRN-mediated neurodegeneration could be a result of cu-
mulative damage through deregulation of inflammation.
This is in line with the sustained neuroinflammatory pro-
cesses that contribute to neurodegenerative diseases such as
AD [135] and PD [136].

GRN in Energy Homeostasis

Obesity and aging of the human population are two key
concerns worldwide with a large social, medical, and eco-
nomic impact. A link between neurodegenerative diseases
and obesity has been suggested and a number of studies
associate obesity with cognitive decline and enhanced vul-
nerability to brain injury [137]. Insulin resistance and type 2
diabetes are associated with the pathogenesis and patho-
physiology of some human neurodegenerative diseases
[138], and deficits in insulin signaling lead to hyperphos-
phorylation of tau [139]. In addition, increased GRN serum

levels were linked to type 2 diabetes and physical training
could significantly reduce GRN levels by about 20 % in
these patients [140]. Furthermore, renal function has also
been suggested to significantly affect GRN serum levels
[141]. Increased GRN levels were also associated with
insulin resistance in obese individuals, which had also a
tendency for higher IL-6 and MCP-1 serum concentrations
[142].

Mouse models of obesity also showed increased Grn levels
in blood and adipose tissues, which could be normalized by
the insulin-sensitizing agent pioglitazone [100]. High fat diet
leads to insulin resistance through the induction of IL-6 and
Grn was shown to be a key mediator of this process [100].
Extracellular administration of GRN results in impaired insu-
lin signaling downstream of the insulin receptor and leads to
insulin resistance, whereas Grn deficiency enhances insulin
sensitivity resulting in reduced deposition of peritoneal fat in
GRN-deficient mice [100]. In the hypothalamus, Grn is in-
volved in glucose sensing and GRN levels have been inverse-
ly correlated with appetite and food intake [143] and
behavioral changes in FTD patients, including GRN mutation
carriers, include overeating as well as a preference for sweet
food [16]. These studies suggest important functions of GRN
as an adipokine and one might hypothesize that disturbances
in energy homeostasis could contribute to precipitate neuro-
degeneration in GRN-associated FTD.

GRN Loss-of-Function Mechanisms

Besides classical loss-of-function mutations, mutations lead-
ing to non-synonymous amino acid substitutions have also
been described and some of them are predicted in silico to
affect protein function [17]. Due to the multifunctional char-
acter of GRN, the functional consequences of these missense
mutations might be widespread and subtler. Some GRN mis-
sense mutations are potentially causing a partial haploinsuffi-
ciency by affecting protein translation, sorting and GRN
secretion (Fig. 1e, f). The first identified missense mutation
(p.A9D) was located in the GRN signal peptide [144], and
functional analyses showed that the mutant protein was not
secreted due to cytoplasmic missorting [145, 146]. Two other
missense mutations (p.P248L and p.R432C) affected protein
secretion and stability and potentially reduce the amount of
available GRN [146]. Intracellular GRN has been shown to
bind to cyclin T1 in the cytoplasm and blocking its transloca-
tion to the nucleus (Fig. 1g). This interference with the assem-
bly of functional pTEFb complexes leads to inhibition of
transcription from cellular promoters like the cad and c-myc
promoter [147, 148]. It would therefore be interesting to
investigate if GRN missense mutations affect gene transcrip-
tion by altering cyclin T1 binding, ultimately resulting in a
distinct molecular phenotype similar to that observed in brains
of GRN-associated FTD patients [149]. Furthermore,
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missense mutations can affect the neurotrophic properties of
GRN (Fig. 1h) as indicated by the reduced ability of mutant
GRN to stimulate neurite outgrowth and neuronal survival
[91, 93]. The exact mechanism is unknown but it was sug-
gested that missense mutations might affect proper receptor-
ligand interaction due to conformational changes in the pro-
tein [93]. Serine proteases like neutrophil elastase or protein-
ase 3 are involved in converting GRN into granulins (Fig. 1i)
[112, 115], a process that is important during inflammatory
conditions. A set of missense mutations, especially those
affecting highly conserved cysteine residues (p.C139R and
p.C521Y), were shown to interfere with proper proteolytic
GRN processing [93]. This eventually affects the course of an
inflammatory response and thus might contribute to neurode-
generative disease. It is also intriguing to consider that mis-
sense mutations in GRN might affect the regulation of
inflammatory processes by affecting the ability of GRN to
compete with TNF-α for its cognate receptors [120, 150] and
thus attenuating the inflammatory reaction (Fig. 1j). A recom-
binant GRN peptide called antagonist of TNF/TNFR signal-
ing via targeting to TNF receptors (ATSTTRIN) that includes
parts of granulins F, A, and C, proved even more potent than
GRN in attenuating the response to TNF-α [120]. Of note is
that eight GRN missense mutations affect amino acids inside
this region [12]. Moreover, it would also not be surprising if
some missense mutations would affect binding of GRN to
sortilin (Fig. 1k) and by this either alter the levels of extracel-
lular GRN or influence the innate immune response by affect-
ing the, until now hypothetical, model of CpG-oligonucleotide
delivery to TLR9 in the endosomes (Fig. 1l) [122, 123]. De-
tailed information on how GRN missense variants affect GRN
function and/or processing is still scarce and therefore further
functional studies will be tremendously important to group the
missense mutations into functional clusters depending on the
biological process they are affecting.

Modeling Progranulin Loss in Cells

Keeping the balance of bioavailable GRN seems to be crucial
for maintaining cellular homeostasis as both GRN overexpres-
sion and deficiency are linked to the development and pro-
gression of cancers and neurodegeneration, respectively.
Increased GRN levels are correlated with significantly in-
creased tumorigenicity in several types of cancer and reducing
the levels by RNA interference or neutralizing antibodies
generally reduces cell proliferation and tumorigenicity [151].
Downregulation of GRN expression causes alterations in cell
cycle progression due to reduction of cyclin D1, CDK4, and
alpha-tubulin [152–154] and leads to caspase-mediated apo-
ptosis or increased susceptibility to it, depending on the cell
type [91, 94, 155–158].

Following the identification ofGRN loss-of-function muta-
tions in FTD patients [14, 15], and the proposed role of GRN

as a modifying factor in other neurodegenerative diseases
[159, 160], the neuroscience community has put increasing
efforts in understanding and characterizing the role of GRN in
the CNS. One of the key questions to answer is how GRN
deficiency can lead to neurodegeneration. GRN is widely
expressed in the CNS [72, 73] and its expression and secretion
was confirmed in neuronal progenitor cells (NPCs), cultured
primary neurons, motor neuron cell lines, and neurons derived
from induced pluripotent stem (iPS) cells [94, 161–164],
making those valuable tools to further study GRN function.
The addition of exogenous GRN proved beneficial for neurite
outgrowth and neuronal survival [90] and supported neuronal
survival of motor neuron cell lines even under serum depri-
vation [164]. Both GRN and granulin E showed neurotrophic
properties in vitro [90, 92] and three studies using mutant
GRN proteins showed that the missense mutations interfere
with the neurotrophic functions of GRN [91–93]. However,
the exact mechanism how GRN promotes neurite outgrowth
and neuronal survival is still not completely understood. The
first study using neurons derived from iPS cells, generated
from an FTD patient with aGRN nonsense mutation, suggests
defects of GRN-deficient neurons in the PI3K/Akt andMAPK
signaling pathways [161]. Furthermore, GRN preferentially
activates the PI3K/Akt signaling pathway in cortical neurons
derived from Grn−/− mice and Grn deficiency in these cells
leads to a subtle reduction in phosphorylated Akt [94]. In
NPCs [162] and primary neurons [91] GRN stimulated
GSK3-Beta (GSK3β) phosphorylation, which could be abol-
ished by PI3K inhibitors [162], supporting the involvement of
the PI3K/Akt pathway in GRN-mediated survival signaling.
While GRN stimulation results in significantly increased neu-
rite outgrowth, siRNA-mediated GRN knockdown has the
opposite effect [165] and causes impaired retinoic acid-
induced neuronal differentiation of neuroblastoma cells pos-
sibly through reduced phosphorylation of GSK3β [91]. To-
gether these data suggest an essential role of PI3K/Akt
signaling and regulation of GSK3β in GRN-mediated neuro-
nal integrity. GSK3β is known to be critically involved in the
canonical Wnt-signaling pathway [166], but a recent study
using inducible GRN knockdown in human NPCs also iden-
tified a major adaptive role for the noncanonical Wnt signal-
ing pathway in GRN-associated FTD [163]. The amount of
data and their functional impact further strengthen the validity
of using such cellular models to find key molecular mecha-
nisms that are affected by GRN deficiency.

Proper neuronal connectivity is crucial for maintaining
brain homeostasis and Grn knockdown [165] or knockout
[167] in primary hippocampal cultures has been associated
with reduced neural connectivity. In these experiments, Grn
loss led to decreased neuronal arborization and length as
well as spine and synapse density [165, 167], which could
be responsible for alterations in the synaptic output. Al-
though Grn knockdown resulted in a significant reduction
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in synapse density, the number of synaptic vesicles per synapse
was increased, a phenomenon also observed in postmortem
brain sections of GRN-associated FTD patients [165]. In this
study, the authors also reported an increased frequency of
spontaneous glutamatergic transmission upon Grn knockdown
in hippocampal neurons [165], thereby supporting the theory
that GRN deficiency increases the probability of release at
remaining synapses due to increased vesicle density. This might
be directly caused by GRN deficiency or could be reflecting a
compensation of the reduced number of synapses [165]. How-
ever, in hippocampal slice cultures the release probability was
comparable between slices from Grn−/− and wild-type (wt)
mice, supporting the theory that the decreased synaptic output
might rather be caused by the reduced number of functional
synapses [167]. Further studies are highly encouraged as the
observed synaptic dysfunction significantly precedesmost indi-
cations of neuropathological changes in this model [167].

Loss of GRN is ultimately associated with degeneration
of cortical and hippocampal neurons [168] and the first
cellular studies are highlighting the important role of GRN
expression on neuronal survival. Complete loss of Grn [94]
or persistent GRN knockdown in mouse primary cortical
neurons [155, 169] and human NPCs [163] or GRN hap-
loinsufficiency in patient derived iPS cells [161] led to
significantly increased caspase activation and reduced neu-
ronal survival, however, no effect on neuronal survival of rat
hippocampal neurons was observed upon Grn knockdown
in another study [165]. Furthermore, GRN deficiency was
priming neuroblastoma cells for staurosporine-induced apo-
ptosis [91] and increased the susceptibility of cultured neu-
rons or hippocampal slice cultures to cellular stressors such
as inhibiting proteasomal proteolysis [94], NMDA-mediated
excitotoxicity, oxidative stress [155] glucose, and oxygen
starvation [114] or kinase inhibitors [161]. Overexpression
of GRN or addition of extracellular GRN rescued these
effects [95, 155, 161] due to the activation of cell survival
signaling pathways [95], suggesting that the increased sus-
ceptibility of neurons is specific for GRN deficiency.

Inadequate responses to inflammatory insults are also like-
ly contributing to FTD pathogenesis and cellular studies using
macrophages ormicroglia fromGrn-deficient mice indicated a
critical involvement of Grn in regulating TLR9 signaling
[122]. Furthermore, Grn deficiency resulted in an exaggerated
inflammatory response defined by an increased production of
pro-inflammatory cytokines and reduced production of anti-
inflammatory IL-10. Grn-deficient microglia were also more
cytotoxic compared with wt controls [114, 163].

Lastly, the major biochemical feature of GRN-associated
FTD is the redistribution of TDP-43 from the nucleus to the
cytoplasm, increased TDP-43 phosphorylation and generation
of aggregation-prone TDP-43 CTFs that accumulate in neu-
ronal intranuclear or cytoplasmic inclusions [55, 57]. The first
study investigating the cellular link between GRN and TDP-

43 reported increased accumulation of TDP-43 CTFs, with no
obvious redistribution of TDP-43 from its predominant nucle-
ar localization in non-neuronal cells [158]. However, subse-
quent attempts to reproduce this effect in similar cell lines
failed to detect increased caspase activation and TDP-43
fragmentation upon GRN knockdown in non-neuronal cells
[94, 146, 170]. Moreover, N-terminal sequencing of the TDP-
43 CTFs isolated from brains of FTD patients indicated that
these CTFs are different from those generated upon caspase
cleavage [171]. Interestingly, increased redistribution of TDP-
43 from the nucleus to the cytoplasm was observed in cortical
neurons upon persistent knockdown of Grn [155] and neurons
derived from GRN-deficient iPS cells [161]. Additional stress
by disturbing the proteasomal machinery also resulted in
increased accumulation of phosphorylated full-length TDP-
43 in primary cells derived from Grn−/− mice [94].

The established cellular models of GRN deficiency have
already improved our understanding on the multiple cell bio-
logical functions of GRN. However, so far, no GRN-deficient
cell-culture model could recapitulate all pathological hall-
marks of FTD including the ubiquitinated and TDP-43 posi-
tive nuclear and/or cytoplasmic aggregates. As some of the
FTD characteristic features might be difficult to completely
recapitulate in vitro, animal models of GRN deficiency have
been developed to further deepen our understanding of the
GRN biology on the level of a whole organism.

Progranulin-Deficient Animal Models

The granulin/epithelin motif defines a family of structurally
unique proteins, of great evolutionary antiquity [60, 172].
Granulin motif encoding genes are present in most com-
monly used laboratory animals including Caenorhabditis
elegans [173], Danio rerio [172], Xenopus leavis [174],
and Mus musculus [61], making them valuable tools to
study the effect of GRN deficiency in an in vivo setting.

Nonrodent Models of GRN Deficiency

In the nematode C. elegans, the GRN gene encodes for a
secreted protein with three predicted granulin domains, which
is expressed in intestinal cells and selected neurons, but not in
muscle cells [173]. GRN deletion mutants appeared grossly
normal with a normal lifespan but they produced approxi-
mately 20 % less progeny. GRN-deficient C. elegans showed
significantly fewer apoptotic bodies, a phenomenon that was
attributed to an increased clearing of apoptotic cells [173].
Based on these results, Kao et al. proposed a speculative
model suggesting that cells of GRN-deficient organisms do
not have enough time to recover from sub-lethal stress ulti-
mately leading to cumulative cellular loss over time [173].
Table 1 gives an overview of the currently described non-
rodent GRN-deficient animal models.

Mol Neurobiol (2013) 47:337–360 345



T
ab

le
1

O
ve
rv
ie
w

of
no

nr
od

en
t
m
od

el
s
of

G
R
N

de
fi
ci
en
cy

an
d
pr
im

ar
y
ph

en
ot
yp

es

K
ao

et
al
.
[1
73
]

S
ha
nk

ar
an

et
al
.
[1
46
]

L
i
et

al
.
[1
75
]

C
hi
tr
am

ut
hu

et
al
.
[1
76
]

L
ai
rd

et
al
.
[1
77
]

M
od

el
or
ga
ni
sm

C
ae
no

rh
ab

di
tis

el
eg
an

s
D
an

io
re
ri
o

D
an

io
re
ri
o

D
an

io
re
ri
o

D
an

io
re
ri
o

G
R
N

ge
ne
s

pg
rn
-1

zf
G
R
N
-1
,
zf
G
R
N
-2

(p
re
cu
rs
or
);
zf
G
R
N
-A
,
zf
G
R
N
-B

(s
ho

rt
er

pe
pt
id
es
)

S
tr
uc
tu
re

3
gr
an
ul
in

do
m
ai
ns

zf
G
R
N
-A

,
10

gr
an
ul
in

do
m
ai
ns
;
zf
G
R
N
-B
,
9
gr
an
ul
in

do
m
ai
ns

zf
G
R
N
-1
,
1.
5
gr
an
ul
in

do
m
ai
ns
;
zf
G
R
N
-2
,
1.
5
gr
an
ul
in

do
m
ai
ns

M
od

if
ic
at
io
n

D
el
et
io
n
m
ut
an
t

zf
G
R
N
-B

kn
oc
kd

ow
n

(a
nt
is
en
se

gr
ip
N
A
)

zf
G
R
N
-A

kn
oc
kd

ow
n

(m
or
ph

ol
in
o
ba
se
d)

zf
G
R
N
-A

kn
oc
kd

ow
n

zf
G
R
N
-A

an
d
zf
G
R
N
-B

kn
oc
kd

ow
n
(m

or
ph

ol
in
o
ba
se
d)

34
7-
bp

de
le
tio

n
in
cl
ud

in
g
pa
rt

of
G
R
N

pr
om

ot
er
,
ex
on

1,
an
d
pa
rt
of

fi
rs
t
in
tr
on

zf
G
R
N
-B

kn
oc
kd

ow
n

(m
or
ph

ol
in
o
ba
se
d)

P
he
no

ty
pe

N
or
m
al

lif
e
sp
an

N
o
m
or
ph

ol
og

ic
al

ph
en
ot
yp

e
R
ed
uc
ed

pr
ol
if
er
at
io
n
an
d

in
cr
ea
se
d
ap
op

to
si
s
in

he
pa
to
cy
te
s

T
ru
nc
at
ed

m
ot
or

ne
ur
on

s
(z
fG

R
N
-A

)
T
ru
nc
at
ed

m
ot
or

ne
ur
on

s;
m
or
e

pr
on

ou
nc
ed

w
ith

zf
G
R
N
-

A
kn

oc
kd

ow
n

20
%

le
ss

pr
og

en
y

N
o
ef
fe
ct
s
on

T
D
P
-4
3

lo
ca
liz
at
io
n

D
ec
re
as
ed

liv
er

si
ze

In
ap
pr
op

ri
at
e
ea
rl
y

br
an
ch
in
g
(z
fG

R
N
-A

)
N
o
ef
fe
ct
s
on

T
D
P
-4
3
lo
ca
liz
at
io
n

F
ew

er
ap
op

to
tic

bo
di
es

du
ri
ng

de
ve
lo
pm

en
t,
bu

t
no

de
fe
ct
s

in
ce
ll
de
at
h

R
ed
uc
ed

ex
pr
es
si
on

of
he
pa
tic

M
E
T

S
w
im

m
in
g
de
fi
ci
t,
bu

t
no

rm
al

to
uc
h
re
sp
on

se
(z
fG

R
N
-A

)

A
lte
re
d
ki
ne
tic
s
of

ce
ll
de
at
h;

fa
st
er

cl
ea
ri
ng

of
ap
op

to
tic

ce
lls

S
ev
er
e
ph

en
ot
yp

e

R
ed
uc
tio

n
in

he
ad

si
ze

24
hp

f
(z
fG

R
N
-B
)

R
es
cu
ed

by
ov

er
ex
pr
es
si
on

Y
es

n.
d.

Y
es

Y
es

Y
es

346 Mol Neurobiol (2013) 47:337–360



In zebrafish (D. rerio), a useful model of vertebrate devel-
opment and disease, fourGRN paralogues were identified that
are coding for two precursor proteins (zfGRN-A and B) and
two shorter forms of GRN (zfGRN-1 and zfGRN-2) [172]. A
noncoding RNA gene with antisense complementarity to both
zfGRN1 and zfGRN2 has also been identified, with a possible
function in regulating gene dosage [172]. Both zfGRN-A and
zfGRN-B transcripts are expressed in a wide variety of tissues
including the gills, heart, multiple visceral organs and at
modest expression levels in the brain [172]. Knockdown of
zfGRN-A using antisense morpholinos led to reduced prolif-
eration and increased apoptosis in hepatocytes and zfGRN-A-
deficient zebrafish had a decreased liver size. Impaired liver
morphogenesis was linked to reduced expression of hepatic
MET, a receptor tyrosine kinase known to have functions
controlling liver size [175]. zfGRN-A expression can also be
found within the peripheral and CNS and knockdown by
antisense morpholinos resulted in truncated motor neurons
(MNs) and inappropriate early branching [176]. In contrast,
overexpression of zfGRN-A or human GRN caused increased
MN branching and rescued the truncation defects caused by
zfGRN-A deficiency, survival of motor neuron 1 (smn1)
deficiency [176] or overexpression of mutant TDP-43 [177].
The effect of zfGRN knockdown on MN axonal growth was
confirmed by another study where knockdown of zfGRN-A
produced a greater decrease in axonal length than zfGRN-B
knockdown [177]. Additional to the observed MN defects,
and most likely as a consequence, zfGRN-A morphants
showed a marked progressive swimming defect although the

touch response was unaltered [176]. Cytoplasmic redistribu-
tion of TDP-43 or proteolytic processing into aggregation-
prone CTFs are characteristic disease features of GRN-
associated FTD, but downregulation of zfGRN did not cause
any of these alterations [146, 177].

Rodent Models of Grn Deficiency

Rodent models are the most frequently used animal models
in biomedical research for several reasons including their
anatomical similarities to humans as well as the possibility
to generate disease models through targeted gene manipu-
lation such as gene knockout.

Five independent Grn−/− mouse models have been estab-
lished to date [75, 114, 167, 173, 178], of which a general
overview of their characteristics is included in Table 2. So
far, most studies used all-tissue knockout of Grn, yet some
of the models also allow tissue-specific knockout [114, 167,
173, 178]. Utilizing one of these conditional Grn knockout
lines [173], Martens et al. report deregulated microglial
activation in microglia-specific Grn−/− mice leading to in-
creased neuron loss in a model of neuronal injury [179]. All
described Grn−/− mice are viable, fertile and reproduce with
a normal Mendelian pattern of inheritance. However, one
follow up-study on the mice established by Kayasuga et al.
[75] suggested a decreased generation frequency of Grn−/−

mice and postnatal sensitivity to handling [180]. This was
not observed in another follow-up study by Ghoshal et al. on
the same Grn−/− mice [181]. Two further studies observed

Table 2 Generated Grn−/− mouse models and primary characterization

Kayasuga et al. [74] Yin et al. [114] Kao et al. [173] Petkau et al. [167] Wils et al. [178]

Type Constitutive Constitutive Constitutive Constitutive Constitutive

Conditional option No Yes Yes Yes Yes

Modified region Deletion of
exons 2–13

Deletion of
exons 1–4

Deletion of
exon 2-13

Disruption of Grn
gene by insertion
of lacZ/neomycin
fusion protein
between exons 4
and 5

Deletion of
exons 2–4

Genomic clone 129 SvJ Not specified 129/SvJae 129S1/ SvImJ 129/Sv

Blastocysts C57BL/6×DBF1 C57BL/6 C57BL/6J C56BL/6J C56BL/6J

Background Backcrossed to
C57BL/6J

Backcrossed
to C57BL/6

n.d. Backcrossed to
C57BL/6J

Mixed Bl6/129Sv

Tissue All All All All All

Viable Yes Yes Yes Yes Yes

Fertile Yes Yes Yes Yes Yes

Pattern of inheritance Mendelian [74, 181]a Mendelian n.d. Mendelian Mendelian

Survival of aged mice Increased adult
onset mortality [180]a

n.d. n.d. n.d. Increased adult
onset mortality

a Ahmed et al. reported reduced frequency of Grn−/− mice and increased postnatal sensitivity to handling of Grn−/− mice [180] established by
Kayasuga et al. [74]

n.d. not determined
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increased age related mortality with differences appearing
from 10 months onwards [178, 181]. In contrast, no de-
creased survival was reported in two other independent
mouse models [114, 167]. Although in humans, GRN hap-
loinsufficiency is sufficient to lead to neurodegeneration,
none of the Grn−/− mice studies identified any obvious
defects yet, mimicking the condition in human disease.
Therefore, all studies focused on characterizing the behav-
ioral (Table 3) and neurohistological (Table 4) consequences
of Grn loss in Grn−/− mice.

Initial studies, using siRNA-mediated knockdown or ad-
ministration of neutralizing Grn antibodies, have suggested
that hypothalamic Grn exerts anorexigenic effects affecting
weight gain and loss, indicating a potential role of Grn in
hypothalamic glucose sensing [143]. However, consistent
with another report [182], no effect on body weight was yet
described in Grn−/− mice [75, 114, 167, 178].

In rodents, Grn has been shown to be an androgen-
inducible gene in the neonatal hypothalamus that is expressed
at high levels in males, throughout the critical period for the
sexual differentiation of the brain, while in females the Grn
expression levels drop during this critical period [183, 184].
Accordingly, infusion of Grn antisense oligonucleotides into
the third ventricle of neonatal male rats significantly sup-
pressed male sexual behaviors, like frequency of mount, in-
tromission and ejaculation in the adulthood [182]. Alterations
in male sexual behavior, aggression, and anxiety were also
observed in the first Grn−/− mouse model [75]. In the open-
field test, wt females generally show higher levels of anxiety
than males and Grn loss raises the anxiety level of males
significantly to similar levels of females [75]. A follow up-
study on the same mice linked increased anxiety in Grn−/−

males to an increase in the volume and number of cells in the
locus ceruleus [185], a nucleus involved in physiological
responses to stress and anxiety. Furthermore, Grn−/− males
exhibited enhanced aggressiveness towards females and in-
creased frequency of biting attacks in the resident-intruder
test, which was ascribed to alterations in the brain serotonergic
system of Grn−/− mice [75]. However, diminished social
interaction and passive disinterested behavior, rather than
increased aggression was observed in two other studies
[167, 181]. Yin et al. reported increased signs of depression
in Grn−/− mice using a tail suspension and forced swimming
test [186], while Petkau et al. did not observe any abnormal-
ities in their Grn−/− model [167].

Perhaps the most consistent behavioral phenotype in Grn−/
− mice is a reduction in social interactions [167, 181, 186], a
feature observed already at very young age [186]. Assessment
of spatial memory functions by Morris water maze was less
consistent between the individual publications. While Petkau
et al. did not observe any deficits ofGrn−/−mice in the Morris
water maze [167] other studies report subtle impairments in
the oldest mice using the same test parameters [178, 181, 186].

Generally, motor functions seem not to be affected largely by
Grn deficiency, however, Grn−/− mice tended to swim some-
what slower [178, 181], took longer to learn the rotarod task
[167] and showed reduced performance in the inverted screen
test at old ages [181]. Such subtle locomotor deficits might be
explained by increased inflammation in joints as Grn−/− mice
were recently shown to have increased susceptibility to
collagen-induced arthritis [113]. Although all Grn−/− mouse
models have been maintained in similar backgrounds
(Table 2), subtle differences in background strain or in the
applied test protocols, two important variables in behavioural
studies [187, 188], might account for some of the observed
phenotypic differences in Grn−/− mice.

Reports on the neuropathology of Grn−/− mice are more
consistent (Table 4). All studies report a pronounced micro-
gliosis and astrogliosis in brain areas including the cortex,
hippocampus, thalamus and brainstem [114, 167, 178, 180,
181, 186]. Microgliosis tends to be detectable at earlier time
points, with significant differences emerging from 12 months
onwards, and both microgliosis and astrogliosis show a pro-
gressive worsening [178, 180, 186]. Accumulation of ubiqui-
tinated proteins in the same brain areas is another consistent
feature of all Grn−/− models [114, 167, 178, 180, 181, 186],
suggesting either an overproduction of a ubiquitin target pro-
tein or more likely a perturbation in the functioning of the
ubiquitin-proteasomal and/or autophagy-lysosomal degrada-
tion machineries. Furthermore, a robust increase in the accu-
mulation of the aging pigment lipofuscin in the brains ofGrn−/
− mice [167, 178, 180], associated with vacuolation in the
habenula and hippocampus [180], was observed. Interesting-
ly, a homozygous GRN mutation has recently been identified
in two siblings with neuronal ceroid lipofuscinosis (NCL)
[189], a lysosomal storage disorder with prominent accumu-
lation of lipofuscin [190], calling for future studies to deter-
mine whether the same pathways could be affected in FTD
and GRN-related NCL.

Together with increased accumulation of the autophagy-
related receptor p62 as well as lysosomal proteases such as
cathepsin D [178], this points towards an involvement of the
autophagy-lysosome degradation system in Grn-mediated
neuropathology.

Although cell culture experiments suggested a link be-
tween GRN deficiency and caspase activation [94, 155,
158], no obvious signs of apoptosis were observed in the
brains of Grn−/− mice [178, 180]. Neuronal loss is not a
prominent feature of Grn−/− mice [178, 180], although some
focal neuronal loss in the CA2-3 region of the hippocampus
and small nonsignificant reduction in neuron density in the
dorsal thalamus were observed in very old mice [180, 181].
While such changes might be very subtle and only detect-
able in old mice, impaired neuronal function is predicted to
manifest much earlier. Accordingly, reduced hippocampal
synaptic connectivity and impaired synaptic plasticity (e.g.,
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reduced long-term potentiation) were reported in 10- to 12-
month-old Grn−/− mice [167].

Another disease feature of GRN-associated FTD is the
cytoplasmic mislocalisation of TDP-43 with concomitant nu-
clear clearing, abnormal phosphorylation and formation of
nuclear and cytoplasmic TDP-43 positive aggregates [55,
57]. Histological studies were so far unsuccessful in detecting
TDP-43 positive aggregates in brains of Grn−/− mice. While
Yin et al. observed increased cytoplasmic reactivity to phos-
phorylated TDP-43 in hippocampal and thalamic areas [114,
186], other studies did not [167, 178, 180, 181]. Biochemical-
ly,Grn−/− brains did not show increased generation of TDP-43
CTFs [170, 178], but full-length phosphorylated TDP-43 was
significantly increased from 12 months onwards in the insolu-
ble fraction prepared from Grn−/− brains [178]. Absence of
major pathological TDP-43 alterations like fragmentation and
aggregation in Grn−/− mice suggests that these events might
merely be a late event in the pathogenesis of FTD.

Besides consistent neuropathological changes in the brains
of Grn−/− mice, other vital organs and processes are also
negatively affected by Grn deficiency. For example, Grn−/−

mice react with an exaggerated immune response to foreign
pathogens and are less efficient in clearing bacterial infections
resulting in prolonged inflammation [114]. While young
Grn−/− mice did not show any morphological, hematological
or biochemical abnormalities [114], the liver of aged Grn−/−

mice showed increased signs of cellular ageing with abnormal
hepatic and ductal morphology and significant upregulation of
lysosomal proteases, like cathepsin D, in lysosomes within
sinusoidal foamy histiocytes [178]. These findings, together
with the recently reported biological role of Grn in energy
homeostasis [100], call for the investment into more holistic
approaches especially when studying deficiencies of multi-
functional proteins such as GRN.

Restoring GRN Function: A Way to a Successful Therapy

Recent advances in functional genomics have brought us a
few steps closer to understanding the biological mechanisms
involved in the pathogenesis of FTD. Cellular and animal
models for GRN-associated FTD, have produced a tremen-
dous amount of information, nourishing our hope that, if
effectively translated into treatment opportunities, we would
be able at some stage to delay or cure this devastating
disease. However, despite recent advances, treatments for
FTD are still lacking and only limited symptomatic treat-
ment options are available [191].

Targeting GRN Expression

Reduced GRN levels in biofluids like serum or CSF can be
used as a reliable biomarker for the diagnosis and early
detection of FTD caused by GRN mutations [192–194].

Because of the underlying haploinsufficiency mechanism,
targeting or modifying GRN expression is assumed to be
beneficial in preventing neurodegenerative diseases. Increas-
ing Grn expression has already been shown to be advantageous
in several animal models [173, 175–177, 195]. Modulating
GRN expression by boosting the expression from the mutant
or the wt allele might proof beneficial in delaying disease
pathogenesis and could be a valid future therapeutic strategy.
Stimulation of the mutant GRN allele by ribosomal read-
through has been suggested as a worthwhile approach to be
pursued in future FTD clinical trials [196]. Several compounds
including ataluren (PTC124), aminoglycosides (e.g., gentami-
cin) and non-aminoglycosides have proven premature termi-
nation codon read-through activity in vitro and in vivo
[197–199]. PTC124 has been shown to be safe and tolerable
[198] and clinical trials for other diseases with genetic defi-
ciency, like Duchenne muscular dystrophy and cystic fibrosis
[200, 201] have been started.

An alternative strategy to normalize the levels of GRN
could be to increase the expression and production from the
wt allele. Increased transcription might be achieved by andro-
gens as shown in the hypothalamus of neonatal rats [184], and
administration of estrogen or selective stimulation of estrogen
receptors in the brain could be considered a potential strategy
for increasing GRN levels in the brain. A high-throughput
screen of 1200 FDA approved drugs identified suberoylani-
lide hydroxamic acid (SAHA), a histone deacetylase (HDAC)
inhibitor, as potent activator of GRN expression [202]. Other
pan-HDAC inhibitors showed similar GRN stimulating
effects and administration of SAHA was able to normalize
the expression of GRN in cells derived from GRN mutation
carriers [202]. Posttranscriptional mechanisms might also be
involved in regulating GRN expression, and inhibitors of
vacuolar ATPase and the FDA-approved alkalizing drugs
chloroquin, bepridile, and amiodarone were shown to increase
intracellular and secreted GRN protein levels via a translation-
al mechanism independent of lysosomal degradation, autoph-
agy or endocytosis [203]. Identification of protein disulfide
isomerase family members as GRN interactors and modula-
tors of GRN secretion [204], together with the observed
inefficient posttranslational processing and secretion of GRN
in neurons and microglia, suggested that modulation of
the endoplasmatic reticulum chaperone network might
be another potential therapeutic target to increase GRN ex-
pression [204].

Rediscovery of already approved drugs with the potential
to modify GRN expression and production are considered
valuable approaches to accelerate the process of establishing
first generation drugs for FTD and related disorders. How-
ever, because of the role of GRN in promoting tumor
growth, future studies will need to delineate the tolerated
GRN levels and the potential adverse effects of increasing or
administering GRN over a longer period of time [196].
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Targeting GRN Receptors

GRN is a secreted growth factor stimulating both growth and
survival signals in various cell types. Recently, sortilin has
been identified as the first neuronal receptor for GRN [107]
and is thought to be involved in controlling the extracellular
levels of GRN via receptor-mediated endocytosis [42, 107].
Molecules or compounds that could selectively interfere with
the GRN/sortilin interaction and thus raise the levels of extra-
cellular GRN could therefore be considered as potential can-
didates for future clinical and preclinical trials for FTD.
Although the idea of raising GRN levels through compounds
that modify GRN/sortilin interaction is intriguing, first the
question needs to be addressed whether sortilin is only in-
volved in GRN clearance or also in survival signaling.

In addition, GRN can bind with high affinity to the TNF
receptors (TNFR1 and TNFR2) [113] and hence acquired a
therapeutic potential in inflammatory conditions such as rheu-
matoid arthritis [113] or acute respiratory distress syndrome
[150]. A modified hybrid granulin peptide (named ATST-
TRIN) was even more effective than full-length GRN in
diminishing the pro-inflammatory signaling cascade elicited
by TNF-α. Neurodegenerative diseases, including FTD, have
a strong neuroinflammatory component and it will therefore
be important to test if administration of GRN or hybrid gran-
ulin peptides are beneficial in delaying the disease pathology.
It is likely that additional receptors or combination of recep-
tors are involved in GRN-mediated prosurvival signaling and
their identification will hopefully provide additional points of
entry for possible therapeutic interventions.

GRN and the Serotonergic System

The serotonergic system is important for behavioral modula-
tion [205] and decreased serotonin receptor binding has been
reported in affected brain areas in autopsied FTD patients [3].
Alterations in the serotonergic system were also recapitulated
in Grn−/− mice, which have reduced expression of the seroto-
nergic receptor 5-HT1A in the hippocampus after an aggres-
sive encounter [75]. The exact role that GRN plays in
modulating the serotonergic system is not well characterized,
but it has been suggested to relate to the organization and/or
activation of the serotonergic system in the brain [75]. In line
with this, some studies using selective serotonin-reuptake
inhibitors or 5-HT receptor agonists to treat behavioral deficits
in FTD patients showed efficacy of the treatment [206, 207].

GSK3β and Wnt Signaling

GSK3β is an enzyme regulating many cellular functions in-
cluding cellular structure and survival [166]. Deregulation of
GSK3β is linked to several common pathological conditions,
including diabetes and AD [166]. GSK3β is known to be

involved in phosphorylating tau and clinical studies are evalu-
ating the effects of GSK3β inhibitors like lithium chloride and
valproic acid on AD pathogenesis [208]. Data obtained from
the cellular models of GRN deficiency suggest that GRN is, at
least to some extent, exerting its neurotrophic and neuropro-
tective function via regulating GSK3β phosphorylation [91,
162]. Interestingly, hnRNPs have also been shown to belong to
the many substrates of GSK3β [166], but whether GSK3β also
contributes to pathological TDP-43 phosphorylation is not
known. While further data on this subject are awaited, Grn−/−

mice showed a general increase in the phosphorylation state of
proteins [178], and one could hypothesize that this could be
caused by alterations in the activity of GSK3β.

Additionally, GRN loss has recently been implicated in
altering the expression of FZD2, a receptor involved in the
noncanonical Wnt signaling pathway [163]. This upregula-
tion of FZD2 is thought to be neuroprotective and thus
compensating for the lost GRN function. Manipulation of
the expression of the FZD2 receptor or one of its down-
stream effectors through compounds with agonistic func-
tions could therefore be considered as a potential future
therapeutic strategy for GRN-associated FTD [163].

Modulating Conversion of Grn to Granulins

Many neurodegenerative diseases, including FTD, are char-
acterized by considerable neuroinflammation [209]. GRN and
its granulin peptides are critically involved in regulating in-
flammatory reactions through the conversion of anti-
inflammatory GRN to pro-inflammatory granulins. Several
proteinases such as neutrophil elastase, proteinase-3 and some
metalloproteinases are involved in this process, which can be
inhibited for example by the binding of SLPI to GRN [115].
Grn−/− mice show a predominant proinflammatory response
[114] and micro- and astrogliosis are one of the most consis-
tent pathological features of Grn−/− mice (see Table 4), most
likely caused by the loss of full-length GRN. Pathogenic
cysteine mutations also affect the processing of GRN into
granulins [93] thereby potentially shifting the balance towards
a proinflammatory response. Modulating the activity of GRN
converting enzymes or increasing the expression of inhibitory
proteins might therefore be considered as potential strategy to
increase the GRN/granulin ratio.While topically applied SLPI
peptides have already been tested to treat impaired wound
healing in elderly people, systemic administration of protein-
ase inhibitors like SLPI might cause severe side effects as
overexpression of SLPI has been associated with several
forms of cancers [210]. The few existing studies evaluating
the effect of proteinase inhibitors on neuronal survival report
beneficial effects of a neutrophil elastase inhibitor in attenu-
ating MN death or hippocampal neuronal damage after ische-
mic insults [211–213]. Whether these neuroprotective effects
could be driven by stabilization of GRN was however not
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investigated. These initial results clearly encourage further
studies investigating the neuroprotective effects of proteinase
inhibitors and their potential for attenuating the neuropathol-
ogy associated with GRN deficiency.

Conclusions

Deregulation of GRN is critically involved in cancer and
neurodegeneration, two of the major pathological conditions
our aging population has to face today. GRN deficiency is
associated with FTD, a neurodegenerative condition for
which currently no pharmacological treatment to cure or
delay its progression is available. The generation and char-
acterization of GRN cellular and animal models, as high-
lighted in this review, has been essential in increasing our
knowledge about the diverse biological functions of GRN
over the last couple of years. However, many biological
functions of GRN are still poorly understood and the de-
scribed models will help us to gain further insight into the
GRN biology. Generating novel and ongoing characteriza-
tion of the existing GRN models will hopefully provide us
soon with enough mechanistic information to enable us to
translate our findings into novel therapeutic strategies for
neurodegenerative diseases related to GRN deficiency.
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