Skip to main content
Log in

Integrating Machine Learning and Mendelian Randomization Determined a Functional Neurotrophin-Related Gene Signature in Patients with Lower-Grade Glioma

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recent researches reported that neurotrophins can promote glioma growth/invasion but the relevant model for predicting patients’ survival in Lower-Grade Gliomas (LGGs) lacked. In this study, we adopted univariate Cox analysis, LASSO regression, and multivariate Cox analysis to determine a signature including five neurotrophin-related genes (NTGs), CLIC1, SULF2, TGIF1, TTF2, and WEE1. Two-sample Mendelian Randomization (MR) further explored whether these prognostic-related genes were genetic variants that increase the risk of glioma. A total of 1306 patients have been included in this study, and the results obtained from the training set can be verified by four independent validation sets. The low-risk subgroup had longer overall survival in five datasets, and its AUC values all reached above 0.7. The risk groups divided by the NTGs signature exhibited a distinct difference in targeted therapies from the copy-number variation, somatic mutation, LGG’s surrounding microenvironment, and drug response. MR corroborated that TGIF1 was a potential causal target for increasing the risk of glioma. Our study identified a five-NTGs signature that presented an excellent survival prediction and potential biological function, providing new insight for the selection of LGGs therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and analyzed during the current study are available in the Cancer Genome Atlas (TCGA) repository, (https://portal.gdc.cancer.gov/), the GSEA database (http://software.broadinstitute.org/gsea/msigdb/index.jsp), ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/), and the Chinese Glioma Genome Atlas (CGGA) repository, (http://www.cgga.org.cn/).

Abbreviations

LGGs:

Lower-Grade Gliomas

NTGs:

Neurotrophin-related genes

TME:

Tumor microenvironment

NGF:

Nerve growth factor

BDNF:

Brain-derived neurotrophic factor

NT-3:

Neurotrophin-3

p75NTR:

P75 neurotrophin receptor

TCGA:

The Cancer Genome Atlas

CGGA:

Chinese Glioma Genome Atlas

TPM:

Transcript per million

LASSO:

Least absolute shrinkage and selection operator

KM:

Kaplan–Meier

ssGSEA:

Single-sample gene set enrichment

TMB:

Tumor mutational burden

DEGs:

Differentially expressed genes

ICIs:

Immune checkpoint inhibitors

GEP:

Gene expression signature

MIAS:

MHC I association immunoscore

GDSC:

Genomics of Drug Sensitivity in Cancer

GSA:

Gene set analysis

PCA:

Principal component analysis

IC50:

The half-maximal inhibitory concentration

References

  1. Wen, P. Y., & Kesari, S. (2008). Malignant gliomas in adults. New England Journal of Medicine, 359(5), 492–507. https://doi.org/10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  2. Fuller, G. N. (2008). The WHO Classification of Tumours of the Central Nervous System, 4th edition. Arch Pathology Laboratory Medicine, 132(6), 906. https://doi.org/10.5858/2008-132-906-TWCOTO

    Article  Google Scholar 

  3. Ostrom, Q. T., Gittleman, H., Farah, P., et al. (2013). CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro-Oncology., 15(2), 1–56. https://doi.org/10.1093/neuonc/not151

    Article  Google Scholar 

  4. Cancer Genome Atlas Research Network, Brat, D. J., Verhaak, R. G. W., et al. (2015). Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. New England Journal of Medicine, 372(26), 2481–2498. https://doi.org/10.1056/NEJMoa1402121

    Article  CAS  Google Scholar 

  5. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade - PubMed. Retrieved January 30, 2023, from https://pubmed.ncbi.nlm.nih.gov/33685966/

  6. S100A gene family: immune-related prognostic biomarkers and therapeutic targets for low-grade glioma - PubMed. Retrieved January 30, 2023, from https://pubmed.ncbi.nlm.nih.gov/34148033/

  7. Hypoxia-Related lncRNA Correlates With Prognosis and Immune Microenvironment in Lower-Grade Glioma - PubMed. Retrieved January 30, 2023, from https://pubmed.ncbi.nlm.nih.gov/34659218/

  8. Tao, B., Ling, Y., Zhang, Y., et al. (2019). CA10 and CA11 negatively regulate neuronal activity-dependent growth of gliomas. Molecular Oncology, 13(5), 1018–1032. https://doi.org/10.1002/1878-0261.12445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamel, W., Westphal, M., Szönyi, E., Escandón, E., & Nikolics, K. (1993). Neurotrophin gene expression by cell lines derived from human gliomas. Journal of Neuroscience Research, 34(2), 147–157. https://doi.org/10.1002/jnr.490340202

    Article  CAS  PubMed  Google Scholar 

  10. Venkatesh, H. S., Johung, T. B., Caretti, V., et al. (2015). Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell, 161(4), 803–816. https://doi.org/10.1016/j.cell.2015.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Venkatesh, H. S., Tam, L. T., Woo, P. J., et al. (2017). Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature, 549(7673), 533–537. https://doi.org/10.1038/nature24014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calatozzolo, C., Salmaggi, A., Pollo, B., et al. (2007). Expression of cannabinoid receptors and neurotrophins in human gliomas. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 28(6), 304–310. https://doi.org/10.1007/s10072-007-0843-8

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X., Prager, B. C., Wu, Q., et al. (2018). Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell, 22(4), 514-528.e5. https://doi.org/10.1016/j.stem.2018.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnston, A. L. M., Lun, X., Rahn, J. J., et al. (2007). The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biology, 5(8), e212. https://doi.org/10.1371/journal.pbio.0050212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johung, T., & Monje, M. (2017). Neuronal activity in the glioma microenvironment. Current Opinion in Neurobiology, 47, 156–161. https://doi.org/10.1016/j.conb.2017.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai, G., Zhong, X., Liu, H., Deng, J., Li, K., & Xie, B. (2022). Development of a hallmark pathway-related gene signature associated with immune response for lower grade gliomas. International Journal of Molecular Sciences, 23(19), 11971. https://doi.org/10.3390/ijms231911971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Charoentong, P., Finotello, F., Angelova, M., et al. (2017). Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Reports, 18(1), 248–262. https://doi.org/10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  18. Auslander, N., Zhang, G., Lee, J. S., et al. (2018). Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nature Medicine, 24(10), 1545–1549. https://doi.org/10.1038/s41591-018-0157-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy - PubMed. Retrieved January 30, 2023, from https://pubmed.ncbi.nlm.nih.gov/30309915/

  20. Wu, C. C., Wang, Y. A., Livingston, J. A., Zhang, J., & Futreal, P. A. (2022). Prediction of biomarkers and therapeutic combinations for anti-PD-1 immunotherapy using the global gene network association. Nature Communications, 13(1), 42. https://doi.org/10.1038/s41467-021-27651-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, W., Soares, J., Greninger, P., et al. (2013). Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Research, 41(1), 955–961. https://doi.org/10.1093/nar/gks1111

    Article  CAS  Google Scholar 

  22. Liu, C. J., Hu, F. F., Xie, G. Y., et al. (2023). GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief Bioinformatics, 24(1), bbac558. https://doi.org/10.1093/bib/bbac558

    Article  CAS  PubMed  Google Scholar 

  23. Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R., & Getz, G. (2011). GISTIC20 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology, 12(4), 41. https://doi.org/10.1186/gb-2011-12-4-r41

    Article  CAS  Google Scholar 

  24. Birnbaum, T., Roider, J., Schankin, C. J., et al. (2007). Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. Journal of Neuro-oncology, 83(3), 241–247. https://doi.org/10.1007/s11060-007-9332-4

    Article  CAS  PubMed  Google Scholar 

  25. Li, R. K., Zhang, J., Zhang, Y. H., Li, M. L., Wang, M., & Tang, J. W. (2012). Chloride intracellular channel 1 is an important factor in the lymphatic metastasis of hepatocarcinoma. Biomedicine & Pharmacotherapy, 66(3), 167–172. https://doi.org/10.1016/j.biopha.2011.10.002

    Article  CAS  Google Scholar 

  26. Petrova, D. T., Asif, A. R., Armstrong, V. W., et al. (2008). Expression of chloride intracellular channel protein 1 (CLIC1) and tumor protein D52 (TPD52) as potential biomarkers for colorectal cancer. Clinical Biochemistry, 41(14–15), 1224–1236. https://doi.org/10.1016/j.clinbiochem.2008.07.012

    Article  CAS  PubMed  Google Scholar 

  27. Wang, J. W., Peng, S. Y., Li, J. T., et al. (2009). Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1. Cancer Letters, 281(1), 71–81. https://doi.org/10.1016/j.canlet.2009.02.020

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, S., Wang, X. M., Yin, Z. Y., et al. (2013). Chloride intracellular channel 1 is overexpression in hepatic tumor and correlates with a poor prognosis. APMIS Acta Pathology Microbiology Immunology Scandinavia, 121(11), 1047–1053. https://doi.org/10.1111/apm.12093

    Article  CAS  Google Scholar 

  29. Chang, Y. H., Wu, C. C., Chang, K. P., Yu, J. S., Chang, Y. C., & Liao, P. C. (2009). Cell secretome analysis using hollow fiber culture system leads to the discovery of CLIC1 protein as a novel plasma marker for nasopharyngeal carcinoma. Journal of Proteome Research, 8(12), 5465–5474. https://doi.org/10.1021/pr900454e

    Article  CAS  PubMed  Google Scholar 

  30. Chen, C. D., Wang, C. S., Huang, Y. H., et al. (2007). Overexpression of CLIC1 in human gastric carcinoma and its clinicopathological significance. Proteomics, 7(1), 155–167. https://doi.org/10.1002/pmic.200600663

    Article  CAS  PubMed  Google Scholar 

  31. Peng, J. M., Lin, S. H., Yu, M. C., & Hsieh, S. Y. (2021). CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. Journal of Clinical Investigation., 131(1), e133525. https://doi.org/10.1172/JCI133525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, L., He, S., Tu, Y., et al. (2012). Elevated expression of chloride intracellular channel 1 is correlated with poor prognosis in human gliomas. Journal of Experimental Clinical Cancer Research Centre, 31(1), 44. https://doi.org/10.1186/1756-9966-31-44

    Article  CAS  Google Scholar 

  33. Phillips, J. J., Huillard, E., Robinson, A. E., et al. (2012). Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. The Journal of Clinical Investigation, 122(3), 911–922. https://doi.org/10.1172/JCI58215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, B., Ma, Q., Wang, X., Guo, K., Liu, Z., & Li, G. (2022). TGIF1 overexpression promotes glioma progression and worsens patient prognosis. Cancer Medicine, 11(24), 5113–5128. https://doi.org/10.1002/cam4.4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, S., Wang, S., Gao, F., et al. (2018). Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma. Neuro-Oncology, 20(1), 78–91. https://doi.org/10.1093/neuonc/nox128

    Article  CAS  PubMed  Google Scholar 

  36. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  37. Dubois, F., Sidiropoulos, N., Weischenfeldt, J., & Beroukhim, R. (2022). Structural variations in cancer and the 3D genome. Nature Reviews Cancer, 22(9), 533–546. https://doi.org/10.1038/s41568-022-00488-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chae, M., Peterson, T. E., Balgeman, A., et al. (2015). Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Neuro-Oncology, 17(7), 978–991. https://doi.org/10.1093/neuonc/nou343

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, N., Dai, Z., Wu, W., et al. (2021). The predictive value of monocytes in immune microenvironment and prognosis of glioma patients based on machine learning. Frontiers in Immunology, 12, 656541. https://doi.org/10.3389/fimmu.2021.656541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan, T. A., Wolchok, J. D., & Snyder, A. (2015). Genetic basis for clinical response to CTLA-4 blockade in melanoma. New England Journal of Medicine, 373(20), 1984. https://doi.org/10.1056/NEJMc1508163

    Article  CAS  PubMed  Google Scholar 

  41. Rizvi, N. A., Hellmann, M. D., Snyder, A., et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348(6230), 124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hugo, W., Zaretsky, J. M., Sun, L., et al. (2017). Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 168(3), 542. https://doi.org/10.1016/j.cell.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  43. Carbone, D. P., Reck, M., Paz-Ares, L., et al. (2017). First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. New England Journal of Medicine, 376(25), 2415–2426. https://doi.org/10.1056/NEJMoa1613493

    Article  CAS  PubMed  Google Scholar 

  44. Choi, S., Yu, Y., Grimmer, M. R., Wahl, M., Chang, S. M., & Costello, J. F. (2018). Temozolomide-associated hypermutation in gliomas. Neuro-Oncology, 20(10), 1300–1309. https://doi.org/10.1093/neuonc/noy016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu, Y., Villanueva-Meyer, J., Grimmer, M. R., et al. (2021). Temozolomide-induced hypermutation is associated with distant recurrence and reduced survival after high-grade transformation of low-grade IDH-mutant gliomas. Neuro-Oncology, 23(11), 1872–1884. https://doi.org/10.1093/neuonc/noab081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fangusaro, J., Onar-Thomas, A., Young Poussaint, T., et al. (2019). Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: A multicentre, phase 2 trial. The Lancet Oncology, 20(7), 1011–1022. https://doi.org/10.1016/S1470-2045(19)30277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Perreault, S., Larouche, V., Tabori, U., et al. (2019). A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer, 19(1), 1250. https://doi.org/10.1186/s12885-019-6442-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jane, E. P., Premkumar, D. R., Rajasundaram, D., et al. (2022). Reversing tozasertib resistance in glioma through inhibition of pyruvate dehydrogenase kinases. Molecular Oncology, 16(1), 219–249. https://doi.org/10.1002/1878-0261.13025

    Article  CAS  PubMed  Google Scholar 

  49. Yang, Y., Lei, T., Du, S., et al. (2018). Nuclear GSK3β induces DNA double-strand break repair by phosphorylating 53BP1 in glioblastoma. International Journal of Oncology, 52(3), 709–720. https://doi.org/10.3892/ijo.2018.4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to the TCGA, CGGA, GSEA, and CIBERSOR database and other public resources for providing us with a research foundation.

Funding

This research was funded by (National Youth Science Foundation Project), grant number [82204159]) and Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No.KJQN202300423).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CZ; methodology, CZ and JD; software, CZ and KL; validation, CZ and JD; formal analysis, CZ and LC; resources, GL; data curation, GL; writing—original draft preparation, CZ; writing—review and editing, XZ and BX; visualization, CZ; supervision, BX; project administration, XZ; funding acquisition, BX. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xiaoni Zhong or Biao Xie.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lai, G., Deng, J. et al. Integrating Machine Learning and Mendelian Randomization Determined a Functional Neurotrophin-Related Gene Signature in Patients with Lower-Grade Glioma. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-023-01045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-01045-x

Keywords

Navigation