Skip to main content
Log in

The production of graphene–boron nitride nanosheet heterostructures via liquid phase exfoliation assisted by a milling process

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Graphene–boron nitride (BN) nanosheet heterostructures have become one of the highly interesting matters in recent times owing to their advantages. In this study, the liquid phase exfoliation method was preferred for production of graphene–BN nanosheet heterostructures. However, a pre-milling process was applied to starting materials, instead of the classical liquid phase exfoliation method previously used in the literature. Hexagonal graphite (h-G) and h-BN mixtures were milled for 50 h and the milled powders were subjected to the liquid phase exfoliation process. As a result of the examinations, it was observed that graphene–BN nanosheet heterostructures were successfully synthesized. The widths of the synthesized nanosheets were 300–500 nm and nanosheets were multi-layers. It was seen that a large part of the powder mixture were occurred at high amorphization during the ball milling process. According to X-ray diffraction (XRD) peaks, the amorphization ratio was almost 90%. But, almost all of amorphous structures were removed during acid mixing and the thermal process. But, amorphous structures still existed in samples. In addition, the ball milling process damaged the sheets and defects formed. Despite all these disadvantages, the milling process carried out in this study provided formation of thinner and larger sheets compared with previous similar studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh V, Joung D, Zhai L, Das S, Khondaker S I and Seal S 2011 Prog. Mater. Sci. 56 1178

    Article  CAS  Google Scholar 

  2. Güler Ö, Güler S H, Selen V, Albayrak M G and Evin E 2016 Fuller. Nanotubes Carbon Nanostruct. 24 123

    Article  Google Scholar 

  3. Selvam M, Sakthipandi K, Suriyaprabha R, Saminathan K and Rajendran V 2013 Bull. Mater. Sci. 36 1315

  4. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V et al 2004 Science 306 666

    Article  CAS  Google Scholar 

  5. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  CAS  Google Scholar 

  6. Zhao X, Zhang Q, Chen D and Lu P 2010 Macromolecules 43 2357

    Article  CAS  Google Scholar 

  7. Cui X, Zhang C and Hao Hou Y 2011 Nanoscale 3 2118

    Article  CAS  Google Scholar 

  8. Guo J M, Gao H L and Qin X 2015 Fuller. Nanotubes Carbon Nanostruct. 23 477

    Article  Google Scholar 

  9. Chen M L, Park C Y, Meng Z D, Zhu L, Choi J G, Ghosh T et al 2013 Fuller. Nanotubes Carbon Nanostruct. 21 525

    Article  CAS  Google Scholar 

  10. Yurdakul H, Göncü Y, Durukan O, Akay A, Seyhan A T, Ay N et al 2012 Ceram. Int. 38 2187

    Article  CAS  Google Scholar 

  11. Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W and Zettl A 2009 Phys. Rev. B 80 155425

    Article  Google Scholar 

  12. Golberg D, Bando Y, Huang Y, Terao Y, Mitome M, Tang C et al 2010 ACS Nano 4 2979

    Article  CAS  Google Scholar 

  13. Gao R, Yin L, Wang C, Qi Y, Lun N, Zhang L et al 2009 J. Phys. Chem. C 113 15160

    Article  CAS  Google Scholar 

  14. Ishigami M, Chen J H, Cullen W G, Fuhrer M S and Williams E D 2007 Nano Lett. 7 1643

    Article  CAS  Google Scholar 

  15. Hwang E H, Adam S and Sarma S D 2007 Phys. Rev. Lett. 98 186806

    Article  CAS  Google Scholar 

  16. Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol. 3 206

    Article  CAS  Google Scholar 

  17. Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S et al 2010 Nat. Nanotechnol. 5 722

    Article  CAS  Google Scholar 

  18. Güler S H, Güler Ö and Evin E 2017 Fuller. Nanotubes Carbon Nanostruct. 25 34

    Article  Google Scholar 

  19. Güler Ö and Güler S H 2016 Optik Int. J. Light Electron Opt. 127 4630

    Article  Google Scholar 

  20. Dhakate S R, Chauhan N, Sharma S, Tawale J, Singh S, Sahare P D et al 2011 Carbon 49 1946

    Article  CAS  Google Scholar 

  21. Liu C Q, Hu G X and Gao H Y 2012 J. Supercrit. Fluids 63 99

    Article  CAS  Google Scholar 

  22. Zhu L X, Zhao X, Li Y Z, Yu X Y, Li C and Zhang Q H 2013 Mater. Chem. Phys. 137 984

    Article  CAS  Google Scholar 

  23. Guler O and Evin E 2015 Fuller. Nanotubes Carbon Nanostruct. 23 463

    Article  CAS  Google Scholar 

  24. Lin Y, Williams T V and Connell J W 2010 J. Phys. Chem. Lett. 1 277

    Article  Google Scholar 

  25. Yu J, Qin L, Hao Y, Kuang S, Bai X, Chong Y M et al 2010 ACS Nano 4 414

    Article  CAS  Google Scholar 

  26. Xu Z, Khanaki A, Tian H, Zheng H, Suja M, Zheng J G et al 2016 Appl. Phys. Lett. 109 43110

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from Mersin University Department of Scientific Research Projects (Project No. 2017-2-AP4-2560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Güler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güler, Ö., Güler, S.H. & Taşkin, M. The production of graphene–boron nitride nanosheet heterostructures via liquid phase exfoliation assisted by a milling process. Bull Mater Sci 42, 7 (2019). https://doi.org/10.1007/s12034-018-1703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1703-2

Keywords

Navigation