Skip to main content

Advertisement

Log in

Simulation and Computational Study of RING Domain Mutants of BRCA1 and Ube2k in AD/PD Pathophysiology

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lysine-based post-translational modification (PTM) such as acylation, acetylation, deamination, methylation, SUMOylation, and ubiquitination has proven to be a major regulator of gene expression, chromatin structure, protein stability, protein–protein interaction, protein degradation, and cellular localization. However, besides all the PTMs, ubiquitination stands as the second most common PTM after phosphorylation that is involved in the etiology of neurodegenerative diseases (NDDs) namely, Alzheimer’s disease (AD) and Parkinson’s disease (PD). NDDs are characterized by the accumulation of misfolded protein aggregates in the brain that lead to disease-related gene mutation and irregular protein homeostasis. The ubiquitin–proteasome system (UPS) is in charge of degrading these misfolded proteins, which involve an interplay of E1, E2, E3, and deubiquitinase enzymes. Impaired UPS has been commonly observed in NDDs and E3 ligases are the key members of the UPS, thus, dysfunction of the same can accelerate the neurodegeneration process. Therefore, the aim of this study is firstly, to find E3 ligases that are common in both AD and PD through data mining. Secondly, to study the impact of mutation on its structure and function. The study deciphered 74 E3 ligases that were common in both AD and PD. Later, 10 hub genes were calculated of which protein–protein interaction, pathway enrichment, lysine site prediction, domain, and motif analysis were performed. The results predicted BRCA1, PML, and TRIM33 as the top three putative lysine-modified E3 ligases involved in AD and PD pathogenesis. However, based on structural characterization, BRCA1 was taken further to study RING domain mutation that inferred K32Y, K32L, K32C, K45V, K45Y, and K45G as potential mutants that alter the structural and functional ability of BRCA1 to interact with Ube2k, E2-conjugating enzyme. The most probable mutant observed after molecular dynamics simulation of 50 ns is K32L. Therefore, our study concludes BRCA1, a potential E3 ligase common in AD and PD, and RING domain mutation at sites K32 and K45 possibly disturbs its interaction with its E2, Ube2k.

Graphical Abstract

Graphical representation of all the steps involved to study mutation in the RING domain of BRCA1 which is a common E3 ligase observed in Alzheimer’s disease and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Watanabe, Y., Taguchi, K., & Tanaka, M. (2020). Ubiquitin autophagy and neurodegenerative diseases. Cells, 9(9), 2022. https://doi.org/10.3390/CELLS9092022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, L., Liu, S., & Tao, Y. (2020). Regulating tumor suppressor genes: Post-translational modifications. Signal Transduction and Targeted Therapy, 5(1), 1–25. https://doi.org/10.1038/s41392-020-0196-9

    Article  CAS  Google Scholar 

  3. Salas-Lloret, D., & González-Prieto, R. (2022). Insights in Post-translational modifications: Ubiquitin and SUMO. International Journal of Molecular Sciences, 23(6), 3281. https://doi.org/10.3390/IJMS23063281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar, V. S., & Vellaichamy, A. (2019). Sequence and structure-based characterization of ubiquitination sites in human and yeast proteins using Chou’s sample formulation. Proteins: Structure, Function, and Bioinformatics, 87(8), 646–657. https://doi.org/10.1002/PROT.25689

    Article  CAS  Google Scholar 

  5. Jaishankar, A., Tang, N. L. S., Jelani, M., Mabb, A. M., George, A. J., Hoffiz, Y. C., & Zhu, Y. (2018). A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Frontiers in Genetics, 9, 29. https://doi.org/10.3389/fgene.2018.00029

    Article  CAS  Google Scholar 

  6. Upadhyay, A., Joshi, V., Amanullah, A., Mishra, R., Arora, N., Prasad, A., & Mishra, A. (2017). E3 ubiquitin ligases neurobiological mechanisms: Development to degeneration. Frontiers in Molecular Neuroscience, 10, 151. https://doi.org/10.3389/FNMOL.2017.00151/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  7. LeBlanc, N., Mallette, E., & Zhang, W. (2021). Targeted modulation of E3 ligases using engineered ubiquitin variants. The FEBS Journal, 288(7), 2143–2165. https://doi.org/10.1111/FEBS.15536

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Q., Zhao, J., Chen, D., & Wang, Y. (2021). E3 ubiquitin ligases: Styles, structures and functions. Molecular Biomedicine. https://doi.org/10.1186/S43556-021-00043-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schmidt, M. F., Gan, Z. Y., Komander, D., & Dewson, G. (2021). Ubiquitin signalling in neurodegeneration: Mechanisms and therapeutic opportunities. Cell Death & Differentiation, 28(2), 570–590. https://doi.org/10.1038/s41418-020-00706-7

    Article  CAS  Google Scholar 

  10. Roverato, N. D., Sailer, C., Catone, N., Aichem, A., Stengel, F., & Groettrup, M. (2021). Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. Cell reports. https://doi.org/10.1016/J.CELREP.2021.108857

    Article  PubMed  Google Scholar 

  11. Wang, T., Wang, W., Wang, Q., Xie, R., Landay, A., & Chen, D. (2020). The E3 ubiquitin ligase CHIP in normal cell function and in disease conditions. Annals of the New York Academy of Sciences, 1460(1), 3–10. https://doi.org/10.1111/NYAS.14206

    Article  CAS  PubMed  Google Scholar 

  12. Metzger, M. B., Pruneda, J. N., Klevit, R. E., & Weissman, A. M. (2014). RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biophysica Acta (BBA) - Molecular Cell Research, 1843(1), 47–60. https://doi.org/10.1016/J.BBAMCR.2013.05.026

    Article  CAS  Google Scholar 

  13. Leung, E., & Hazrati, L. N. (2021). Breast cancer type 1 and neurodegeneration: Consequences of deficient DNA repair. Brain Communications. https://doi.org/10.1093/BRAINCOMMS/FCAB117

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gough, C. A., Gojobori, T., & Imanishi, T. (2007). Cancer-related mutations in BRCA1-BRCT cause long-range structural changes in protein–protein binding sites: A molecular dynamics study. Proteins: Structure, Function, and Bioinformatics, 66(1), 69–86. https://doi.org/10.1002/PROT.21188

    Article  CAS  Google Scholar 

  15. Drikos, I., Nounesis, G., & Vorgias, C. E. (2009). Characterization of cancer-linked BRCA1-BRCT missense variants and their interaction with phosphoprotein targets. Proteins: Structure, Function, and Bioinformatics, 77(2), 464–476. https://doi.org/10.1002/PROT.22460

    Article  CAS  Google Scholar 

  16. Christensen, D. E., Brzovic, P. S., & Klevit, R. E. (2007). E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nature Structural & Molecular Biology, 14(10), 941–948. https://doi.org/10.1038/nsmb1295

    Article  CAS  Google Scholar 

  17. Song, S., Kim, S. Y., Hong, Y. M., Jo, D. G., Lee, J. Y., Shim, S. M., Chung, C. W., Seo, S. J., Yoo, Y. J., Koh, J. Y., Lee, M. C., Yates, A. J., Ichijo, H., & Jung, Y. K. (2003). Essential role of E2–25K/Hip-2 in mediating amyloid-beta neurotoxicity. Molecular Cell, 12(3), 553–563. https://doi.org/10.1016/J.MOLCEL.2003.08.005

    Article  CAS  PubMed  Google Scholar 

  18. de Pril, R., Fischer, D. F., Roos, R. A. C., & van Leeuwen, F. W. (2007). Ubiquitin-conjugating enzyme E2–25K increases aggregate formation and cell death in polyglutamine diseases. Molecular and cellular neurosciences, 34(1), 10–19. https://doi.org/10.1016/J.MCN.2006.09.006

    Article  PubMed  Google Scholar 

  19. Su, J., Huang, P., Qin, M., Lu, Q., Sang, X., Cai, Y., Wang, Y., Liu, F., Wu, R., Wang, X., Jiang, X., Wang, J., Sun, Q., Chen, S., & Xu, J. (2018). Reduction of HIP2 expression causes motor function impairment and increased vulnerability to dopaminergic degeneration in Parkinson’s disease models. Cell Death and Disease. https://doi.org/10.1038/s41419-018-1066-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tak, Y. J., & Kang, S. (2022). The E2 ubiquitin-conjugating enzyme HIP2 is a crucial regulator of quality control against mutant SOD1 proteotoxicity. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1868(2), 166316. https://doi.org/10.1016/J.BBADIS.2021.166316

    Article  CAS  PubMed  Google Scholar 

  21. Mezencev, R., & Chernoff, Y. O. (2020). Risk of Alzheimer’s disease in cancer patients: Analysis of mortality data from the US SEER population-based registries. Cancers, 12(4), 796. https://doi.org/10.3390/CANCERS12040796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mano, T., Iwata, A., Nonaka, T., Tarutani, A., Hashimoto, T., Hasegawa, M., Iwatsubo, T., & Toda, T. (2018). Tau-related dysfunction of BRCA1 leads to reduced neuronal plasticity in Alzheimer’s disease. Alzheimer’s & Dementia. https://doi.org/10.1016/J.JALZ.2018.06.2771

    Article  Google Scholar 

  23. Evans, T. A., Raina, A. K., Delacourte, A., Aprelikova, O., Lee, H. G., Zhu, X., Perry, G., & Smith, M. A. (2007). BRCA1 may modulate neuronal cell cycle re-entry in alzheimer disease. International Journal of Medical Sciences, 4(3), 140. https://doi.org/10.7150/IJMS.4.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodsell, D. S. (2022). JCVI-syn3A minimal cell. RCSB Protein Data Bank. https://doi.org/10.2210/RCSB_PDB/GOODSELL-GALLERY-042

    Article  Google Scholar 

  25. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids Research. https://doi.org/10.1093/NAR/GKS1193

    Article  PubMed  PubMed Central  Google Scholar 

  26. Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207–210. https://doi.org/10.1093/NAR/30.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hunt, G. P., Grassi, L., Henkin, R., Smeraldi, F., Spargo, T. P., Kabiljo, R., Koks, S., Ibrahim, Z., Dobson, R. J. B., Al-Chalabi, A., Barnes, M. R., & Iacoangeli, A. (2022). GEOexplorer: a webserver for gene expression analysis and visualisation. Nucleic Acids Research, 50(W1), W367–W374. https://doi.org/10.1093/NAR/GKAC364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Udhaya Kumar, S., Thirumal Kumar, D., Bithia, R., Sankar, S., Magesh, R., Sidenna, M., George Priya Doss, C., & Zayed, H. (2020). Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: A systematic and bioinformatics approach. Frontiers in Genetics, 11, 1–16. https://doi.org/10.3389/FGENE.2020.00734/BIBTEX

    Article  Google Scholar 

  29. Wu, A. T. H., Lawal, B., Wei, L., Wen, Y. T., Tzeng, D. T. W., & Lo, W. C. (2021). Multiomics identification of potential targets for alzheimer disease and antrocin as a therapeutic candidate. Pharmaceutics, 13(10), 1555. https://doi.org/10.3390/PHARMACEUTICS13101555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, W., Bengtson, M. H., Ulbrich, A., Matsuda, A., Reddy, V. A., Orth, A., Chanda, S. K., Batalov, S., & Joazeiro, C. A. (2008). Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial e3 that regulates the organelle’s dynamics and signaling. PLOS ONE, 3(1), e1487. https://doi.org/10.1371/JOURNAL.PONE.0001487

    Article  PubMed  PubMed Central  Google Scholar 

  31. Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16(1), 1–7. https://doi.org/10.1186/S12859-015-0611-3/FIGURES/4

    Article  Google Scholar 

  32. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., & von Mering, C. (2015). STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.org/10.1093/nar/gku1003

    Article  CAS  PubMed  Google Scholar 

  33. Oughtred, R., Chatr-aryamontri, A., Breitkreutz, B. J., Chang, C. S., Rust, J. M., Theesfeld, C. L., Heinicke, S., Breitkreutz, A., Chen, D., Hirschman, J., Kolas, N., Livstone, M. S., Nixon, J., O’Donnell, L., Ramage, L., Winter, A., Reguly, T., Sellam, A., Stark, C., … Tyers, M. (2016). BioGRID: A tool for studying biological interactions in yeast. Cold Spring Harbor protocols, 2016(1), pdb.top080754. https://doi.org/10.1101/PDB.TOP080754

    Article  PubMed  PubMed Central  Google Scholar 

  34. Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/NAR/GKAA1074

    Article  CAS  PubMed  Google Scholar 

  35. Cao, M., Pietras, C. M., Feng, X., Doroschak, K. J., Schaffner, T., Park, J., Zhang, H., Cowen, L. J., & Hescott, B. J. (2014). New directions for diffusion-based network prediction of protein function incorporating pathways with confidenc. Bioinformatics (Oxford, England). https://doi.org/10.1093/BIOINFORMATICS/BTU263

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cao, M., Zhang, H., Park, J., Daniels, N. M., Crovella, M. E., Cowen, L. J., & Hescott, B. (2013). Going the distance for protein function prediction: A new distance metric for protein interaction networks. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0076339

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498. https://doi.org/10.1101/GR.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elbashir, M. K., Mohammed, M., Mwambi, H., & Omolo, B. (2023). Identification of hub genes associated with breast cancer using integrated gene expression data with protein-protein interaction network. Applied Sciences (Switzerland), 13(4), 2403. https://doi.org/10.3390/APP13042403/S1

    Article  CAS  Google Scholar 

  39. Reimand, J., Arak, T., & Vilo, J. (2011). g:Profiler—a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Research, 39(2), W307–W315. https://doi.org/10.1093/NAR/GKR378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz, M. L., Kropiwnicki, E., Jagodnik, K. M., Jeon, M., & Ma’ayan, A. (2021). Gene set knowledge discovery with enrichr. Current Protocols, 1(3), e90. https://doi.org/10.1002/CPZ1.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ge, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628–2629. https://doi.org/10.1093/BIOINFORMATICS/BTZ931

    Article  CAS  PubMed  Google Scholar 

  42. Letunic, I., & Bork, P. (2018). 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 46(D1), D493–D496. https://doi.org/10.1093/NAR/GKX922

    Article  CAS  PubMed  Google Scholar 

  43. Bailey, T. L., Johnson, J., Grant, C. E., & Noble, W. S. (2015). The MEME suite. Nucleic Acids Research, 43(W1), W39–W49. https://doi.org/10.1093/NAR/GKV416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Obenauer, J. C., Cantley, L. C., & Yaffe, M. B. (2003). Scansite 20: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Research, 31(13), 3635–3641. https://doi.org/10.1093/NAR/GKG584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research. https://doi.org/10.1093/nar/gkw408

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu, H., Zhou, J., Lin, S., Deng, W., Zhang, Y., & Xue, Y. (2017). PLMD: An updated data resource of protein lysine modifications. Journal of Genetics and Genomics = Yi chuan xue bao, 44(5), 243–250. https://doi.org/10.1016/J.JGG.2017.03.007

    Article  PubMed  Google Scholar 

  47. Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology. https://doi.org/10.1371/JOURNAL.PCBI.1003440

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H. J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications. https://doi.org/10.1038/S41467-020-19669-X

    Article  PubMed  PubMed Central  Google Scholar 

  49. Venselaar, H., te Beek, T. A. H., Kuipers, R. K. P., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 1–10. https://doi.org/10.1186/1471-2105-11-548/FIGURES/5

    Article  Google Scholar 

  50. Brzovic, P. S., Rajagopal, P., Hoyt, D. W., King, M. C., & Klevit, R. E. (2001). Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nature Structural Biology, 8(10), 833–837. https://doi.org/10.1038/nsb1001-833

    Article  CAS  PubMed  Google Scholar 

  51. Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chao, H., Chen, L., Craig, P. A., Crichlow, G. V., Dalenberg, K., Duarte, J. M., Dutta, S., Fayazi, M., Feng, Z., Flatt, J. W., Ganesan, S., Ghosh, S., Goodsell, D. S., Green, R. K., Guranovic, V., … Zardecki, C. (2023). RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Research, 51(D1), D488–D508. https://doi.org/10.1093/NAR/GKAC1077

    Article  CAS  PubMed  Google Scholar 

  52. Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., Xia, B., Beglov, D., & Vajda, S. (2015). The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, 10(5), 733–755. https://doi.org/10.1038/nprot.2015.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Vries, S. J., & Bonvin, A. M. J. J. (2011). CPORT: A consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0017695

    Article  PubMed  PubMed Central  Google Scholar 

  54. Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure, 28(9), 1071-1081.e3. https://doi.org/10.1016/j.str.2020.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins: Structure Function, and Bioinformatics. https://doi.org/10.1002/prot.25219

    Article  Google Scholar 

  56. Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking? Proteins: Structure Function, and Bioinformatics, 81(12), 2159–2166. https://doi.org/10.1002/prot.24403

    Article  CAS  Google Scholar 

  57. Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Porter, K. A., Xia, B., Beglov, D., Bohnuud, T., Alam, N., Schueler-Furman, O., & Kozakov, D. (2017). ClusPro peptidock: Efficient global docking of peptide recognition motifs using FFT. Bioinformatics, 33(20), 3299–3301. https://doi.org/10.1093/bioinformatics/btx216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/J.JMB.2015.09.014

    Article  PubMed  Google Scholar 

  60. Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/JA026939X/SUPPL_FILE/JA026939XSI20021128_085857.TXT

    Article  CAS  PubMed  Google Scholar 

  61. Venkatraman, V., Yang, Y. D., Sael, L., & Kihara, D. (2009). Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-10-407

    Article  PubMed  PubMed Central  Google Scholar 

  62. Porter, K. A., Desta, I., Kozakov, D., & Vajda, S. (2019). What method to use for protein–protein docking? Current Opinion in Structural Biology, 55, 1–7. https://doi.org/10.1016/j.sbi.2018.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/JCC.20291

    Article  PubMed  Google Scholar 

  64. Robertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved peptide and protein torsional energetics with the OPLS-AA force field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scardoni, G., Tosadori, G., Faizan, M., Spoto, F., Fabbri, F., & Laudanna, C. (2014). Biological network analysis with CentiScaPe: Centralities and experimental dataset integration. F1000Research. https://doi.org/10.12688/F1000RESEARCH.4477.2

    Article  PubMed  Google Scholar 

  66. Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(4), 1–7. https://doi.org/10.1186/1752-0509-8-S4-S11/TABLES/4

    Article  Google Scholar 

  67. Lorick, K. L., Jensen, J. P., Fang, S., Ong, A. M., Hatakeyama, S., & Weissman, A. M. (1999). RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11364. https://doi.org/10.1073/PNAS.96.20.11364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ying, M., Huang, X., Zhao, H., Wu, Y., Wan, F., Huang, C., & Jie, K. (2011). Comprehensively surveying structure and function of RING domains from Drosophila melanogaster. PLoS ONE, 6(9), e23863. https://doi.org/10.1371/JOURNAL.PONE.0023863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44, W344. https://doi.org/10.1093/NAR/GKW408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Le Guilloux, V., Schmidtke, P., & Tuffery, P. (2009). Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics, 10(1), 1–11. https://doi.org/10.1186/1471-2105-10-168/TABLES/1

    Article  Google Scholar 

  71. Hsu, K. S., & Kao, H. Y. (2018). PML: Regulation and multifaceted function beyond tumor suppression. Cell & Bioscience, 8(1), 1–21. https://doi.org/10.1186/S13578-018-0204-8

    Article  Google Scholar 

  72. Tessier, S., Ferhi, O., Geoffroy, M. C., González-Prieto, R., Canat, A., Quentin, S., Pla, M., Niwa-Kawakita, M., Bercier, P., Rérolle, D., Tirard, M., Therizols, P., Fabre, E., Vertegaal, A. C. O., de Thé, H., & Lallemand-Breitenbach, V. (2022). Exploration of nuclear body-enhanced sumoylation reveals that PML represses 2-cell features of embryonic stem cells. Nature Communications, 13(1), 1–15. https://doi.org/10.1038/s41467-022-33147-6

    Article  CAS  Google Scholar 

  73. Ivanschitz, L., De Thé, H., & Le Bras, M. (2013). PML, SUMOylation, and senescence. Frontiers in Oncology. https://doi.org/10.3389/FONC.2013.00171

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rabellino, A., & Scaglioni, P. P. (2013). PML degradation: Multiple ways to eliminate PML. Frontiers in Oncology. https://doi.org/10.3389/FONC.2013.00060/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  75. Clark, S. L., Rodriguez, A. M., Snyder, R. R., Hankins, G. D. V., & Boehning, D. (2012). Structure-function of the tumor suppressor BRCA1. Computational and Structural Biotechnology Journal, 1(1), e201204005. https://doi.org/10.5936/CSBJ.201204005

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chatterjee, P., Karn, R., Emerson, I. A., & Banerjee, S. (2023). Docking and molecular dynamics simulation revealed the potential inhibitory activity of amygdalin in triple-negative breast cancer therapeutics targeting the brct domain of BARD1 receptor. Molecular Biotechnology, 2023, 1–19. https://doi.org/10.1007/S12033-023-00680-8

    Article  Google Scholar 

  77. Gouveia, C., Peña-Guerrero, J., Fernández-Rubio, C., García-Sosa, A. T., & Nguewa, P. A. (2023). BRCT domains: Structure, functions, and implications in disease—New therapeutic targets for innovative drug discovery against infections. Pharmaceutics, 15(7), 1839. https://doi.org/10.3390/PHARMACEUTICS15071839

    Article  Google Scholar 

  78. Witus, S. R., Stewart, M. D., & Klevit, R. E. (2021). The BRCA1/BARD1 ubiquitin ligase and its substrates. The Biochemical Journal, 478(18), 3467. https://doi.org/10.1042/BCJ20200864

    Article  PubMed  Google Scholar 

  79. Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H. J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 11(1), 1–13. https://doi.org/10.1038/s41467-020-19669-x

    Article  CAS  Google Scholar 

  80. Wu, W., Koike, A., Takeshita, T., & Ohta, T. (2008). The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Division, 3(1), 1–10. https://doi.org/10.1186/1747-1028-3-1/FIGURES/2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. (2007). New partners for BRCA1. Nature Structural & Molecular Biology, 14(10), 879–879. https://doi.org/10.1038/nsmb1007-879

  82. Merkley, N., & Shaw, G. S. (2004). Solution structure of the flexible class II ubiquitin-conjugating enzyme Ubc1 provides insights for polyubiquitin chain assembly. The Journal of Biological Chemistry, 279(45), 47139–47147. https://doi.org/10.1074/JBC.M409576200

    Article  CAS  PubMed  Google Scholar 

  83. Middleton, A. J., Teyra, J., Zhu, J., Sidhu, S. S., & Day, C. L. (2021). Identification of ubiquitin variants that inhibit the E2 ubiquitin conjugating enzyme, Ube2k. ACS Chemical Biology, 16(9), 1745–1756. https://doi.org/10.1021/ACSCHEMBIO.1C00445/ASSET/IMAGES/LARGE/CB1C00445_0006.JPEG

    Article  CAS  PubMed  Google Scholar 

  84. Kalchman, M. A., Graham, R. K., Xia, G., Koide, H. B., Hodgson, J. G., Graham, K. C., Goldberg, Y. P., Gietz, R. D., Pickart, C. M., & Hayden, M. R. (1996). Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. The Journal of Biological Chemistry, 271(32), 19385–19394. https://doi.org/10.1074/JBC.271.32.19385

    Article  CAS  PubMed  Google Scholar 

  85. Meiklejohn, H., Mostaid, M. S., Luza, S., Mancuso, S. G., Kang, D., Atherton, S., Rothmond, D. A., Weickert, C. S., Opazo, C. M., Pantelis, C., Bush, A. I., Everall, I. P., & Bousman, C. A. (2019). Blood and brain protein levels of ubiquitin-conjugating enzyme E2K (UBE2K) are elevated in individuals with schizophrenia. Journal of Psychiatric Research, 113, 51–57. https://doi.org/10.1016/J.JPSYCHIRES.2019.03.005

    Article  PubMed  Google Scholar 

  86. Su, J., Huang, P., Qin, M., Lu, Q., Sang, X., Cai, Y., Wang, Y., Liu, F., Wu, R., Wang, X., Jiang, X., Wang, J., Sun, Q., Chen, S., & Xu, J. (2018). Reduction of HIP2 expression causes motor function impairment and increased vulnerability to dopaminergic degeneration in Parkinson’s disease models. Cell Death & Disease. https://doi.org/10.1038/S41419-018-1066-Z

    Article  Google Scholar 

  87. Gupta, R., Sahu, M., Srivastava, D., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Research Reviews. https://doi.org/10.1016/j.arr.2021.101336

    Article  PubMed  Google Scholar 

  88. Liu, W., Tang, X., Qi, X., Fu, X., Ghimire, S., Ma, R., Li, S., Zhang, N., & Si, H. (2020). The ubiquitin conjugating enzyme: An important ubiquitin transfer platform in ubiquitin-proteasome system. International Journal of Molecular Sciences. https://doi.org/10.3390/IJMS21082894

    Article  PubMed  PubMed Central  Google Scholar 

  89. Radivojac, P., Vacic, V., Haynes, C., Cocklin, R. R., Mohan, A., Heyen, J. W., Goebl, M. G., & Iakoucheva, L. M. (2010). Identification, analysis, and prediction of protein ubiquitination sites. Proteins: Structure, Function, and Bioinformatics, 78(2), 365–380. https://doi.org/10.1002/PROT.22555

    Article  CAS  Google Scholar 

  90. Chen, R. H., Lee, Y. R., & Yuan, W. C. (2012). The role of PML ubiquitination in human malignancies. Journal of biomedical science, 19(1), 81. https://doi.org/10.1186/1423-0127-19-81/FIGURES/1

    Article  PubMed  PubMed Central  Google Scholar 

  91. Miyahara, K., Takano, N., Yamada, Y., Kazama, H., Tokuhisa, M., Hino, H., Fujita, K., Barroga, E., Hiramoto, M., Handa, H., Kuroda, M., Ishikawa, T., & Miyazawa, K. (2021). BRCA1 degradation in response to mitochondrial damage in breast cancer cells. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-87698-7

    Article  CAS  Google Scholar 

  92. Kurihara, M., Mano, T., Saito, Y., Murayama, S., Toda, T., & Iwata, A. (2020). Colocalization of BRCA1 with tau aggregates in human tauopathies. Brain Sciences. https://doi.org/10.3390/BRAINSCI10010007

    Article  PubMed  PubMed Central  Google Scholar 

  93. Clark, K. A., Paquette, A., Tao, K., Bell, R., Boyle, J. L., Rosenthal, J., Snow, A. K., Stark, A. W., Thompson, B. A., Unger, J., Gertz, J., Varley, K. E., Boucher, K. M., Goldgar, D. E., Foulkes, W. D., Thomas, A., & Tavtigian, S. V. (2022). Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions. American Journal of Human Genetics, 109(6), 1153. https://doi.org/10.1016/J.AJHG.2022.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brzovic, P. S., Meza, J. E., King, M. C., & Klevit, R. E. (2001). BRCA1 RING domain cancer-predisposing mutations. Structural consequences and effects on protein-protein interactions. The Journal of Biological Chemistry, 276(44), 41399–41406. https://doi.org/10.1074/JBC.M106551200

    Article  CAS  PubMed  Google Scholar 

  95. Wezyk, M., & Zekanowski, C. (2018). Role of BRCA1 in neuronal death in Alzheimer’s disease. ACS Chemical Neuroscience. https://doi.org/10.1021/acschemneuro.8b00149

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the senior management of Delhi Technological University for their constant support and guidance. The authors would like to thank the University Grant Commission, Government of India, for providing junior research fellowship to NR, NTA ref no 201610125084.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PK: conceptualized, designed, and supervised this work. MS and NR: drafted the manuscript, analyzed, and interpreted the data, and did the artwork. All authors have read and given consent for submission.

Corresponding author

Correspondence to Pravir Kumar.

Ethics declarations

Competing interest

The author declared no potential competing interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1003 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M., Rani, N. & Kumar, P. Simulation and Computational Study of RING Domain Mutants of BRCA1 and Ube2k in AD/PD Pathophysiology. Mol Biotechnol 66, 1095–1115 (2024). https://doi.org/10.1007/s12033-023-01006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01006-4

Keywords

Navigation