Skip to main content

Advertisement

Log in

Differential Expression of Nuclear-Encoded Mitochondrial Protein Genes of ATP Synthase Across Different Tissues of Female Buffalo

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The physiological well-being of buffaloes, encompassing phenotypic traits, reproductive health, and productivity, depends on their energy status. Mitochondria, the architects of energy production, orchestrate a nuanced interplay between nuclear and mitochondrial domains. Oxidative phosphorylation complexes and associated proteins wield significant influence over metabolic functions, energy synthesis, and organelle dynamics, often linked to tissue-specific pathologies. The unexplored role of ATP synthase in buffalo tissues prompted a hypothesis: in-depth exploration of nuclear-derived mitochondrial genes, notably ATP synthase, reveals distinctive tissue-specific diversity. RNA extraction and sequencing of buffalo tissues (kidney, heart, brain, and ovary) enabled precise quantification of nuclear-derived mitochondrial protein gene expression. The analysis unveiled 24 ATP synthase transcript variants, each with unique tissue-specific patterns. Kidney, brain, and heart exhibited elevated gene expression compared to ovaries, with 10, 8, and 19 up-regulated genes, respectively. The kidney showed 3 and 12 down-regulated genes compared to the brain and heart. The heart–brain comparison highlighted ten highly expressed genes in ATP synthase functions. Gene ontology and pathway analyses revealed enriched functions linked to ATP synthesis and oxidative phosphorylation, offering a comprehensive understanding of energy production in buffalo tissues. This analysis enhances understanding of tissue-specific gene expression, emphasizing the influence of energy demands. Revealing intricate links between mitochondrial gene expression and tissue specialization in buffaloes, it provides nuanced insights into tissue-specific expression of nuclear-encoded mitochondrial protein genes, notably ATP synthase, advancing the comprehension of buffalo tissue biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data generated from this study are presented in the manuscript. Further details are presented in additional files. The information not included would be shared by the corresponding author on reasonable request.

References

  1. Wahid, H., Rosnina, Y. (2016). Buffalo: Asia. Reference module in food science B 978-0-08-100596-5.21231–6. doi: https://doi.org/10.1016/B978-0-08-100596-5.21231-6

  2. Nolfi-Donegan, D., Braganza, A., & Shiva, S. (2020). Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology, 37, 101674. https://doi.org/10.1016/j.redox.2020.101674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakhle, J., Rodriguez, A. M., & Vignais, M. L. (2020). Multifaceted roles of mitochondrial components and metabolites in metabolic diseases and cancer. International Journal of Molecular Sciences, 21, 4405. https://doi.org/10.3390/ijms21124405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chandel, N. S. (2021). Mitochondria. Cold Spring Harbor Perspectives in Biology, 13, a040543. https://doi.org/10.1101/cshperspect.a040543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Kafaji, G., & Golbahar, J. (2013). High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. BioMed Research International, 2013, 754946.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Laubenthal, L., Hoelker, M., Frahm, J., Dänicke, S., Gerlach, K., Südekum, K. H., Sauerwein, H., & Häussler, S. (2016). Mitochondrial DNA copy number and biogenesis in different tissues of early- and late-lactating dairy cows. Journal of Dairy Science, 99, 1571–1583.

    Article  CAS  PubMed  Google Scholar 

  7. Sadeesh, E. M., Singla, N., Lahamge, M. S., Kumari, S., Ampadi, A. N., & Malik, A. (2023). Tissue heterogeneity of mitochondrial activity, biogenesis and mitochondrial protein gene expression in buffalo. Mol Bio Rep, 50, 5255–5266. https://doi.org/10.1007/s11033-023-08416-2

    Article  CAS  Google Scholar 

  8. San-Millán, I. (2023). The key role of mitochondrial function in health and disease. Antioxidants, 12, 782. https://doi.org/10.3390/antiox12040782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernández-Vizarra, E., Enríquez, J. A., Pérez-Martos, A., Montoya, J., & Fernández-Silva, P. (2011). Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion, 11, 207–213. https://doi.org/10.1016/j.mito.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  10. Mossman, J. A., Biancani, L. M., & Rand, D. M. (2019). Mitochondrial genomic variation drives differential nuclear gene expression in discrete regions of Drosophila gene and protein interaction networks. BMC Genom, 20, 691. https://doi.org/10.1186/s12864-019-6061-y

    Article  CAS  Google Scholar 

  11. Bujan, N., Morén, C., García-García, F. J., Blázquez, A., Carnicer, C., Cortés, A. B., González, C., López-Gallardo, E., Lozano, E., Moliner, S., Gort, L., Tobías, E., Delmiro, A., Martin, M. Á., Fernández-Moreno, M. Á., Ruiz-Pesini, E., Garcia-Arumí, E., Rodríguez-Aguilera, J. C., & Garrabou, G. (2022). Multicentric standardization of protocols for the diagnosis of human mitochondrial respiratory chain defects. Antioxidants, 11, 741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saki, M., & Prakash, A. (2017). DNA damage related crosstalk between the nucleus and mitochondria. Free rad boil med, 107, 216–227.

    Article  CAS  Google Scholar 

  13. Osellame, L. D., Blacker, T. S., & Duchen, M. R. (2012). Cellular and molecular mechanisms of mitochondrial function. Best practice & research. Journal of Clinical Endocrinology and Metabolism, 26, 711–723. https://doi.org/10.1016/j.beem.2012.05.003

    Article  CAS  Google Scholar 

  14. Bock, F. J., & Tait, S. W. G. (2020). Mitochondria as multifaceted regulators of cell death. Nature Reviews. Molecular and Cellular Biology, 21, 85–100. https://doi.org/10.1038/s41580-019-0173-8

    Article  CAS  Google Scholar 

  15. Rotig, A. (2014). Genetics of mitochondrial respiratory chain deficiencies. Revista de Neurologia, 170, 309–322.

    CAS  Google Scholar 

  16. Fox, T. D. (2012). Mitochondrial protein synthesis, import, and assembly. Genetics, 192, 1203–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weiss, S. L., Cvijanovich, N. Z., Allen, G. L., Thomas, N. J., Freishtat, R. J., Anas, N., Meyer, K., Checchia, P. A., ShanleyTP, B. M. T., Fitzgerald, J., Banschbach, S., Beckman, E., Howard, K., Frank, E., Harmon, K., & Wong, H. R. (2014). Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septicshock. Critical Care (London, England), 18, 623. https://doi.org/10.1186/s13054-014-0623-914

    Article  PubMed  Google Scholar 

  18. Jadiya, P., & Tomar, D. (2020). Mitochondrial protein quality control mechanisms. Genes, 11, 563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Niemi, N. M., & Pagliarini, D. J. (2021). The extensive and functionally uncharacterized mitochondrial phosphoproteome. Journal of Biological Chemistry, 297, 7. https://doi.org/10.1016/j.jbc.2021.100880

    Article  CAS  Google Scholar 

  20. Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L., Louis, D. N., Rozenblatt-Rosen, O., Suvà, M. L., Regev, A., & Bernstein, B. E. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 344, 1396–1401. https://doi.org/10.1126/science.1254257

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kolitsida, P., Zhou, J., Rackiewicz, M., Nolic, V., Dengjel, J., & Abeliovich, H. (2019). Phosphorylation of mitochondrial matrix proteins regulates their selective mitophagic degradation. Proceedings of the National academy of Sciences of the United States of America, 116, 20517–20527.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suomalainen, A., & Battersby, B. J. (2018). Mitochondrial diseases: The contribution of organelle stress responses to pathology. Nature reviews. Mole Cell Biol, 19, 77–92. https://doi.org/10.1038/nrm.2017.66

    Article  CAS  Google Scholar 

  23. Sadeesh, E.M., Lahamge, M.S., Malik, A., & Ampadi, A.N. (2023). Nuclear genome-encoded mitochondrial OXPHOS complex I genes in Buffalo show tissue-specific differences. https://doi.org/10.21203/rs.3.rs-3053067/v1

  24. Faccenda, D., & Campanella, M. (2012). Molecular regulation of the mitochondrial F(1) F(o)-ATPsynthase: Physiological and pathological significance of the inhibitory factor 1 (IF(1)). Int J Cell Biol, 2012, 367934. https://doi.org/10.1155/2012/367934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Colina-Tenorio, L., Dautant, A., Miranda-Astudillo, H., Giraud, M. F., & González-Halphen, D. (2018). The peripheral stalk of rotary ATPases. Frontiers in Physiology, 9, 1243.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bonora, M., Bononi, A., De Marchi, E., Giorgi, C., Lebiedzinska, M., Marchi, S., Patergnani, S., Rimessi, A., Suski, J. M., Wojtala, A., Wieckowski, M. R., Kroemer, G., Galluzzi, L., & Pinton, P. (2013). Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle (Georgetown, Tex.), 12, 674–683. https://doi.org/10.4161/cc.23599

    Article  CAS  PubMed  Google Scholar 

  27. Jonckheere, A. I., Smeitink, J. A., & Rodenburg, R. J. (2012). Mitochondrial ATP synthase: Architecture, function and pathology. Journal of Inherited Metabolic Disease, 35, 211–225. https://doi.org/10.1007/s10545-011-9382-9

    Article  CAS  PubMed  Google Scholar 

  28. Garone, C., Pietra, A., & Nesci, S. (2022). From the structural and (Dys) function of ATP synthase to deficiency in age-related diseases. Life (Basel, Switzerland), 12, 401.

    ADS  CAS  PubMed  Google Scholar 

  29. Zhou, H., Ren, J., Toan, S., & Mui, D. (2021). Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Research Reviews, 66, 101250.

    Article  CAS  PubMed  Google Scholar 

  30. Pavlovic, K., Krako Jakovljevic, N., Isakovic, A. M., Ivanovic, T., Markovic, I., & Lalic, N. M. (2022). Therapeutic vs. Suprapharmacological metformin concentrations: Different effects on energy metabolism and mitochondrial function in skeletal muscle cells in vitro. Frontiers in Pharmacology, 13, 930308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He, J., Ford, H. C., Carroll, J., Ding, S., Fearnley, I. M., & Walker, J. E. (2017). Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proceedings of the National academy of Sciences of the United States of America, 114, 3409–3414.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sánchez-Aragó, M., Formentini, L., Martínez-Reyes, I., García-Bermudez, J., Santacatterina, F., Sánchez-Cenizo, L., & Cuezva, J. M. (2013). Expression, regulation and clinical relevance of the ATPase inhibitory factor 1 in human cancers. Oncogenesis, 2, e46–e46.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vazquez-Martin, A., Corominas-Faja, B., Cufi, S., Vellon, L., Oliveras-Ferraros, C., Menendez, O. J., Joven, J., Lupu, R., & Menendez, J. A. (2013). The mitochondrial H(+)-ATP synthase and the lipogenic switch: New core components of metabolic reprogramming in induced pluripotent stem (iPS) cells. Cell Cycle (Georgetown, Tex.), 12, 207–218.

    Article  CAS  PubMed  Google Scholar 

  34. Davoli, R., Vegni, J., Cesarani, A., Dimauro, C., Zappaterra, M., & Zambonelli, P. (2022). Identification of differentially expressed genes in early-postmortem Semimembranosus muscle of Italian large white heavy pigs divergent for glycolytic potential. Meat Science, 187, 108754.

    Article  PubMed  Google Scholar 

  35. Sawyer, E. M., Brunner, E. C., Hwang, Y., Ivey, L. E., Brown, O., Bannon, M., Akrobetu, D., Sheaffer, K. E., Morgan, O., Field, C. O., & Suresh, N. (2017). Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila. BMC Cell Biology, 18, 1–15.

    Article  Google Scholar 

  36. Dorji, J., VanderJagt, C. J., Gamer, J. B., Marett, L. C., Mason, B. A., Reich, C. M., Xiang, R., Clark, E. L., Cocks, B. G., Al, C., MacLeod, I. M., & Daetwyler, H. D. (2020). Expression of mitochondrial protein genes encoded by nuclear and mitochondrial genomes correlate with energy metabolism in dairy cattle. BMC Genom, 21, 720.

    Article  CAS  Google Scholar 

  37. Hansen, F. M., Kremer, L. S., Karayel, O., Kühl, I., Bludau, I., Larsson, N. G., & Mann, M. (2022). Mitochondrial phosphoproteomes are functionally specialized across tissues. bioRxiv. https://doi.org/10.1101/2022.03.23.485457

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fagerberg, L., Hallström, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., & Asplund, A. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics, 13, 397–406.

    Article  CAS  Google Scholar 

  39. Oláhová, M., Yoon, W. H., Thompson, K., Jangam, S., Fernandez, L., Davidson, J. M., Kyle, J. E., Grove, M. E., Fisk, D. G., Kohler, J. N., & Holmes, M. (2018). Biallelic mutations in ATP5F1D, which encodes a subunit of ATP synthase, cause a metabolic disorder. American Journal of Human Genetics, 102, 494–504.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hirono, K., Ichida, F., Nishio, N., Ogawa-Tominaga, M., Fushimi, T., Mayr, J. A., Kohda, M., Kishita, Y., Okazaki, Y., Ohtake, A., & Murayama, K. (2019). Mitochondrial complex deficiency by novel compound heterozygous TMEM70 variants and correlation with developmental delay, undescended testicle, and left ventricular noncompaction in a Japanese patient: A case report. Clinical Case Reports, 7, 553.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hahn, A., Parey, K., Bublitz, M., Mills, D. J., Zickermann, V., Vonck, J., Kühlbrandt, W., & Meier, T. (2016). Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Molecular Cell, 63, 445–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Limongelli, G., Masarone, D., & Pacileo, G. (2017). Mitochondrial disease and the heart. Heart, 103, 390–398.

    Article  CAS  PubMed  Google Scholar 

  43. Marković, A., Tauchmannová, K., Šimáková, M., Mlejnek, P., Kaplanová, V., Pecina, P., Pecinová, A., Papoušek, F., Liška, F., Šilhavý, J., & Mikešová, J. (2022). Genetic complementation of ATP synthase deficiency due to dysfunction of TMEM70 assembly factor in rat. Biomedicines, 10, 276.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kovalčíkova, J., Vrbacký, M., Pecina, P., Tauchmannová, K., Nůsková, H., Kaplanova, V., Brazdova, A., Alán, L., Eliáš, J., Čunátová, K., & Kořínek, V. (2019). TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme. The FASEB Journal, 33, 14103–14117.

    Article  PubMed  Google Scholar 

  45. Sánchez-Caballero, L., Elurbe, D. M., Baertling, F., Guerrero-Castillo, S., van den Brand, M., van Strien, J., van Dam, T. J. P., Rodenburg, R., Brandt, U., Huynen, M. A., & Nijtmans, L. G. J. (2020). TMEM70 functions in the assembly of complexes I and V. Biochimica et Biophysica Acta, Bioenergetics, 1861, 148202. https://doi.org/10.1016/j.bbabio.2020.148202

    Article  CAS  PubMed  Google Scholar 

  46. Carroll, J., He, J., Ding, S., Fearnley, I. M., & Walker, J. E. (2021). TMEM70 and TMEM242 help to assemble the rotor ring of human ATP synthase and interact with assembly factors for complex I. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100558118. https://doi.org/10.1073/pnas.2100558118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bahri, H., Buratto, J., Rojo, M., Dompierre, J. P., Salin, B., Blancard, C., Cuvellier, S., Rose, M., Ben Ammar Elgaaied, A., Tetaud, E., di Rago, J. P., Devin, A., & Duvezin-Caubet, S. (2021). TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting in situ assembly of mammalian ATP synthase proton channel. Biochimica et Biophysica Acta, Molecular Cell Research, 1868, 118942. https://doi.org/10.1016/j.bbamcr.2020.118942

    Article  CAS  PubMed  Google Scholar 

  48. Vrbacký, M., Kovalčíková, J., Chawengsaksophak, K., Beck, I. M., Mráček, T., Nůsková, H., Sedmera, D., Papoušek, F., Kolář, F., Sobol, M., Hozák, P., Sedlacek, R., & Houštěk, J. (2016). Knockout of Tmem70 alters biogenesis of ATP synthase and leads to embryonal lethality in mice. Human Molecular Genetics, 25, 4674–4685. https://doi.org/10.1093/hmg/ddw295

    Article  CAS  PubMed  Google Scholar 

  49. Galber, C., Fabbian, S., Gatto, C., Grandi, M., Carissimi, S., Acosta, M. J., et al. (2023). The mitochondrial inhibitor IF1 binds to the ATP synthase OSCP subunit and protects cancer cells from apoptosis. Cell Death & Disease, 14, 54.

    Article  CAS  Google Scholar 

  50. Pires Da Silva, J., Wargny, M., Raffin, J., Croyal, M., Duparc, T., Combes, G., et al. (2023). Plasma level of ATPase inhibitory factor 1 (IF1) is associated with type 2 diabetes risk in humans: A prospective cohort study. Diabetes & Metabolism, 49, 101391.

    Article  CAS  Google Scholar 

  51. Wyant, G. A., Yu, W., Doulamis, I. P., Nomoto, R. S., Saeed, M. Y., Duignan, T., et al. (2022). Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists. Science, 377, 621–629.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, B., Caudal, A., Tang, X., Chavez, J. D., McMillen, T. S., Keller, A., et al. (2022). Upregulation of mitochondrial ATPase inhibitory factor 1 (ATPIF1) mediates increased glycolysis in mouse hearts. The Journal of Clinical Investigation, 132, e155333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Domínguez-Zorita, S., Romero-Carramiñana, I., Santacatterina, F., et al. (2023). IF1 ablation prevents ATP synthase oligomerization, enhances mitochondrial ATP turnover and promotes an adenosine-mediated pro-inflammatory phenotype. Cell Death & Disease, 14, 413. https://doi.org/10.1038/s41419-023-05957-z

    Article  CAS  Google Scholar 

  54. Esparza-Moltó, P. B., Nuevo-Tapioles, C., Chamorro, M., Näjera, L., Torresano, L., Santacatterina, F., & Cuezva, J. M. (2019). Tissue-specific expression and post-transcriptional regulation of the ATPase inhibitory factor 1 (IF1) in human and mouse tissues. The FASEB Journal, 33, 1836–1851.

    Article  PubMed  Google Scholar 

  55. Viscomi, C., & Zeviani, M. (2020). Strategies for fighting mitochondrial diseases. Journal of Internal Medicine, 287, 665–684.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We extend our appreciation to the Science and Engineering Research Board, a part of the Department of Science and Technology under the Government of India, for financially supporting this endeavour. The authors wish to convey their thanks to the Director of ICAR-National Dairy Research Institute for enabling the essential resources essential to carry out this study.

Funding

This study was financially supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

The project’s conception and experimental design were spearheaded by SEM. SEM executed the experiments, conducted data analysis, and initiated manuscript drafting alongside MSL and AM. AAN contributed to the preparation of tables and figures. All authors critically reviewed and granted their approval for the final manuscript version.

Corresponding author

Correspondence to E. M. Sadeesh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

No endorsement from research ethics committees was deemed necessary to achieve the objectives of this study, as the experimental procedures were carried out using post-slaughter tissues of buffalo specimens.

Informed Consent

Not applicable.

Consent to Participate

This article does not contain any individual person’s data in any form.

Consent for Publication

All authors agreed to publish the research in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 343 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeesh, E.M., Lahamge, M.S., Malik, A. et al. Differential Expression of Nuclear-Encoded Mitochondrial Protein Genes of ATP Synthase Across Different Tissues of Female Buffalo. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01085-x

Keywords

Navigation