Skip to main content
Log in

Clinical Significance and Immune Infiltration Analyses of a Novel Nerve-Related lncRNA Signature in Gastric Cancer

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Gastric cancer (GC) is a progressive disease with high morbidity and mortality. Accumulating evidence indicated that nervous system-cancer crosstalk can affect the occurrence and progression of GC. However, the role of nerve-related lncRNAs (NRLs) in GC remains largely unexplored. In this study, a total of 441 nerve-related genes were collected from the KEGG database, and two approaches, unsupervised clustering and WGCNA, were employed to identify NRLs. Lasso regression analysis was then used to construct the nerve-related lncRNA signature (NRLS). Based on the expression profiles of 5 lncRNAs, we developed a stable NRLS to predict survival in GC patients, and survival analyses showed significantly shorter overall survival (OS) in patients with high NRLS. In addition, the NRLS was found to be positively correlated with immune characteristics, including tumor-infiltrating immune cells, immune modulators, cytokines and chemokines. We then analyzed the role of NRLS in predicting chemotherapy and immunotherapy responses, and constructed the OS nomogram combining NRLS and other clinical features. In conclusion, we constructed a robust NRLS model to stratify GC patients and predict the outcomes of chemotherapy and immunotherapy. This study can provide a new perspective for future individualized treatment of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The public data and corresponding clinical information can be found in the TCGA (https://portal.gdc.cancer.gov/), UCSC Xena (https://xenabrowser.net/), and GEO (https://www.ncbi.nlm.nih.gov/geo/) database. The nerve-related genes are available at the KEGG database (https://www.kegg.jp/).

References

  1. Machlowska, J., et al. (2020). Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. International Journal of Molecular Sciences, 21(11), 223–230.

    Article  Google Scholar 

  2. Thrift, A. P., & El-Serag, H. B. (2020). Burden of gastric cancer. Clinical Gastroenterology and Hepatology, 18(3), 534–542.

    Article  PubMed  Google Scholar 

  3. Smyth, E. C., et al. (2020). Gastric cancer. Lancet, 396(10251), 635–648.

    Article  CAS  PubMed  Google Scholar 

  4. Sung, H., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

    PubMed  Google Scholar 

  5. Waldum, H., & Fossmark, R. (2021). Gastritis, gastric polyps and gastric cancer. International Journal of Molecular Sciences, 22(12), 6548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patel, T. H., & Cecchini, M. (2020). Targeted therapies in advanced gastric cancer. Current Treatment Options in Oncology, 21(9), 70.

    Article  PubMed  Google Scholar 

  7. Li, K., et al. (2021). Advances in clinical immunotherapy for gastric cancer. Biochimica et Biophysica Acta, 1876(2), 188615.

    CAS  PubMed  Google Scholar 

  8. Li, G. Z., et al. (2022). Surgical management of gastric cancer: A review. JAMA Surgery, 157(5), 446–454.

    Article  PubMed  Google Scholar 

  9. Sexton, R. E., et al. (2020). Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer and Metastasis Reviews, 39(4), 1179–1203.

    Article  PubMed  Google Scholar 

  10. Mun, J. Y., et al. (2022). Dual relationship between stromal cells and immune cells in the tumor microenvironment. Frontiers in Immunology, 13, 864739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rojas, A., et al. (2020). Gastric tumor microenvironment. Advances in Experimental Medicine and Biology, 1226, 23–35.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, D., et al. (2021). Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics, 11(3), 1016–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao, Y., & Yu, D. (2021). Tumor microenvironment as a therapeutic target in cancer. Pharmacology & Therapeutics, 221, 107753.

    Article  CAS  Google Scholar 

  14. Hutchings, C., et al. (2020). Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochimica et Biophysica Acta, 1874(2), 188411.

    CAS  PubMed  Google Scholar 

  15. Keough, M. B., & Monje, M. (2022). Neural signaling in cancer. Annual Review of Neuroscience, 45, 199–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zahalka, A. H., & Frenette, P. S. (2020). Nerves in cancer. Nature Reviews Cancer, 20(3), 143–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, K., et al. (2020). Nervous system and gastric cancer. Biochimica et Biophysica Acta, 1873(1), 188313.

    CAS  PubMed  Google Scholar 

  18. Cervantes-Villagrana, R. D., et al. (2020). Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduction and Targeted Therapy, 5(1), 99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, K., et al. (2020). PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature, 578(7793), 166–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayakawa, Y., et al. (2017). Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell, 31(1), 21–34.

    Article  CAS  PubMed  Google Scholar 

  21. Magnon, C., et al. (2013). Autonomic nerve development contributes to prostate cancer progression. Science, 341(6142), 1236361.

    Article  PubMed  Google Scholar 

  22. Park, E. G., et al. (2022). Tumor immune microenvironment lncRNAs. Briefings in Bioinformatics, 23(1), 504.

    Article  Google Scholar 

  23. Tan, Y. T., et al. (2021). LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Communications (London), 41(2), 109–120.

    Article  Google Scholar 

  24. Zhang, J., et al. (2019). ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. Journal of Physiology and Biochemistry, 75(3), 379–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo, Y., et al. (2021). Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy, 17(12), 4083–4101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, F., et al. (2021). LncRNA CRNDE attenuates chemoresistance in gastric cancer via SRSF6-regulated alternative splicing of PICALM. Molecular Cancer, 20(1), 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qin, X., et al. (2022). Long noncoding RNA TMEM147-AS1 serves as a microRNA-326 sponge to aggravate the malignancy of gastric cancer by upregulating SMAD5. Oncology Research, 29(4), 263–273.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cai, T., et al. (2022). Long noncoding RNA BBOX1-AS1 promotes the progression of gastric cancer by regulating the miR-361-3p/Mucin 13 signaling axis. Bioengineered, 13(5), 13407–13421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, J., et al. (2022). Distinct tumor microenvironment landscapes in gastric cancer classified by cuproptosis-related lncRNAs. Journal of Cancer, 13(15), 3687–3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, L., & Deng, J. (2022). Role of non-coding RNA in immune microenvironment and anticancer therapy of gastric cancer. Journal of Molecular Medicine (Berlin, Germany), 100(12), 1703–1719.

    Article  CAS  PubMed  Google Scholar 

  31. Li, C., et al. (2022). Role of an exosomes-related lncRNAs signature in tumor immune microenvironment of gastric cancer. Frontiers in Cell and Developmental Biology, 10, 873319.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Love, M. I., et al. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gautier, L., et al. (2004). affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20(3), 307–315.

    Article  CAS  PubMed  Google Scholar 

  34. Wilkerson, M. D., & Hayes, D. N. (2010). ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 26(12), 1572–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ritchie, M. E., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yu, G., et al. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287.

    Article  CAS  PubMed  Google Scholar 

  38. Newman, A. M., et al. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, T., et al. (2017). TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Research, 77(21), e108–e110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Becht, E., et al. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology, 17(1), 218.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Racle, J., et al. (2017). Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife, 6, e26476.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hänzelmann, S., et al. (2013). GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 14, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yoshihara, K., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications, 4, 2612.

    Article  PubMed  Google Scholar 

  44. Mayakonda, A., et al. (2018). Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Research, 28(11), 1747–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Geeleher, P., et al. (2014). pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE, 9(9), e107468.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jiang, P., et al. (2018). Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nature Medicine, 24(10), 1550–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoshida, Y., et al. (2007). Subclass mapping: Identifying common subtypes in independent disease data sets. PLoS ONE, 2(11), e1195.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Iasonos, A., et al. (2008). How to build and interpret a nomogram for cancer prognosis. Journal of Clinical Oncology, 26(8), 1364–1370.

    Article  PubMed  Google Scholar 

  49. Zeng, Y., & Jin, R. U. (2022). Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Seminars in Cancer Biology, 86(Pt 3), 566–582.

    Article  CAS  PubMed  Google Scholar 

  50. Eusebi, L. H., et al. (2020). Gastric cancer prevention strategies: A global perspective. Journal of Gastroenterology and Hepatology, 35(9), 1495–1502.

    Article  PubMed  Google Scholar 

  51. Sukri, A., et al. (2020). Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis. APMIS, 128(2), 150–161.

    Article  PubMed  Google Scholar 

  52. Biagioni, A., et al. (2019). Update on gastric cancer treatments and gene therapies. Cancer and Metastasis Reviews, 38(3), 537–548.

    Article  PubMed  Google Scholar 

  53. Zhao, Q., et al. (2019). Immunotherapy for gastric cancer: Dilemmas and prospect. Briefings in Functional Genomics, 18(2), 107–112.

    Article  CAS  PubMed  Google Scholar 

  54. Erin, N., et al. (2022). Regulation of carcinogenesis by sensory neurons and neuromediators. Cancers (Basel), 14(9), 2333.

    Article  CAS  PubMed  Google Scholar 

  55. Kamiya, A., et al. (2021). Sympathetic and parasympathetic innervation in cancer: Therapeutic implications. Clinical Autonomic Research, 31(2), 165–178.

    Article  PubMed  Google Scholar 

  56. Fan, Z., et al. (2022). Identification of the three subtypes and the prognostic characteristics of stomach adenocarcinoma: Analysis of the hypoxia-related long non-coding RNAs. Functional & Integrative Genomics, 22(5), 919–936.

    Article  CAS  Google Scholar 

  57. Wu, H., et al. (2021). Survival-related lncRNA landscape analysis identifies LINC01614 as an oncogenic lncRNA in gastric cancer. Frontiers in Genetics, 12, 698947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang, S. H., et al. (2019). GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca(2+) signalling in a GABA-independent manner. Gut, 68(11), 1994–2006.

    Article  CAS  PubMed  Google Scholar 

  59. Jurcak, N. R., et al. (2019). Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice. Gastroenterology, 157(3), 838-850.e6.

    Article  CAS  PubMed  Google Scholar 

  60. Chavan, S. S., et al. (2017). Mechanisms and therapeutic relevance of neuro-immune communication. Immunity, 46(6), 927–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, S., et al. (2022). Identification of enhancer RNA CDK6-AS1 as a potential novel prognostic biomarker in gastric cancer. Frontiers in Genetics, 13, 854211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zeng, D., et al. (2021). Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer. Journal for Immunotherapy of Cancer, 9, 8.

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship and publication for this article.

Author information

Authors and Affiliations

Authors

Contributions

LQ and SJ participated in study design and drafted the manuscript. LQ and YL performed the data curation and analysis. ZY and XZ contributed to visualization. YG contributed for overall editing and supervision. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yixin Gong or Shunchang Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 2695 kb)

Supplementary file2 (DOCX 46046 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Liu, Y., Yang, Z. et al. Clinical Significance and Immune Infiltration Analyses of a Novel Nerve-Related lncRNA Signature in Gastric Cancer. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00997-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00997-4

Keywords

Navigation