Skip to main content
Log in

Understanding and prediction of quantum materials via modelling and computation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This article provides a short review of interesting results on application of modelling and computation in understanding and prediction of quantum materials. Modelling and computation are used in understanding structure–property relationship, designing novel functionality in existing materials and prediction of new materials with targeted properties. Examples are drawn from applications in uncovering structure–property relation in high Tc cuprate superconductors, low-dimensional quantum spin systems, engineering cooperative spin crossover phenomena in magnetic hybrid perovskites and coordination polymers, and machine learning assisted prediction of magnetic double perovskites and permanent magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

adapted from reference [6].

Figure 2

adapted from reference [10]. (b) The comparison of calculated magnetic susceptibility considering different spin models (shown in lines with different styles) in comparison to experimentally measured data (shown in circles) for Na2V3O7. Figure adapted from reference [11]. (c) Calculated spin wave spectrum for Zn2VO(PO4)2. The colour variation defines the strength of magnetic structure factor S(Q,ω) with lowest strength coloured as black and highest strength coloured as white. Figure adapted from reference [12].

Figure 3

adapted from reference [20]. (b) The crystal structure (top panel) and predicted combined temperature–pressure induced spin-state transitions in bimetallic Fe-Nb coordination polymer with S = 0 low-spin (LS) state of Fe, S = 1 intermediate spin (IS) state of Fe with parallel alignment between Fe and Nb spins, HS-1 state with Fe at S = 2 HS state antiparallely aligned to Nb spin and HS-2 state with Fe at high-spin (HS) S = 2 state parallely aligned to Nb spin. Figure adapted from reference [21].

Figure 4

adapted from reference [23]. (b) DFT calculated electronic and magnetic states of predicted double perovskite compounds. Figure adapted from reference [23]. (c) Machine learning assisted prediction of low-cost rare-earth-transition metal-based permanent magnets (PM). Figure adapted from reference [24].

Similar content being viewed by others

References

  1. Fritjof C 2007 The science of Leonardo; inside the mind of the genius of the renaissance (New York: Doubleday)

    Google Scholar 

  2. Aguado R and Kouwenhoven L 2020 Phys. Today 73 44

    Article  Google Scholar 

  3. Kohn W and Sham L 1965 Phys. Rev. 140 A1133

    Article  Google Scholar 

  4. Shen K M and Seamus Davis J C 2008 Mater. Today 1114

  5. Rybicki D, Jurkutat M, Reichardt S, Kapusta C and Haase J 2016 Nat. Commun. 7 11413

    Article  CAS  Google Scholar 

  6. Pavarini E, Dasgupta I, Saha-Dasgupta T, Jepsen O and Andersen O K 2001 Phys. Rev. Lett. 87 047003

    Article  CAS  Google Scholar 

  7. Pavarini E, Dasgupta I, Saha-Dasgupta T, Jepsen O and Andersen O K 2020 Phys. Rev. Lett. 124 109701

    Article  CAS  Google Scholar 

  8. Lemmens P, Gúntherodtb G and Gros C 2003 Phys. Rep. 375 1

    Article  CAS  Google Scholar 

  9. Saha-Dasgupta T 2021 Molecules 26 1522

    Article  CAS  Google Scholar 

  10. Das H, Saha-Dasgupta T, Gros C and Valentí R 2008 Phys. Rev. B 77 224437

    Article  CAS  Google Scholar 

  11. Saha-Dasgupta T, Valentí R, Capraro F and Gros C 2005 Phys. Rev. Lett. 95 107201

    Article  CAS  Google Scholar 

  12. Kar S and Saha-Dasgupta T 2014 Physica B 432 71

    Article  CAS  Google Scholar 

  13. Saha-Dasgupta T and Oppeneer P M 2014 MRS Bull. 39 614

    Article  CAS  Google Scholar 

  14. Banerjee H, Chakraborty S and Saha-Dasgupta T 2017 Inorganics 5 47

    Article  CAS  Google Scholar 

  15. Lichtenstein A I, Zaanen J and Anisimov V I 1995 Phys. Rev. B 52 R5467

    Article  Google Scholar 

  16. Iftimie R, Minary P and Tuckerman M E 2005 PNAS 102 6654

    Article  CAS  Google Scholar 

  17. Banerjee H, Kumar M and Saha-Dasgupta T 2014 Phys. Rev. B 90 174433

    Article  CAS  Google Scholar 

  18. Weber B, Kaps E S, Desplanches C and Létard J F 2008 Eur. J. Inorg. Chem. 2008 2963

    Article  CAS  Google Scholar 

  19. Jain P, Ramachandran V, Clark R J, Zhou H D, Toby B H, Dalal N S et al 2009 J. Am. Chem. Soc. 131 13625

    Article  CAS  Google Scholar 

  20. Banerjee H, Chakraborty S and Saha-Dasgupta T 2016 Chem. Mater. 28 8379

    Article  CAS  Google Scholar 

  21. Tarafder K, Kanungo S, Oppeneer P M and Saha-Dasgupta T 2012 Phys. Rev. Lett. 109 077203

    Article  CAS  Google Scholar 

  22. Vasala S and Karppinen M 2015 Prog. Solid State Chem. 43 1

    Article  CAS  Google Scholar 

  23. Halder A, Ghosh A and Saha-Dasgupta T 2019 Phys. Rev. Mater. 3 084418

    Article  CAS  Google Scholar 

  24. Halder A, Rom S, Ghosh A and Saha-Dasgupta T 2020 Phys. Rev. Appl. 14 034024

    Article  CAS  Google Scholar 

  25. Coey J M D 2011 IEEE Trans. Magn. 47 4671

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges J. C. Bose National Fellowship (grant no. JCB/2020/000004) for funding. The author gratefully acknowledges contributions from O K Andersen, O Jepsen, E Pavarini, I Dasgupta, R Valenti, H Das, C Gros, S Kar, H Banerjee, S Chakrabarty, P M Oppeneer, K Tarafder, S Kanungo, A Halder, A Ghosh and S Rom for the results discussed in this short review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TANUSRI SAHA DASGUPTA.

Additional information

This article is part of the special issue on ‘Quantum materials and devices’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SAHA DASGUPTA, T. Understanding and prediction of quantum materials via modelling and computation. Bull Mater Sci 44, 270 (2021). https://doi.org/10.1007/s12034-021-02588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02588-y

Keywords

Navigation