Skip to main content
Log in

MicroRNA-181b-5p Facilitates Thyroid Cancer Growth via Targeting Programmed Cell Death 4

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To explore the potential mechanism of microRNA (miR)-181b-5p promoting the progression of thyroid cancer (TC) by targeting programmed cell death 4 (PDCD4). Analysis of miR-181b-5p and PDCD4 expression in TC was performed. The impact of miR-181b-5p and PDCD4 on proliferation, migration, invasion, and apoptosis of TC cells was examined. The binding relationship between miR-181b-5p and PDCD4 was predicted and verified. miR-181b-5p was up-regulated in TC, while PDCD4 was down-regulated. Down-regulating miR-181b-5p or up-regulating PDCD4 inhibited the proliferation, migration, and invasion of TC cells, and promoted cell apoptosis. PDCD4 was the downstream target of miR-181b-5p, and down-regulation of PDCD4 counteracted the inhibitory effect of down-regulation of miR-181b-5p on the proliferation, migration, and invasion of TC cells and the promoting effect on apoptosis. miR-181b-5p inhibits the proliferation, migration, and invasion of TC cells and promotes cell apoptosis by targeting PDCD4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. García-Gómez, F. J., la Riva-Pérez, P. A., Calvo-Morón, C., Buján-Lloret, C., Cambil-Molina, T., & Castro-Montaño, J. (2017). Intrathoracic stomach mimicking bone metastasis from thyroid cancer in whole-body iodine-131 scan diagnosed by SPECT/CT. Archives of Endocrinology and Metabolism, 61(3), 288–290. https://doi.org/10.1590/2359-3997000000243

    Article  PubMed  PubMed Central  Google Scholar 

  2. Korkmaz, M. H., Öcal, B., Saylam, G., Çakal, E., Bayır, Ö., Tutal, E., & Tatar, E. (2017). The need of prophylactic central lymph node dissection is controversial in terms of postoperative thyroglobulin follow-up of patients with cN0 papillary thyroid cancer. Langenbeck’s Archives of Surgery, 402(2), 235–242. https://doi.org/10.1007/s00423-017-1556-y

    Article  PubMed  Google Scholar 

  3. Zaballos, M. A., & Santisteban, P. (2017). Key signaling pathways in thyroid cancer. Journal of Endocrinology, 235(2), R43-r61. https://doi.org/10.1530/joe-17-0266

    Article  CAS  PubMed  Google Scholar 

  4. Byeon, H. K., Na, H. J., Yang, Y. J., Ko, S., Yoon, S. O., Ku, M., Yang, J., Kim, J. W., Ban, M. J., Kim, J. H., Kim, D. H., Kim, J. M., Choi, E. C., Kim, C. H., Yoon, J. H., & Koh, Y. W. (2017). Acquired resistance to BRAF inhibition induces epithelial-to-mesenchymal transition in BRAF (V600E) mutant thyroid cancer by c-Met-mediated AKT activation. Oncotarget, 8(1), 596–609. https://doi.org/10.18632/oncotarget.13480

    Article  PubMed  Google Scholar 

  5. Kunawudhi, A., Promteangtrong, C., & Chotipanich, C. (2016). A case report of hyperfunctioning metastatic thyroid cancer and rare I-131 avid liver metastasis. Indian Journal of Nuclear Medicine, 31(3), 210–214. https://doi.org/10.4103/0972-3919.183616

    Article  PubMed  PubMed Central  Google Scholar 

  6. Park, S. H., Seo, M., Park, T. Y., & Nam-Goong, S. (2016). An intrapericardial ectopic thyroid mimicking metastasis in a patient with papillary thyroid cancer: Localization, differential diagnosis by (18)F-FDG PET/CT and ablation by (131)I. Hellenic Journal of Nuclear Medicine, 19(3), 272–274. https://doi.org/10.1967/s002449910411

    Article  PubMed  Google Scholar 

  7. Trzybulska, D., Bobjer, J., Giwercman, A., & Tsatsanis, C. (2017). Serum microRNAs in male subfertility-biomarkers and a potential pathogenetic link to metabolic syndrome. Journal of Assisted Reproduction and Genetics, 34(10), 1277–1282. https://doi.org/10.1007/s10815-017-0989-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Feliciano, A., Garcia-Mayea, Y., Jubierre, L., Mir, C., Hummel, M., Castellvi, J., Hernández-Losa, J., Paciucci, R., Sansano, I., Sun, Y., Ramón, Y. C. S., Kondon, H., Soriano, A., Segura, M., Lyakhovich, A., & LLeonart, M. E. (2017). miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer. Cell Death & Disease, 8(10), e3141. https://doi.org/10.1038/cddis.2017.544

    Article  CAS  Google Scholar 

  9. Mansoori, B., Duijf, P. H. G., Mohammadi, A., Safarzadeh, E., Ditzel, H. J., Gjerstorff, M. F., Cho, W. C., & Baradaran, B. (2021). MiR-142-3p targets HMGA2 and suppresses breast cancer malignancy. Life Sciences, 276, 119431. https://doi.org/10.1016/j.lfs.2021.119431

    Article  CAS  PubMed  Google Scholar 

  10. Zuberi, M., Khan, I., Mir, R., Gandhi, G., Ray, P. C., & Saxena, A. (2016). Utility of serum miR-125b as a diagnostic and prognostic indicator and its alliance with a panel of tumor suppressor genes in epithelial ovarian cancer. PLoS ONE, 11(4), e0153902. https://doi.org/10.1371/journal.pone.0153902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hill, M., & Tran, N. (2018). MicroRNAs regulating microRNAs in cancer. Trends Cancer, 4(7), 465–468. https://doi.org/10.1016/j.trecan.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  12. Chen, S., Liu, Y., Wang, Y., & Xue, Z. (2019). LncRNA CCAT1 promotes colorectal cancer tumorigenesis via a miR-181b-5p/TUSC3 axis. Oncotargets and Therapy, 12, 9215–9225. https://doi.org/10.2147/ott.S216718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, X., Li, M., Zhou, H., & Zhang, L. (2019). miR-132 targets FOXA1 and exerts tumor-suppressing functions in thyroid cancer. Oncology Research, 27(4), 431–437. https://doi.org/10.3727/096504018x15201058168730

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pełka, K., Klicka, K., Grzywa, T. M., Gondek, A., Marczewska, J. M., Garbicz, F., Szczepaniak, K., Paskal, W., & Włodarski, P. K. (2021). miR-96-5p, miR-134-5p, miR-181b-5p and miR-200b-3p heterogenous expression in sites of prostate cancer versus benign prostate hyperplasia-archival samples study. Histochemistry and Cell Biology, 155(3), 423–433. https://doi.org/10.1007/s00418-020-01941-2

    Article  CAS  PubMed  Google Scholar 

  15. Xie, X., Sun, F. K., Huang, X., Wang, C. H., Dai, J., Zhao, J. P., Fang, C., & He, W. (2021). A circular RNA, circSMARCA5, inhibits prostate cancer proliferative, migrative, and invasive capabilities via the miR-181b-5p/miR-17-3p-TIMP3 axis. Aging (Albany NY), 13(15), 19908–19919. https://doi.org/10.18632/aging.203408

    Article  CAS  PubMed  Google Scholar 

  16. Yeon, M., Kim, Y., Pathak, D., Kwon, E., Kim, D. Y., Jeong, M. S., Jung, H. S., & Jeoung, D. (2021). The CAGE-MiR-181b-5p-S1PR1 axis regulates anticancer drug resistance and autophagy in gastric cancer cells. Frontiers in Cell and Developmental Biology, 9, 666387. https://doi.org/10.3389/fcell.2021.666387

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ahmed, S. H., Espinoza-Sánchez, N. A., El-Damen, A., Fahim, S. A., Badawy, M. A., Greve, B., El-Shinawi, M., Götte, M., & Ibrahim, S. A. (2021). Small extracellular vesicle-encapsulated miR-181b-5p, miR-222-3p and let-7a-5p: Next generation plasma biopsy-based diagnostic biomarkers for inflammatory breast cancer. PLoS ONE, 16(4), e0250642. https://doi.org/10.1371/journal.pone.0250642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cinegaglia, N. C., Andrade, S. C., Tokar, T., Pinheiro, M., Severino, F. E., Oliveira, R. A., Hasimoto, E. N., Cataneo, D. C., Cataneo, A. J., Defaveri, J., Souza, C. P., Marques, M. M., Carvalho, R. F., Coutinho, L. L., Gross, J. L., Rogatto, S. R., Lam, W. L., Jurisica, I., & Reis, P. P. (2016). Integrative transcriptome analysis identifies deregulated microRNA-transcription factor networks in lung adenocarcinoma. Oncotarget, 7(20), 28920–28934. https://doi.org/10.18632/oncotarget.8713

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fahim, S. A., Abdullah, M. S., Espinoza-Sánchez, N. A., Hassan, H., Ibrahim, A. M., Ahmed, S. H., Shakir, G., Badawy, M. A., Zakhary, N. I., Greve, B., El-Shinawi, M., Götte, M., & Ibrahim, S. A. (2020). Inflammatory breast carcinoma: Elevated microRNA miR-181b-5p and reduced miR-200b-3p, miR-200c-3p, and miR-203a-3p expression as potential biomarkers with diagnostic value. Biomolecules. https://doi.org/10.3390/biom10071059

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, Q., & Yang, H. S. (2018). The role of Pdcd4 in tumour suppression and protein translation. Biology of the Cell. https://doi.org/10.1111/boc.201800014

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhen, Y., Fang, W., Zhao, M., Luo, R., Liu, Y., Fu, Q., Chen, Y., Cheng, C., Zhang, Y., & Liu, Z. (2017). miR-374a-CCND1-pPI3K/AKT-c-JUN feedback loop modulated by PDCD4 suppresses cell growth, metastasis, and sensitizes nasopharyngeal carcinoma to cisplatin. Oncogene, 36(2), 275–285. https://doi.org/10.1038/onc.2016.201

    Article  CAS  PubMed  Google Scholar 

  22. Pennelli, G., Fassan, M., Mian, C., Pizzi, M., Balistreri, M., Barollo, S., Galuppini, F., Guzzardo, V., Pelizzo, M., & Rugge, M. (2013). PDCD4 expression in thyroid neoplasia. Virchows Archiv, 462(1), 95–100. https://doi.org/10.1007/s00428-012-1352-6

    Article  CAS  PubMed  Google Scholar 

  23. Galuppini, F., Fassan, M., Bertazza, L., Barollo, S., Cascione, L., Watutantrige-Fernando, S., Lazzarin, V., Simonato, P., Vianello, F., Rugge, M., Mian, C., & Pennelli, G. (2019). Programmed cell death 4 (PDCD4) as a novel prognostic marker for papillary thyroid carcinoma. Cancer Management and Research, 11, 7845–7855. https://doi.org/10.2147/cmar.S194344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, R., Teng, X., Zhu, H., Han, T., & Liu, Q. (2019). MiR-4500 regulates PLXNC1 and inhibits papillary thyroid cancer progression. Hormones and Cancer, 10(4–6), 150–160. https://doi.org/10.1007/s12672-019-00366-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang, Y., Zhang, K., Li, Y., Dai, Y., & Zhao, H. (2020). The DLG1-AS1/miR-497/YAP1 axis regulates papillary thyroid cancer progression. Aging (Albany NY), 12(22), 23326–23336. https://doi.org/10.18632/aging.104121

    Article  CAS  PubMed  Google Scholar 

  26. Ren, Z. F., Du, M. F., Fu, H., Liu, J., Xia, F. Y., Du, H. N., & Liu, N. (2020). MiR-200c promotes proliferation of papillary thyroid cancer cells via Wnt/β-catenin signaling pathway. European Review for Medical and Pharmacological Sciences, 24(10), 5512–5518. https://doi.org/10.26355/eurrev_202005_21336

    Article  PubMed  Google Scholar 

  27. Boufraqech, M., Zhang, L., Jain, M., Patel, D., Ellis, R., Xiong, Y., He, M., Nilubol, N., Merino, M. J., & Kebebew, E. (2014). miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocrine-Related Cancer, 21(4), 517–531. https://doi.org/10.1530/erc-14-0077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie, F., Li, L., Luo, Y., Chen, R., & Mei, J. (2021). Long non-coding RNA LINC00488 facilitates thyroid cancer cell progression through miR-376a-3p/PON2. Bioscience Reports. https://doi.org/10.1042/bsr20201603

  29. Le, F., Luo, P., Yang, Q. O., & Zhong, X. M. (2017). MiR-181a promotes growth of thyroid cancer cells by targeting tumor suppressor RB1. European Review for Medical and Pharmacological Sciences, 21(24), 5638–5647. https://doi.org/10.26355/eurrev_201712_14007

    Article  CAS  PubMed  Google Scholar 

  30. Ding, Y., Wu, L., Zhuang, X., Cai, J., Tong, H., Si, Y., Zhang, H., Wang, X., & Shen, M. (2021). The direct miR-874-3p-target FAM84A promotes tumor development in papillary thyroid cancer. Molecular Oncology, 15(5), 1597–1614. https://doi.org/10.1002/1878-0261.12941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pellegriti, G., Frasca, F., Regalbuto, C., Squatrito, S., & Vigneri, R. (2013). Worldwide increasing incidence of thyroid cancer: Update on epidemiology and risk factors. Journal of Cancer Epidemiology, 2013, 965212. https://doi.org/10.1155/2013/965212

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, T. S., & Sosa, J. A. (2018). Thyroid surgery for differentiated thyroid cancer—Recent advances and future directions. Nature Reviews. Endocrinology, 14(11), 670–683. https://doi.org/10.1038/s41574-018-0080-7

    Article  CAS  PubMed  Google Scholar 

  33. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. (2020). CA: A Cancer Journal for Clinicians, 70(4), 313. https://doi.org/10.3322/caac.21609

  34. Guo, K., Wang, J., Shu, L., & Zhou, G. (2021). MiR-200c promotes papillary thyroid cancer cell proliferation, migration, and invasion by downregulating PTEN. Tissue and Cell, 73, 101647. https://doi.org/10.1016/j.tice.2021.101647

    Article  CAS  PubMed  Google Scholar 

  35. Bian, S. (2020). miR-4319 inhibited the development of thyroid cancer by modulating FUS-stabilized SMURF1. Journal of Cellular Biochemistry, 121(1), 174–182. https://doi.org/10.1002/jcb.29026

    Article  CAS  PubMed  Google Scholar 

  36. Chen, L., Wang, X., Ji, C., Hu, J., & Fang, L. (2020). MiR-506-3p suppresses papillary thyroid cancer cells tumorigenesis by targeting YAP1. Pathology - Research and Practice, 216(12), 153231. https://doi.org/10.1016/j.prp.2020.153231

    Article  CAS  PubMed  Google Scholar 

  37. Nikiforov, Y. E. (2017). Role of molecular markers in thyroid nodule management: Then and now. Endocrine Practice, 23(8), 979–988. https://doi.org/10.4158/ep171805.Ra

    Article  PubMed  Google Scholar 

  38. Nixon, A. M., Provatopoulou, X., Kalogera, E., Zografos, G. N., & Gounaris, A. (2017). Circulating thyroid cancer biomarkers: Current limitations and future prospects. Clinical Endocrinology - Oxford, 87(2), 117–126. https://doi.org/10.1111/cen.13369

    Article  CAS  PubMed  Google Scholar 

  39. Qiu, J., Zhang, W., Zang, C., Liu, X., Liu, F., Ge, R., Sun, Y., & Xia, Q. (2018). Identification of key genes and miRNAs markers of papillary thyroid cancer. Biological Research, 51(1), 45. https://doi.org/10.1186/s40659-018-0188-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Y., Pan, J., Xu, D., Yang, Z., Sun, J., Sun, L., Wu, Y., & Qiao, H. (2018). Combination of serum microRNAs and ultrasound profile as predictive biomarkers of diagnosis and prognosis for papillary thyroid microcarcinoma. Oncology Reports, 40(6), 3611–3624. https://doi.org/10.3892/or.2018.6776

    Article  CAS  PubMed  Google Scholar 

  41. Tian, F., Shen, Y., Chen, Z., Li, R., Lu, J., & Ge, Q. (2016). Aberrant miR-181b-5p and miR-486-5p expression in serum and tissue of non-small cell lung cancer. Gene, 591(2), 338–343. https://doi.org/10.1016/j.gene.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, Z. L., Zhang, F. X., Zhan, H. L., Yang, H. J., Zhang, S. Y., Liu, Z. H., Jiang, Y., Lv, L. Z., & Ke, R. S. (2022). miR-181b-5p promotes the progression of cholangiocarcinoma by targeting PARK2 via PTEN/PI3K/AKT signaling pathway. Biochemical Genetics, 60(1), 223–240. https://doi.org/10.1007/s10528-021-10084-5

    Article  CAS  PubMed  Google Scholar 

  43. Qin, Y., Zheng, Y., Huang, C., Li, Y., Gu, M., & Wu, Q. (2021). Downregulation of miR-181b-5p inhibits the viability, migration, and glycolysis of gallbladder cancer by upregulating PDHX under hypoxia. Frontiers in Oncology, 11, 683725. https://doi.org/10.3389/fonc.2021.683725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cai, Q., Yang, H. S., Li, Y. C., & Zhu, J. (2022). Dissecting the roles of PDCD4 in breast cancer. Frontiers in Oncology, 12, 855807. https://doi.org/10.3389/fonc.2022.855807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo, T., Wang, J., Cheng, G., & Huang, H. (2020). miR-590-5p may regulate colorectal cancer cell viability and migration by targeting PDCD4. Experimental and Therapeutic Medicine, 20(5), 55. https://doi.org/10.3892/etm.2020.9183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ji, C., Hu, J., Wang, X., Zheng, W., Deng, X., Song, H., Yu, Y., Luo, Q., Hua, K., Zhou, X., & Fang, L. (2021). Hsa_circ_0053063 inhibits breast cancer cell proliferation via hsa_circ_0053063/hsa-miR-330-3p/PDCD4 axis. Aging (Albany NY), 13(7), 9627–9645. https://doi.org/10.18632/aging.202707

    Article  CAS  PubMed  Google Scholar 

  47. Pennelli, G., Galuppini, F., Barollo, S., Cavedon, E., Bertazza, L., Fassan, M., Guzzardo, V., Pelizzo, M. R., Rugge, M., & Mian, C. (2015). The PDCD4/miR-21 pathway in medullary thyroid carcinoma. Human Pathology, 46(1), 50–57. https://doi.org/10.1016/j.humpath.2014.09.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenShun Song.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Li, Y., Sun, Y. et al. MicroRNA-181b-5p Facilitates Thyroid Cancer Growth via Targeting Programmed Cell Death 4. Mol Biotechnol 66, 1154–1164 (2024). https://doi.org/10.1007/s12033-023-01013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01013-5

Keywords

Navigation