Skip to main content

Advertisement

Log in

Identification of Co-diagnostic Genes for Heart Failure and Hepatocellular Carcinoma Through WGCNA and Machine Learning Algorithms

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This research delves into the intricate relationship between hepatocellular carcinoma (HCC) and heart failure (HF) by exploring shared genetic characteristics and molecular processes. Employing advanced methodologies such as differential analysis, weighted correlation network analysis (WGCNA), and algorithms like Random Forest (RF), Least Absolute Shrinkage Selection (LASSO), and XGBoost, we meticulously identified modular differential genes (DEGs) associated with both HF and HCC. Gene Set Variation Analysis (GSVA) and single sample gene set enrichment analysis (ssGSEA) were employed to unveil underlying biological mechanisms. The study revealed 88 core genes shared between HF and HCC, indicating a common mechanism. Enrichment analysis emphasized the roles of immune responses and inflammation in both diseases. Leveraging XGBoost, we crafted a robust multigene diagnostic model (including FCN3, MAP2K1, AP3M2, CDH19) with an area under the curve (AUC) > 0.9, showcasing exceptional predictive accuracy. GSVA and ssGSEA analyses unveiled the involvement of immune cells and metabolic pathways in the pathogenesis of HF and HCC. This research uncovers a pivotal interplay between HF and HCC, highlighting shared pathways and key genes, offering promising insights for future clinical treatments and experimental research endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets for this study can be found in the GEO (http://www.ncbi.nlm.nih.gov/geo/) and TCGA (https://www.cancer.gov/ccg/research/genome-sequencing/tcga). The core code of this study has been uploaded to GitHub: https://github.com/Lizhiyongjuan/Code.git

References

  1. Kirk, R., Dipchand, A. I., Rosenthal, D. N., et al. (2014). The International Society of Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: Executive summary. Journal of Heart and Lung Transplantation, 33(9), 888–909.

    Article  Google Scholar 

  2. Virani, S. S., Alonso, A., Benjamin, E. J., et al. (2020). Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation, 141(9), E139–E596.

    Article  PubMed  Google Scholar 

  3. McGlynn, K. A., Petrick, J. L., & El-Serag, H. B. (2021). Epidemiology of hepatocellular carcinoma. Hepatology, 73, 4–13.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, J. Q., Liu, X. L., Jin, T. Q., Cao, Y. Q., Tian, Y., & Xu, F. (2022). NK cell immunometabolism as target for liver cancer therapy. International Immunopharmacology, 112, 13.

    Article  Google Scholar 

  5. James, S. L., Abate, D., Abate, K. H., et al. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159), 1789–1858.

    Article  Google Scholar 

  6. Sung, H., Ferlay, J., Siegel, R. L., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

    PubMed  Google Scholar 

  7. Gad, M. M., Saad, A. M., Al-Husseini, M. J., et al. (2019). Temporal trends, ethnic determinants, and short-term and long-term risk of cardiac death in cancer patients: A cohort study. Cardiovascular Pathology, 43, 7.

    Article  Google Scholar 

  8. Stoltzfus, K. C., Zhang, Y., Sturgeon, K., et al. (2020). Fatal heart disease among cancer patients. Nature Communications, 11(1), 8.

    Article  Google Scholar 

  9. Antwi, S. O., Craver, E. C., Nartey, Y. A., Sartorius, K., & Patel, T. (2022). Metabolic risk factors for hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: A prospective study. Cancers, 14(24), 13.

    Article  Google Scholar 

  10. Burra, P., Becchetti, C., & Germani, G. (2020). NAFLD and liver transplantation: Disease burden, current management and future challenges. JHEP Reports, 2(6), 12.

    Article  Google Scholar 

  11. Aimo, A., Castiglione, V., Borrelli, C., et al. (2020). Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. European Journal of Preventive Cardiology, 27(5), 494–510.

    Article  PubMed  Google Scholar 

  12. D’Souza, S., Lau, K. C. K., Coffin, C. S., & Patel, T. R. (2020). Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World Journal of Gastroenterology, 26(38), 5759–5783.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Remmelzwaal, S., van Oort, S., Handoko, M. L., van Empel, V., Heymans, S. R. B., & Beulens, J. W. J. (2022). Inflammation and heart failure: A two-sample Mendelian randomization study. Journal of Cardiovascular Medicine, 23(11), 728–735.

    Article  PubMed  Google Scholar 

  14. Zhou, M. Z., Liu, B. R., & Shen, J. (2022). Immunotherapy for hepatocellular carcinoma. Clinical and Experimental Medicine, 23(3), 569–577.

    Article  PubMed  Google Scholar 

  15. Savarese, G., Becher, P. M., Lund, L. H., Seferovic, P., Rosano, G. M. C., & Coats, A. J. S. (2022). Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovascular Research, 118(17), 3272–3287.

    Article  CAS  Google Scholar 

  16. Bloom, M. W., Hamo, C. E., Cardinale, D., et al. (2016). Cancer therapy-related cardiac dysfunction and heart failure: Part 1: Definitions, pathophysiology, risk factors, and imaging. Circulation: Heart Failure, 9(1), 10.

    Google Scholar 

  17. Slamon, D., Eiermann, W., Robert, N., et al. (2011). Adjuvant trastuzumab in HER2-positive breast cancer. New England Journal of Medicine, 365(14), 1273–1283.

    Article  CAS  PubMed  Google Scholar 

  18. Belzile-Dugas, E., & Eisenberg, M. J. (2021). Radiation-induced cardiovascular disease: Review of an underrecognized pathology. Journal of the American Heart Association, 10(18), 10.

    Article  Google Scholar 

  19. Banke, A., Schou, M., Videbaek, L., et al. (2016). Incidence of cancer in patients with chronic heart failure: A long-term follow-up study. European Journal of Heart Failure, 18(3), 260–266.

    Article  PubMed  Google Scholar 

  20. Hasin, T., Gerber, Y., Weston, S. A., et al. (2016). Heart failure after myocardial infarction is associated with increased risk of cancer. Journal of the American College of Cardiology, 68(3), 265–271.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meijers, W. C., Maglione, M., Bakker, S. J. L., et al. (2018). Heart failure stimulates tumor growth by circulating factors. Circulation, 138(7), 678–691.

    Article  CAS  PubMed  Google Scholar 

  22. Ritchie, M. E., Phipson, B., Wu, D., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), 13.

    Article  Google Scholar 

  23. Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Szklarczyk, D., Gable, A. L., Nastou, K. C., et al. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612.

    Article  CAS  PubMed  Google Scholar 

  25. Doncheva, N. T., Morris, J. H., Gorodkin, J., & Jensen, L. J. (2019). Cytoscape StringApp: Network analysis and visualization of proteomics data. Journal of Proteome Research, 18(2), 623–632.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, Y. Y., Zhou, B., Pache, L., et al. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10, 10.

    Google Scholar 

  27. Yu, G. C., Wang, L. G., Yan, G. R., & He, Q. Y. (2015). DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics, 31(4), 608–609.

    Article  CAS  PubMed  Google Scholar 

  28. Bindea, G., Mlecnik, B., Tosolini, M., et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity, 39(4), 782–795.

    Article  CAS  PubMed  Google Scholar 

  29. Garge, N. R., Bobashev, G., & Eggleston, B. (2013). Random forest methodology for model-based recursive partitioning: The mobForest package for R. BMC Bioinformatics, 14, 8.

    Article  Google Scholar 

  30. Alhamzawi, R., & Ali, H. T. M. (2018). The Bayesian adaptive lasso regression. Mathematical Biosciences, 303, 75–82.

    Article  PubMed  Google Scholar 

  31. Parente, D. J. (2021). PolyBoost: An enhanced genomic variant classifier using extreme gradient boosting. Proteomics: Clinical Applications, 15(2–3), 5.

    Google Scholar 

  32. Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The Molecular Signatures Database hallmark gene set collection. Cell Systems, 1(6), 417–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hänzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14, 15.

    Article  Google Scholar 

  34. Chen, K. J., Liu, S., Lu, C. L., & Gu, X. F. (2022). A prognostic and therapeutic hallmark developed by the integrated profile of basement membrane and immune infiltrative landscape in lung adenocarcinoma. Frontiers in Immunology, 13, 14.

    Article  Google Scholar 

  35. Blanche, P., Dartigues, J. F., & Jacqmin-Gadda, H. (2013). Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Statistics in Medicine, 32(30), 5381–5397.

    Article  PubMed  Google Scholar 

  36. Bian, R. T., Xu, X. G., & Li, W. Y. (2023). Uncovering the molecular mechanisms between heart failure and end-stage renal disease via a bioinformatics study. Frontiers in Genetics, 13, 13.

    Article  Google Scholar 

  37. Dick, S. A., & Epelman, S. (2016). Chronic heart failure and inflammation what do we really know? Circulation Research, 119(1), 159–176.

    Article  CAS  PubMed  Google Scholar 

  38. Revelo, X., Parthiban, P., Chen, C., et al. (2021). Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circulation Research, 129(12), 1086–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shirakawa, K., & Sano, M. (2022). Neutrophils and neutrophil extracellular traps in cardiovascular disease: An overview and potential therapeutic approaches. Biomedicines, 10(8), 20.

    Article  Google Scholar 

  40. Daseke, M. J., Valerio, F. M., Kalusche, W. J., Ma, Y. G., DeLeon-Pennell, K. Y., & Lindsey, M. L. (2019). Neutrophil proteome shifts over the myocardial infarction time continuum. Basic Research in Cardiology, 114(5), 13.

    Article  Google Scholar 

  41. Sreejit, G., Abdel-Latif, A., Athmanathan, B., et al. (2020). Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation, 141(13), 1080–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Horckmans, M., Ring, L., Duchene, J., et al. (2017). Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. European Heart Journal, 38(3), 187–197.

    CAS  PubMed  Google Scholar 

  43. Daseke, M. J., Chalise, U., Becirovic-Agic, M., et al. (2021). Neutrophil signaling during myocardial infarction wound repair. Cellular Signalling, 77, 12.

    Article  Google Scholar 

  44. Ko, T., Fujita, K., Nomura, S., et al. (2018). Quantification of DNA damage in heart tissue as a novel prediction tool for therapeutic prognosis. Journal of Heart and Lung Transplantation, 37(4), S233–S233.

    Article  Google Scholar 

  45. Siggens, L., Figg, N., Bennett, M., & Foo, R. (2012). Nutrient deprivation regulates DNA damage repair in cardiomyocytes via loss of the base-excision repair enzyme OGG1. The FASEB Journal, 26(5), 2117–2124.

    Article  CAS  PubMed  Google Scholar 

  46. Li, X., Ramadori, P., Pfister, D., Seehawer, M., Zender, L., & Heikenwalder, M. (2021). The immunological and metabolic landscape in primary and metastatic liver cancer. Nature Reviews Cancer, 21(9), 541–557.

    Article  CAS  PubMed  Google Scholar 

  47. Guil, S., & Esteller, M. (2012). Cis-acting noncoding RNAs: Friends and foes. Nature Structural and Molecular Biology, 19(11), 1068–1075.

    Article  CAS  PubMed  Google Scholar 

  48. Engreitz, J. M., Ollikainen, N., & Guttman, M. (2016). Long non-coding RNAs: Spatial amplifiers that control nuclear structure and gene expression. Nature Reviews Molecular Cell Biology, 17(12), 756–770.

    Article  CAS  PubMed  Google Scholar 

  49. Gil, N., & Ulitsky, I. (2020). Regulation of gene expression by cis-acting long non-coding RNAs. Nature Reviews Genetics, 21(2), 102–117.

    Article  CAS  PubMed  Google Scholar 

  50. Gillman, R., Floro, K. L., Wankell, M., & Hebbard, L. (2021). The role of DNA damage and repair in liver cancer. Biochimica et Biophysica Acta: Reviews on Cancer, 1875(1), 12.

    Google Scholar 

  51. Tecchio, C., Scapini, P., Pizzolo, G., & Cassatella, M. A. (2013). On the cytokines produced by human neutrophils in tumors. Seminars in Cancer Biology, 23(3), 159–170.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, W., Zhou, X., Yao, Q., et al. (2023). In situ expansion and reprogramming of Kupffer cells elicit potent tumoricidal immunity against liver metastasis. The Journal of Clinical Investigation, 133(8), 19.

    Article  Google Scholar 

  53. Wang, S. M., Song, Z. L., Tan, B., Zhang, J. J., Zhang, J. D., & Liu, S. Y. (2021). Identification and validation of hub genes associated with hepatocellular carcinoma via integrated bioinformatics analysis. Frontiers in Oncology, 11, 12.

    Google Scholar 

  54. Shen, S. L., Peng, H., Wang, Y., et al. (2018). Screening for immune-potentiating antigens from hepatocellular carcinoma patients after radiofrequency ablation by serum proteomic analysis. BMC Cancer, 18, 8.

    Article  Google Scholar 

  55. Sun, L., Yu, S., Dong, C. R., et al. (2022). Comprehensive analysis of prognostic value and immune infiltration of ficolin family members in hepatocellular carcinoma. Frontiers in Genetics, 13, 14.

    Google Scholar 

  56. Cao, J., Liu, Z. Y., Liu, J., Li, C., Zhang, G. G., & Shi, R. Z. (2021). Bioinformatics analysis and identification of genes and pathways in ischemic cardiomyopathy. International Journal of General Medicine, 14, 5927–5937.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Prohászka, Z., Munthe-Fog, L., Ueland, T., et al. (2013). Association of ficolin-3 with severity and outcome of chronic heart failure. PLoS ONE, 8(4), e60976.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bromberg-White, J. L., Andersen, N. J., & Duesbery, N. S. (2012). MEK genomics in development and disease. Briefings in Functional Genomics, 11(4), 300–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duran, P., Sandoval, A., Gonzalez-Ramirez, R., Zarco, N., & Felix, R. (2020). Regulation of the Ca2+ channel alpha(2)delta-1 subunit expression by epidermal growth factor via the ERK/ELK-1 signaling pathway. American Journal of Physiology: Endocrinology and Metabolism, 319(1), E232–E244.

    CAS  PubMed  Google Scholar 

  60. Wang, J., & Guo, T. (2013). Metabolic remodeling in chronic heart failure. Journal of Zhejiang University Science B, 14(8), 688–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zamora, M., & Villena, J. A. (2019). Contribution of impaired insulin signaling to the pathogenesis of diabetic cardiomyopathy. International Journal of Molecular Sciences, 20(11), 16.

    Article  Google Scholar 

  62. Shi, Y., Han, T., & Liu, C. (2021). CircRNA hsa_circ_0006220 acts as a tumor suppressor gene by regulating miR-197-5p/CDH19 in triple-negative breast cancer. Annals of Translational Medicine, 9(15), 13.

    Article  Google Scholar 

  63. Peiseler, M., Schwabe, R. F., Hampe, J., Kubes, P., Heikenwaelder, M., & Tacke, F. (2022). Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease—Novel insights into cellular communication circuits. Journal of Hepatology, 77(4), 1136–1160.

    Article  CAS  PubMed  Google Scholar 

  64. Gyorfi, A. H., Matei, A. E., & Distler, J. H. W. (2018). Targeting TGF-beta signaling for the treatment of fibrosis. Matrix Biology, 68–69, 8–27.

    Article  PubMed  Google Scholar 

  65. Murphy-Ullrich, J. E., & Suto, M. J. (2018). Thrombospondin-1 regulation of latent TGF-beta activation: A therapeutic target for fibrotic disease. Matrix Biology, 68–69, 28–43.

    Article  PubMed  Google Scholar 

  66. Dobaczewski, M., Chen, W., & Frangogiannis, N. G. (2011). Transforming growth factor (TGF)-beta signaling in cardiac remodeling. Journal of Molecular and Cellular Cardiology, 51(4), 600–606.

    Article  CAS  PubMed  Google Scholar 

  67. Frangogiannis, N. G. (2017). The role of transforming growth factor (TGF)-beta in the infarcted myocardium. Journal of Thoracic Disease, 9, S52–S63.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen, J., Gingold, J. A., & Su, X. P. (2019). Immunomodulatory TGF-beta signaling in hepatocellular carcinoma. Trends in Molecular Medicine, 25(11), 1010–1023.

    Article  CAS  PubMed  Google Scholar 

  69. Xu, X., Lei, Y. M., Chen, L. J., et al. (2021). Phosphorylation of NF-kappa Bp65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target. Journal of Experimental and Clinical Cancer Research, 40(1), 17.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hanna, A., & Frangogiannis, N. G. (2020). Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovascular Drugs and Therapy, 34(6), 849–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Innovative Team of Intelligent Inspection and Active Health (ITIH) for supporting this study.

Funding

This work was financially supported by the Biomedical Science and Technology Support Special Project of Shanghai Science and Technology Innovation Action Plan in 2021 (21S11901700) and Shanghai Shanghai Pudong New Area Clinical Medicine Summit Fund Project (PWYgf2021-04).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. LC, YL, and LM designed the study. LC, XW, and XL wrote the initial version of the manuscript and revised the final version. LC, XW, and XL performed data collection and analyzed the data. YL and LM supervised the work. All authors contributed to the manuscript and approved the submitted version.

Corresponding authors

Correspondence to Linlin Ma or Yanfei Li.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12637 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Wang, X., Li, X. et al. Identification of Co-diagnostic Genes for Heart Failure and Hepatocellular Carcinoma Through WGCNA and Machine Learning Algorithms. Mol Biotechnol 66, 1229–1245 (2024). https://doi.org/10.1007/s12033-023-01025-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01025-1

Keywords

Navigation