Skip to main content

Advertisement

Log in

THSD7A as a Promising Biomarker for Membranous Nephrosis

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus and one of the leading causes of nephrotic syndrome. The disease exhibits heterogeneous outcomes with approximately 30% of cases progressing to end-stage renal disease. Traditionally, the standard approach of diagnosing MN involves performing a kidney biopsy. Nevertheless, kidney biopsy is an invasive procedure that poses risks for the patient including bleeding and pain, and bears greater costs for the health system. The clinical management of MN has steadily advanced owing to the identification of autoantibodies to the phospholipase A2 receptor (PLA2R) in 2009 and thrombospondin domain-containing 7A (THSD7A) in 2014 on the podocyte surface. At present, serum anti-PLA2R antibody detection and glomerular PLA2R antigen staining have been used for clinical diagnosis and prognosis, but the related detection of THSD7A has not been widely used in clinical practice. Here, we summarized the emerging knowledge regarding the roles THSD7A plays in MN and its clinical implications as diagnostic, prognostic, and therapeutic response as well as Methods for detecting serum THSD7A antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Alsharhan, L., & Beck, L. H., Jr. (2021). Membranous Nephropathy: Core Curriculum 2021. American Journal of Kidney Diseases, 77, 440–453. https://doi.org/10.1053/j.ajkd.2020.10.009

    Article  CAS  PubMed  Google Scholar 

  2. Deegens, J. K., & Wetzels, J. F. (2007). Membranous nephropathy in the older adult: Epidemiology, diagnosis and management. Drugs and Aging, 24, 717–732. https://doi.org/10.2165/00002512-200724090-00002

    Article  CAS  PubMed  Google Scholar 

  3. Wu, L., Lai, J., Ling, Y., Weng, Y., Zhou, S., Wu, S., Jiang, S., Ding, X., Jin, X., Yu, K., & Chen, Y. (2021). A review of the current practice of diagnosis and treatment of idiopathic membranous nephropathy in China. Medical Science Monitor, 27, e930097. https://doi.org/10.12659/MSM.930097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hou, J. H., Zhu, H. X., Zhou, M. L., Le, W. B., Zeng, C. H., Liang, S. S., Xu, F., Liang, D. D., Shao, S. J., Liu, Y., & Liu, Z. H. (2018). Changes in the Spectrum of Kidney Diseases: An Analysis of 40,759 Biopsy-Proven Cases from 2003 to 2014 in China. Kidney Dis (Basel), 4, 10–19. https://doi.org/10.1159/000484717

    Article  PubMed  Google Scholar 

  5. Pan, X., Xu, J., Ren, H., Zhang, W., Xu, Y., Shen, P., Li, X., Wang, W., Chen, X., Wu, P., Feng, X., Hao, C., & Chen, N. (2013). Changing spectrum of biopsy-proven primary glomerular diseases over the past 15 years: A single-center study in China. Contributions to Nephrology, 181, 22–30. https://doi.org/10.1159/000348638

    Article  PubMed  Google Scholar 

  6. Dai, P., Xie, W., Yu, X., Sun, J., Wang, S., & Kawuki, J. (2021). Efficacy and cost of different treatment in patients with idiopathic membranous nephropathy: A network meta-analysis and cost-effectiveness analysis. International Immunopharmacology, 94, 107376. https://doi.org/10.1016/j.intimp.2021.107376

    Article  CAS  PubMed  Google Scholar 

  7. Couser, W. G. (2017). Primary Membranous Nephropathy. Clinical Journal of the American Society of Nephrology, 12, 983–997. https://doi.org/10.2215/CJN.11761116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai, Q., & Hendricks, A. R. (2020). Membranous nephropathy: A ten-year journey of discoveries. Seminars in Diagnostic Pathology, 37, 116–120. https://doi.org/10.1053/j.semdp.2020.01.001

    Article  PubMed  Google Scholar 

  9. Xie, Z., Shi, W., Liang, X., Li, Z., Dong, W., Chen, Y., Tao, Y., Li, R., Wu, Y., & Liang, H. (2019). Evolution of chronic glomerular disease spectrum and epidemiological characteristics of membranous nephropathy. Journal of Clinical Nephrology, 19, 471–476. https://doi.org/10.3969/j.issn.1671-2390.2019.07.001

    Article  Google Scholar 

  10. Zhu, P., Zhou, F. D., Wang, S. X., Zhao, M. H., & Wang, H. Y. (2015). Increasing frequency of idiopathic membranous nephropathy in primary glomerular disease: A 10-year renal biopsy study from a single Chinese nephrology centre. Nephrology (Carlton, Vic.), 20, 560–566. https://doi.org/10.1111/nep.12542

    Article  PubMed  Google Scholar 

  11. Liu, W., Gao, C., Liu, Z., Dai, H., Feng, Z., Dong, Z., Zheng, Y., Gao, Y., Tian, X., & Liu, B. (2020). Idiopathic Membranous Nephropathy: Glomerular pathological pattern caused by extrarenal immunity activity. Frontiers in Immunology, 11, 1846. https://doi.org/10.3389/fimmu.2020.01846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tiwari, V., Jain, A., & Gupta, A. (2023). #6502 ETIOLOGICAL SPECTRUM OF MEMBRANOUS NEPHROPATHY. Nephrology Dialysis Transplantation. https://doi.org/10.1093/ndt/gfad063c_6502

    Article  Google Scholar 

  13. Rojas-Rivera, J. E., & Ortiz Arduan, A. (2021). Primary membranous nephropathy in the era of autoantibodies and biological therapies. Medicina Clínica (Barcelona), 157, 121–129. https://doi.org/10.1016/j.medcli.2021.02.010

    Article  CAS  Google Scholar 

  14. Kerjaschki, D., & Farquhar, M. G. (1982). The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci U S A, 79, 5557–5561. https://doi.org/10.1073/pnas.79.18.5557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerjaschki, D., & Farquhar, M. G. (1983). Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. Journal of Experimental Medicine, 157, 667–686. https://doi.org/10.1084/jem.157.2.667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Debiec, H., Guigonis, V., Mougenot, B., Decobert, F., Haymann, J.-P., Bensman, A., Deschênes, G., & Ronco, P. M. (2002). Antenatal Membranous Glomerulonephritis Due to Anti-Neutral Endopeptidase Antibodies. New England Journal of Medicine, 346, 2053–2060. https://doi.org/10.1056/NEJMoa012895

    Article  PubMed  Google Scholar 

  17. Beck, L. H., Jr., Bonegio, R. G., Lambeau, G., Beck, D. M., Powell, D. W., Cummins, T. D., Klein, J. B., & Salant, D. J. (2009). M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. New England Journal of Medicine, 361, 11–21. https://doi.org/10.1056/NEJMoa0810457

    Article  CAS  PubMed  Google Scholar 

  18. Dong, Z., Dai, H., Liu, W., Jiang, H., Feng, Z., Liu, F., Zhao, Q., Rui, H., Liu, W. J., & Liu, B. (2022). Exploring the Differences in Molecular Mechanisms and Key Biomarkers Between Membranous Nephropathy and Lupus Nephritis Using Integrated Bioinformatics Analysis. Frontiers in Genetics, 12, 770902. https://doi.org/10.3389/fgene.2021.770902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie, Z., Dong, W., Li, Z., Chen, Y., Song, L., Li, R., Wu, Y., Fu, L., Liang, H., Tao, Y., Xie, J., Wang, W., Liu, S., Ye, Z., Shi, W., & Liang, X. (2020). Clinical value of renal phospholipase A2 receptor deposit in the prognosis evaluation and treatment options of idiopathic membranous nephropathy: A retrospective cohort study. Nephrology (Carlton, Vic.), 25, 219–229. https://doi.org/10.1111/nep.13691

    Article  CAS  PubMed  Google Scholar 

  20. Xie, J., Liu, L.A.-O., Mladkova, N., Li, Y., Ren, H., Wang, W., Cui, Z., Lin, L., Hu, X., Yu, X., Xu, J., Liu, G., Caliskan, Y., Sidore, C., Balderes, O., Rosen, R. J., Bodria, M., Zanoni, F., Zhang, J.A.-O., … Kiryluk, K.A.-O. (2020). The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nature Communications, 11, 1600. https://doi.org/10.1038/s41467-020-15383-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tomas, N. M., Beck, L. H., Jr., Meyer-Schwesinger, C., Seitz-Polski, B., Ma, H., Zahner, G., Dolla, G., Hoxha, E., Helmchen, U., Dabert-Gay, A. S., Debayle, D., Merchant, M., Klein, J., Salant, D. J., Stahl, R. A. K., & Lambeau, G. (2014). Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. New England Journal of Medicine, 371, 2277–2287. https://doi.org/10.1056/NEJMoa1409354

    Article  CAS  PubMed  Google Scholar 

  22. Nieto-Ganan, I., Iturrieta-Zuazo, I., Rita, C., & Carrasco-Sayalero, A. (2022). Revisiting immunological and clinical aspects of membranous nephropathy. Clinical Immunology, 237, 108976. https://doi.org/10.1016/j.clim.2022.108976

    Article  CAS  PubMed  Google Scholar 

  23. Allison, S. J. (2015). Glomerular disease: Thrombospondin type-1 domain-containing 7A-a new player in membranous nephropathy. Nature Reviews Nephrology, 11, 63. https://doi.org/10.1038/nrneph.2014.227

    Article  PubMed  Google Scholar 

  24. Liu, Y., Zheng, S., Ma, C., Lian, Y., Zheng, X., Guan, P., Wang, B., Gong, X., Gao, F., Liang, L., & Xu, D. (2020). Meta-Analysis of the Diagnostic Efficiency of THSD7A-AB for the Diagnosis of Idiopathic Membranous Nephropathy. Glob Chall, 4, 1900099. https://doi.org/10.1002/gch2.201900099

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maifata, S. M., Hod, R., Zakaria, F., & Ghani, F. A. (2020). Role of Serum and Urine Biomarkers (PLA(2)R and THSD7A) in diagnosis, monitoring and prognostication of primary membranous glomerulonephritis. Biomolecules, 10, 319. https://doi.org/10.3390/biom10020319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caza, T. N., Storey, A. J., Hassen, S. I., Herzog, C., Edmondson, R. D., Arthur, J. M., Kenan, D. J., & Larsen, C. P. (2023). Discovery of seven novel putative antigens in membranous nephropathy and membranous lupus nephritis identified by mass spectrometry. Kidney International, 103, 593–606. https://doi.org/10.1016/j.kint.2023.01.001

    Article  CAS  PubMed  Google Scholar 

  27. Choung, H. Y. G., Moore, C., Le, T. H., Guirguis, P., McKeown, J. M., Jean-Gilles, J., & Goldman, B. (2023). The clinicopathologic spectrum of membranous nephropathy with lupus-like features. Nephron. https://doi.org/10.1159/000529437

    Article  PubMed  Google Scholar 

  28. Nomura, N., Miyajima, N., Sazuka, T., Tanaka, A., Kawarabayasi, Y., Sato, S., Nagase, T., Seki, N., Ishikawa, K.-I., & Tabata, S. (1994). Prediction of the Coding Sequences of Unidentified Human Genes. I. The Coding Sequences of 40 New Genes (KIAA0001-KIAA0040) Deduced by Analysis of Randomly Sampled cDNA Clones from Human Immature Myeloid Cell Line KG-1. DNA Research, 1, 27–35. https://doi.org/10.1093/dnares/1.1.27

    Article  CAS  PubMed  Google Scholar 

  29. Nakajima, D., Okazaki, N., Yamakawa, H., Kikuno, R., Ohara, O., & Nagase, T. (2002). Construction of Expression-ready cDNA Clones for KIAA Genes: Manual Curation of 330 KIAA cDNA Clones. DNA Research, 9, 99–106. https://doi.org/10.1093/dnares/9.3.99

    Article  CAS  PubMed  Google Scholar 

  30. Zaghrini, C., Seitz-Polski, B., Justino, J., Dolla, G., Payre, C., Jourde-Chiche, N., Van de Logt, A. E., Booth, C., Rigby, E., Lonnbro-Widgren, J., Nystrom, J., Mariat, C., Cui, Z., Wetzels, J. F. M., Ghiggeri, G., Beck, L. H., Jr., Ronco, P., Debiec, H., & Lambeau, G. (2019). Novel ELISA for thrombospondin type 1 domain-containing 7A autoantibodies in membranous nephropathy. Kidney International, 95, 666–679. https://doi.org/10.1016/j.kint.2018.10.024

    Article  CAS  PubMed  Google Scholar 

  31. Stoddard, S. V., Welsh, C. L., Palopoli, M. M., Stoddard, S. D., Aramandla, M. P., Patel, R. M., Ma, H., & Beck, L. H., Jr. (2019). Structure and function insights garnered from in silico modeling of the thrombospondin type-1 domain-containing 7A antigen. Proteins, 87, 136–145. https://doi.org/10.1002/prot.25640

    Article  CAS  PubMed  Google Scholar 

  32. Seifert, L., Hoxha, E., Eichhoff, A. M., Zahner, G., Dehde, S., Reinhard, L., Koch-Nolte, F., Stahl, R. A. K., & Tomas, N. M. (2018). The Most N-Terminal Region of THSD7A Is the Predominant Target for Autoimmunity in THSD7A-Associated Membranous Nephropathy. Journal of the American Society of Nephrology, 29, 1536–1548. https://doi.org/10.1681/ASN.2017070805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bochel, A., Mortensen, S. A., Seifert, L., Hengel, F. E., Jeffries, C. M., Chojnowski, G., Kretz, O., Huber, T. B., Tomas, N. M., & Wilmanns, M. (2023). Structure of the N-terminal didomain d1_d2 of the Thrombospondin type-1 domain-containing 7A. bioRxiv. https://doi.org/10.1101/2023.05.03.539264

    Article  Google Scholar 

  34. Wang, C. H., Chen, I. H., Kuo, M. W., Su, P. T., Lai, Z. Y., Wang, C. H., Huang, W. C., Hoffman, J., Kuo, C. J., You, M. S., & Chuang, Y. J. (2011). Zebrafish Thsd7a is a neural protein required for angiogenic patterning during development. Developmental Dynamics, 240, 1412–1421. https://doi.org/10.1002/dvdy.22641

    Article  CAS  PubMed  Google Scholar 

  35. Herwig, J., Skuza, S., Sachs, W., Sachs, M., Failla, A. V., Rune, G., Meyer, T. N., Fester, L., & Meyer-Schwesinger, C. (2019). Thrombospondin Type 1 Domain-Containing 7A localizes to the slit diaphragm and stabilizes membrane dynamics of fully differentiated podocytes. Journal of the American Society of Nephrology, 30, 824–839. https://doi.org/10.1681/ASN.2018090941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, C.-H., Su, P.-T., Du, X.-Y., Kuo, M.-W., Lin, C.-Y., Yang, C.-C., Chan, H.-S., Chang, S.-J., Kuo, C., Seo, K., Leung, L. L., & Chuang, Y.-J. (2010). Thrombospondin type I domain containing 7A (THSD7A) mediates endothelial cell migration and tube formation. Journal of Cellular Physiology, 222, 685–694. https://doi.org/10.1002/jcp.21990

    Article  CAS  PubMed  Google Scholar 

  37. Liu, L.Y.-M., Lin, M.-H., Lai, Z.-Y., Jiang, J.-P., Huang, Y.-C., Jao, L.-E., & Chuang, Y.-J. (2016). Motor neuron-derived Thsd7a is essential for zebrafish vascular development via the Notch-dll4 signaling pathway. Journal of Biomedical Science, 23, 1–11. https://doi.org/10.1186/s12929-016-0277-9

    Article  CAS  Google Scholar 

  38. Kuo, M. W., Wang, C. H., Wu, H. C., Chang, S. J., & Chuang, Y. J. (2011). Soluble THSD7A is an N-glycoprotein that promotes endothelial cell migration and tube formation in angiogenesis. PLoS ONE, 6, e29000. https://doi.org/10.1371/journal.pone.0029000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hou, Z., Abudureheman, A., Wang, L., Hasim, A., Ainiwaer, J., Zhang, H., Niyaz, M., Upur, H., & Sheyhidin, I. (2017). Expression, prognosis and functional role of Thsd7a in esophageal squamous cell carcinoma of Kazakh patients, Xinjiang. Oncotarget, 8, 60539–60557. https://doi.org/10.18632/oncotarget.16966

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kaya, B., Paydas, S., Balal, M., Eren Erdogan, K., & Gonlusen, G. (2021). Renal expression of PLA2R, THSD7A, and IgG4 in patients with membranous nephropathy and correlation with clinical findings. International Journal of Clinical Practice, 75, e13855. https://doi.org/10.1111/ijcp.13855

    Article  CAS  PubMed  Google Scholar 

  41. Safar-Boueri, L., Piya, A., Beck, L. H., Jr., & Ayalon, R. (2021). Membranous nephropathy: Diagnosis, treatment, and monitoring in the post-PLA2R era. Pediatric Nephrology(Berlin, Germany), 36, 19–30. https://doi.org/10.1007/s00467-019-04425-1

    Article  PubMed  Google Scholar 

  42. Cui, C., Gao, P., Xu, P., Wu, X., Pan, Y., Liu, L., & Chen, W. (2022). Evaluation on clinical application of PLA2 R and THSD7 A in idiopathic membranous nephropathy. Journal of Bengbu Medical College, 47, 1167–1171. https://doi.org/10.13898/j.cnki.issn.1000-2200.2022.09.003

    Article  Google Scholar 

  43. Tomas, N. M., Hoxha, E., Reinicke, A. T., Fester, L., Helmchen, U., Gerth, J., Bachmann, F., Budde, K., Koch-Nolte, F., Zahner, G., Rune, G., Lambeau, G., Meyer-Schwesinger, C., & Stahl, R. A. (2016). Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. The Journal of Clinical Investigation, 126, 2519–2532. https://doi.org/10.1172/JCI85265

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tomas, N. M., Meyer-Schwesinger, C., von Spiegel, H., Kotb, A. M., Zahner, G., Hoxha, E., Helmchen, U., Endlich, N., Koch-Nolte, F., & Stahl, R. A. K. (2017). A heterologous model of thrombospondin type 1 domain-containing 7A-Associated Membranous Nephropathy. Journal of the American Society of Nephrology, 28, 3262–3277. https://doi.org/10.1681/ASN.2017010030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ronco, P., & Debiec, H. (2015). Pathophysiological advances in membranous nephropathy: Time for a shift in patient’s care. Lancet, 385, 1983–1992. https://doi.org/10.1016/S0140-6736(15)60731-0

    Article  PubMed  Google Scholar 

  46. Nakamura, R., Tohnai, G., Nakatochi, M., Atsuta, N., Watanabe, H., Ito, D., Katsuno, M., Hirakawa, A., Izumi, Y., Morita, M., Hirayama, T., Kano, O., Kanai, K., Hattori, N., Taniguchi, A., Suzuki, N., Aoki, M., Iwata, I., Yabe, I., Shibuya, K., Kuwabara, S., Oda, M., Hashimoto, R., Aiba, I., Ishihara, T., Onodera, O., Yamashita, T., Abe, K., Mizoguchi, K., Shimizu, T., Ikeda, Y., Yokota, T., Hasegawa, K., Tanaka, F., Nakashima, K., Kaji, R., Niwa, J. I., Doyu, M., Terao, C., Ikegawa, S., Fujimori, K., Nakamura, S., Ozawa, F., Morimoto, S., Onodera, K., Ito, T., Okada, Y., Okano, H., Sobue, G. and Japanese Consortium for Amyotrophic Lateral Sclerosis research study, g. (2023). Genetic factors affecting survival in Japanese patients with sporadic amyotrophic lateral sclerosis: A genome-wide association study and verification in iPSC-derived motor neurons from patients. Journal of Neurology, Neurosurgery and Psychiatry, 94, 816–824. https://doi.org/10.1136/jnnp-2022-330851

  47. Larsen, C. P., Trivin-Avillach, C., Coles, P., Collins, A. B., Merchant, M., Ma, H., Wilkey, D. W., Ambruzs, J. M., Messias, N. C., Cossey, L. N., Rosales, I. A., Wooldridge, T., Walker, P. D., Colvin, R. B., Klein, J., Salant, D. J., & Beck, L. H., Jr. (2018). LDL Receptor-Related Protein 2 (Megalin) as a Target Antigen in Human Kidney Anti-Brush Border Antibody Disease. Journal of the American Society of Nephrology, 29, 644–653. https://doi.org/10.1681/ASN.2017060664

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi, M., Muro, K., Yoh, K., Kondoh, M., Iwabuchi, S., Hirayama, K., Ishizu, T., Kikuchi, S., Yamaguchi, N., & Koyama, A. (1998). Effects of FK506 on experimental membranous glomerulonephritis induced by cationized bovine serum albumin in rats. Nephrology Dialysis Transplantation, 13, 2501–2508. https://doi.org/10.1093/ndt/13.10.2501

    Article  CAS  Google Scholar 

  49. Meyer-Schwesinger, C., Tomas, N. M., Dehde, S., Seifert, L., Hermans-Borgmeyer, I., Wiech, T., Koch-Nolte, F., Huber, T. B., & Zahner, G. (2020). A novel mouse model of phospholipase A2 receptor 1-associated membranous nephropathy mimics podocyte injury in patients. Kidney International, 97, 913–919. https://doi.org/10.1016/j.kint.2019.10.022

    Article  CAS  PubMed  Google Scholar 

  50. Jiang, H., Feng, Z., Zhu, Z., Xia, C., Zhang, W., Guo, J., Liu, B. L., Wang, Y., Liu, Y., & Liu, W. (2020). Advances of the experimental models of idiopathic membranous nephropathy (Review). Molecular Medicine Reports, 21, 1993–2005. https://doi.org/10.3892/mmr.2020.11014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pisetsky, D. S. (2023). Pathogenesis of autoimmune disease. Nature Reviews. Nephrology, 19, 509–524. https://doi.org/10.1038/s41581-023-00720-1

    Article  CAS  PubMed  Google Scholar 

  52. Hoxha, E., Reinhard, L., & Stahl, R. A. K. (2022). Membranous nephropathy: New pathogenic mechanisms and their clinical implications. Nature Reviews. Nephrology, 18, 466–478. https://doi.org/10.1038/s41581-022-00564-1

    Article  CAS  PubMed  Google Scholar 

  53. Miao, H., Zhang, Y., Yu, X., Zou, L., & Zhao, Y. (2022). Membranous nephropathy: Systems biology-based novel mechanism and traditional Chinese medicine therapy. Frontiers in Pharmacology, 13, 969930. https://doi.org/10.3389/fphar.2022.969930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, N., & Wang, L. (2019). Clinical significance of PLA2R antibody and THSD7A antibody in serum and urine of patients with idiopathic membranous nephropathy. Chinese Journal of Kidney Disease Investigation (Electronic Edition), 8, 246–252. CNKI:SUN:SHSB.0.2019-06-005.

    CAS  Google Scholar 

  55. Brglez, V., Boyer-Suavet, S., & Seitz-Polski, B. (2020). Complement pathways in membranous nephropathy: Complex and multifactorial. Kidney Int Rep, 5, 572–574. https://doi.org/10.1016/j.ekir.2020.02.1033

    Article  PubMed  PubMed Central  Google Scholar 

  56. Seifert, L., Zahner, G., Meyer-Schwesinger, C., Hickstein, N., Dehde, S., Wulf, S., Kollner, S. M. S., Lucas, R., Kylies, D., Froembling, S., Zielinski, S., Kretz, O., Borodovsky, A., Biniaminov, S., Wang, Y., Cheng, H., Koch-Nolte, F., Zipfel, P. F., Hopfer, H., … Tomas, N. M. (2023). The classical pathway triggers pathogenic complement activation in membranous nephropathy. Nature Communications, 14, 473. https://doi.org/10.1038/s41467-023-36068-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, Z., Wen, L., Dou, Y., & Zhao, Z. (2018). Human anti-thrombospondin type 1 domain-containing 7A antibodies induce membranous nephropathy through activation of lectin complement pathway. Bioscience Reports. https://doi.org/10.1042/BSR20180131

  58. Hoxha, E., Beck, L. H., Jr., Wiech, T., Tomas, N. M., Probst, C., Mindorf, S., Meyer-Schwesinger, C., Zahner, G., Stahl, P. R., Schopper, R., Panzer, U., Harendza, S., Helmchen, U., Salant, D. J., & Stahl, R. A. (2017). An indirect immunofluorescence method facilitates detection of thrombospondin type 1 Domain-Containing 7A-Specific Antibodies in Membranous Nephropathy. Journal of the American Society of Nephrology, 28, 520–531. https://doi.org/10.1681/ASN.2016010050

    Article  CAS  PubMed  Google Scholar 

  59. Hihara, K., Iyoda, M., Tachibana, S., Iseri, K., Saito, T., Yamamoto, Y., Suzuki, T., Wada, Y., Matsumoto, K., & Shibata, T. (2016). Anti-Phospholipase A2 Receptor (PLA2R) Antibody and Glomerular PLA2R Expression in Japanese Patients with Membranous Nephropathy. PLoS ONE, 11, e0158154. https://doi.org/10.1371/journal.pone.0158154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manral, P., Caza, T. N., Storey, A. J., Beck, L. H., Jr., & Borza, D. B. (2022). The Alternative Pathway Is Necessary and Sufficient for Complement Activation by Anti-THSD7A Autoantibodies, Which Are Predominantly IgG4 in Membranous Nephropathy. Frontiers in Immunology, 13, 952235. https://doi.org/10.3389/fimmu.2022.952235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Y., Liu, Y., Liang, L., Liu, L., Tang, X., Tang, L., Chen, P., Chen, J., Wang, Z., Cao, W., Chen, Q., Zhao, N., & Xu, D. (2020). Effect of Glomerular Mannose-Binding Lectin Deposition on the Prognosis of Idiopathic Membranous Nephropathy. Kidney & Blood Pressure Research, 45, 713–726. https://doi.org/10.1159/000508665

    Article  CAS  Google Scholar 

  62. van der Neut Kolfschoten, M., Schuurman, J., Losen, M., Bleeker, W. K., Martinez-Martinez, P., Vermeulen, E., den Bleker, T. H., Wiegman, L., Vink, T., Aarden, L. A., De Baets, M. H., van de Winkel, J. G., Aalberse, R. C., & Parren, P. W. (2007). Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science, 317, 1554–1557. https://doi.org/10.1126/science.1144603

    Article  CAS  PubMed  Google Scholar 

  63. Yang, Y., Wang, C., Jin, L., He, F., Li, C., Gao, Q., Chen, G., He, Z., Song, M., Zhou, Z., Shan, F., Qi, K., & Ma, L. (2016). IgG4 anti-phospholipase A2 receptor might activate lectin and alternative complement pathway meanwhile in idiopathic membranous nephropathy: An inspiration from a cross-sectional study. Immunologic Research, 64, 919–930. https://doi.org/10.1007/s12026-016-8790-1

    Article  CAS  PubMed  Google Scholar 

  64. Hara, S., Tsuji, T., Fukasawa, Y., Hisano, S., Morito, S., Hyodo, T., Goto, S., Nishi, S., Yoshimoto, A., & Itoh, T. (2019). Clinicopathological characteristics of thrombospondin type 1 domain-containing 7A-associated membranous nephropathy. Virchows Archiv, 474, 735–743. https://doi.org/10.1007/s00428-019-02558-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salant, D. J. (2019). Unmet challenges in membranous nephropathy. Current Opinion in Nephrology and Hypertension, 28, 70–76. https://doi.org/10.1097/MNH.0000000000000459

    Article  PubMed  PubMed Central  Google Scholar 

  66. Matsumoto, A., Matsui, I., Namba, T., Sakaguchi, Y., Mizuno, H., Shirayama, Y., Shimada, K., Hashimoto, N., Doi, Y., Yamaguchi, S., Kubota, K., Oka, T., Mori, D., Akiyama, S., Hamano, T., Mizui, M., Takabatake, Y., Kaneko, T., & Isaka, Y. (2019). VEGF-A Links Angiolymphoid Hyperplasia With Eosinophilia (ALHE) to THSD7A Membranous Nephropathy: A Report of 2 Cases. American Journal of Kidney Diseases, 73, 880–885. https://doi.org/10.1053/j.ajkd.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  67. Battaini, L. C., Ranzani, O. T., Marcal, L. J., Antonangelo, L., Jorge, L. B., Bitencourt, C. D., Woronik, V., Malheiros, D. M. A., & Yu, L. (2022). Determination of Anti-Phospholipase A2 and Anti-Thrombospondin Type 1 Domain-Containing Protein 7A in Latin Patients with Membranous Nephropathy. Diagnostics (Basel), 13, 17. https://doi.org/10.3390/diagnostics13010017

    Article  CAS  PubMed  Google Scholar 

  68. Larsen, C. P., Messias, N. C., Silva, F. G., Messias, E., & Walker, P. D. (2013). Determination of primary versus secondary membranous glomerulopathy utilizing phospholipase A2 receptor staining in renal biopsies. Modern Pathology, 26, 709–715. https://doi.org/10.1038/modpathol.2012.207

    Article  CAS  PubMed  Google Scholar 

  69. Dong, H.-R., Wang, Y.-Y., Cheng, X.-H., Wang, G.-Q., Sun, L.-J., Cheng, H., & Chen, Y.-P. (2016). Retrospective study of phospholipase A2 receptor and IgG subclasses in glomerular deposits in Chinese patients with membranous nephropathy. PLoS ONE, 11, e0156263. https://doi.org/10.1371/journal.pone.0156263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, X., Chen, C., Ding, G., Wang, H., Liang, W., Yang, H., & Zhu, J. (2020). Clinical and Pathological Characteristics of THSD7A Related Idiopathic Mem Branous Nephropathy. Journal of Medical Research, 49, 42–46. https://doi.org/10.11969/j.issn.1673-548X.2020.08.011

    Article  CAS  Google Scholar 

  71. Hoxha, E., Wiech, T., Stahl, P. R., Zahner, G., Tomas, N. M., Meyer-Schwesinger, C., Wenzel, U., Janneck, M., Steinmetz, O. M., Panzer, U., Harendza, S., & Stahl, R. A. K. (2016). A Mechanism for Cancer-Associated Membranous Nephropathy. New England Journal of Medicine, 374, 1995–1996. https://doi.org/10.1056/NEJMc1511702

    Article  CAS  PubMed  Google Scholar 

  72. Liu, Q., Liu, J., Lin, B., Zhang, Y., Ma, M., Yang, M., & Qin, X. (2022). Novel Biomarkers in Membranous Nephropathy. Frontiers in Immunology, 13, 845767. https://doi.org/10.3389/fimmu.2022.845767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yeter, H. H., Isik Gonul, I., Eraslan, E., Karacalik, C., Ogut, B., & Guz, G. (2021). Effects of phospholipase A 2 receptor and thrombospondin type-1 domain-containing 7A expression in glomerular basement membranes on treatment response and renal outcome in membranous nephropathy. Clinical and Experimental Nephrology, 25, 488–500. https://doi.org/10.1007/s10157-020-02011-6

    Article  CAS  PubMed  Google Scholar 

  74. Gao, D., Lu, L. P., & Zhao, Z. G. (2023). Diagnostic utility of serum and urine biomarkers in idiopathic membranous nephropathy: A systematic review and meta-analysis. International Urology and Nephrology. https://doi.org/10.1007/s11255-023-03561-w

    Article  PubMed  Google Scholar 

  75. Iwakura, T., Fujigaki, Y., Katahashi, N., Sato, T., Ishigaki, S., Tsuji, N., Naito, Y., Isobe, S., Ono, M., Sakao, Y., Tsuji, T., Ohashi, N., Kato, A., Miyajima, H., & Yasuda, H. (2016). Membranous Nephropathy with an Enhanced Granular Expression of Thrombospondin Type-1 Domain-containing 7A in a Pregnant Woman. Internal Medicine, 55, 2663–2668. https://doi.org/10.2169/internalmedicine.55.6726

    Article  PubMed  Google Scholar 

  76. Iwakura, T., Ohashi, N., Kato, A., Baba, S., & Yasuda, H. (2015). Prevalence of Enhanced Granular Expression of Thrombospondin Type-1 Domain-Containing 7A in the Glomeruli of Japanese Patients with Idiopathic Membranous Nephropathy. PLoS ONE, 10, e0138841. https://doi.org/10.1371/journal.pone.0138841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, J., Cui, Z., Lu, J., Probst, C., Zhang, Y. M., Wang, X., Qu, Z., Wang, F., Meng, L. Q., Cheng, X. Y., Liu, G., Debiec, H., Ronco, P., & Zhao, M. H. (2017). Circulating Antibodies against Thrombospondin Type-I Domain-Containing 7A in Chinese Patients with Idiopathic Membranous Nephropathy. Clinical Journal of the American Society of Nephrology, 12, 1642–1651. https://doi.org/10.2215/CJN.01460217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ren, S., Wu, C., Zhang, Y., Wang, A. Y., Li, G., Wang, L., & Hong, D. (2018). An update on clinical significance of use of THSD7A in diagnosing idiopathic membranous nephropathy: A systematic review and meta-analysis of THSD7A in IMN. Renal Failure, 40, 306–313. https://doi.org/10.1080/0886022X.2018.1456457

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hegerty, K., Gois, P., Ranganathan, D., Kassianos, A., Raghubar, A., & Francis, L. (2021). Thrombospondin type-1 domain-containing 7A and membranous nephropathy–The first retrospective analysis of podocyte antigen prevalence and prognosis in an Australian cohort. Pathology, 53, S26. https://doi.org/10.1016/j.pathol.2021.06.028

    Article  Google Scholar 

  80. Dettmar, A. K., Wiech, T., Kemper, M. J., Soave, A., Rink, M., Oh, J., Stahl, R. A. K., Hoxha, E., & Pediatric, M. N. S. G. (2018). Immunohistochemical and serological characterization of membranous nephropathy in children and adolescents. Pediatric Nephrology(Berlin, Germany), 33, 463–472. https://doi.org/10.1007/s00467-017-3817-y

    Article  PubMed  Google Scholar 

  81. Wang, T., Cai, L., Li, G., & Liu, X. (2019). Effects of Tacrolimus on Serum M-Type Phospholipase A2 Receptor and Thrombospondin Type-1 Domain-Containing 7A Expression in Patients with Idiopathic Membranous Nephropathy. Evaluation and Analysis of Drug-Use in Hospitals of China, 19, 808–810. https://doi.org/10.14009/j.issn.1672-2124.2019.07.013

    Article  Google Scholar 

  82. Han, Q., & Zhu, H. (2017). Clinical significance of serum PLA2R antibody and THSD7A antibody in idiopathic membranous nephropathy. Chinese Journal of Laboratory Medicine, 40, 564–568. https://doi.org/10.3760/cma.j.issn.1009-9158.2017.08.003

    Article  Google Scholar 

  83. Larsen, C. P., Cossey, L. N., & Beck, L. H. (2016). THSD7A staining of membranous glomerulopathy in clinical practice reveals cases with dual autoantibody positivity. Modern Pathology, 29, 421–426. https://doi.org/10.1038/modpathol.2016.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sharma, S. G., & Larsen, C. P. (2018). Tissue staining for THSD7A in glomeruli correlates with serum antibodies in primary membranous nephropathy: A clinicopathological study. Modern Pathology, 31, 616–622. https://doi.org/10.1038/modpathol.2017.163

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, D., Zou, J., Zhang, C., Zhang, W., Lin, F., & Jiang, G. (2018). Clinical and Histological Features of Phospholipase A2 Receptor-Associated and Thrombospondin Type-I Domain-containing 7A-Associated Idiopathic Membranous Nephropathy: A Single Center Retrospective Study from China. Medical Science Monitor, 24, 5076–5083. https://doi.org/10.12659/MSM.909815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tian, C., Li, L., Liu, T., Qu, X., & Qiu, Y. (2019). Circulating antibodies against M-type phospholipase A2 receptor and thrombospondin type-1 domain-containing 7A in Chinese patients with membranous nephropathy. International Urology and Nephrology, 51, 1371–1377. https://doi.org/10.1007/s11255-019-02146-w

    Article  CAS  PubMed  Google Scholar 

  87. Smarz-Widelska, I., Chojeta, D., & Koziol, M. M. (2022). The Role of Anti-PLA(2)R and Anti-THSD7A Antibodies in the Pathogenesis and Diagnostics of Primary Membranous Nephropathy: A Review of Current Knowledge for Clinical Practice. International Journal of Environmental Research and Public Health, 19, 5301. https://doi.org/10.3390/ijerph19095301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Toth-Manikowski, S., & Beck, L. H. (2019). PLA2R- and THSD7A-Associated Primary Membranous Nephropathy. In H. Trachtman, L. C. Herlitz, E. V. Lerma, & J. J. Hogan (Eds.), Glomerulonephritis (pp. 301–331). Springer International Publishing.

    Chapter  Google Scholar 

  89. Fouad, M. A., Mahedy, A. W., Mansour, A. E. and Fouad, N. A. (2020). Anti-PLA2R and anti-THSD7A as Diagnostic Serological Markers of Idiopathic Membranous Nephropathy: A Single Centre Study. EGYPTIAN JOURNAL OF IMMUNOLOGY, 27, 01–09.

    Google Scholar 

  90. Taguchi, S., Koshikawa, Y., Ohyama, S., Miyachi, H., Ozawa, H., & Asada, H. (2019). Thrombospondin type-1 domain-containing 7A-associated membranous nephropathy after resection of rectal cancer: A case report. BMC Nephrology, 20, 43. https://doi.org/10.1186/s12882-019-1236-y

    Article  PubMed  PubMed Central  Google Scholar 

  91. Beck, L. H. J., Fervenza, F. C., Beck, D. M., Bonegio, R. G. B., Malik, F. A., Erickson, S. B., Cosio, F. G., Cattran, D. C., & Salant, D. J. (2011). Rituximab-Induced Depletion of Anti-PLA2R Autoantibodies Predicts Response in Membranous Nephropathy. Journal of the American Society of Nephrology, 22, 1543–1550. https://doi.org/10.1681/asn.2010111125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hoxha, E., Thiele, I., Zahner, G., Panzer, U., Harendza, S., & Stahl, R. A. K. (2014). Phospholipase A2 Receptor Autoantibodies and Clinical Outcome in Patients with Primary Membranous Nephropathy. Journal of the American Society of Nephrology, 25, 1357–1366. https://doi.org/10.1681/asn.2013040430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wanderley, D. C., Jones, B. D., Barbosa, F. A. M., & Araujo, S. A. (2019). A rare case of PLA2R- and THSD7A-positive idiopathic membranous nephropathy. Jornal Brasileiro de Nefrologia, 42, 254–258. https://doi.org/10.1590/2175-8239-JBN-2019-0077

    Article  PubMed  PubMed Central  Google Scholar 

  94. Reinhard, L., Thomas, C., Machalitza, M., Lattwein, E., Weiss, L. S., Vitu, J., Wiech, T., Stahl, R. A. K., & Hoxha, E. (2021). Characterization of THSD7A-antibodies not binding to glomerular THSD7A in a patient with diabetes mellitus but no membranous nephropathy. Scientific Reports, 11, 16188. https://doi.org/10.1038/s41598-021-94921-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, T., Zhang, Y., Liu, M., Kang, X., Kang, L., & Zhang, H. (2019). THSD7A as a marker for paraneoplastic membranous nephropathy. International Urology and Nephrology, 51, 371–373. https://doi.org/10.1007/s11255-018-02068-z

    Article  PubMed  Google Scholar 

  96. Yoon, H., Dehart, J. P., Murphy, J. M., & Lim, S. T. (2015). Understanding the roles of FAK in cancer: Inhibitors, genetic models, and new insights. Journal of Histochemistry and Cytochemistry, 63, 114–128. https://doi.org/10.1369/0022155414561498

    Article  CAS  PubMed  Google Scholar 

  97. Flockerzi, F. A., Hohneck, J., Saar, M., Bohle, R. M., & Stahl, P. R. (2023). THSD7A Positivity Is Associated with High Expression of FAK in Prostate Cancer. Diagnostics (Basel), 13, 221. https://doi.org/10.3390/diagnostics13020221

    Article  CAS  PubMed  Google Scholar 

  98. Aktepe, O. H., Gundogdu, F., Kosemehmetoglu, K., Yeter, H. H., Aksoy, S., Guven, D. C., Sahin, T. K., Yuce, D., Kertmen, N., Dizdar, O., Yalcin, S., & Erman, M. (2022). THSD7A expression: A novel immunohistochemical determinant in predicting overall survival of metastatic renal cell carcinoma treated with targeted therapy. Irish Journal of Medical Science, 191, 1561–1567. https://doi.org/10.1007/s11845-021-02759-0

    Article  CAS  PubMed  Google Scholar 

  99. Tang, X. L., Du, Y. Y., Yu, J., Ye, T., Zhu, H., Chen, Y. F., & Li, X. H. (2023). Clinical Significance of Thrombospondin Type 1 Domain-Containing 7A and Neural Epidermal Growth Factor-Like 1 Protein in M-Type Phospholipase A2 Receptor-Negative Membranous Nephropathy. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 45, 235–244. https://doi.org/10.3881/j.issn.1000-503X.15212

    Article  PubMed  Google Scholar 

  100. Xu, Q., Zou, G., Zhuo, L., Gao, H., & Li, W. (2022). Lung cancer patients with nephropathy as the first manifestation: Literature review and clinical study report. Frontiers in Oncology, 12, 1002155. https://doi.org/10.3389/fonc.2022.1002155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, W., Zhao, Y., & Fu, P. (2018). Diagnostic test accuracy of serum anti-PLA2R autoantibodies and glomerular PLA2R antigen for diagnosing idiopathic membranous nephropathy: An updated meta-analysis. Frontiers in Medicine, 5, 101. https://doi.org/10.3389/fmed.2018.00101

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sethi, S., Madden, B. J., Debiec, H., Charlesworth, M. C., Gross, L., Ravindran, A., Hummel, A. M., Specks, U., Fervenza, F. C., & Ronco, P. (2019). Exostosin 1/Exostosin 2–Associated Membranous Nephropathy. Journal of the American Society of Nephrology, 30, 1123–1136. https://doi.org/10.1681/asn.2018080852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sethi, S., Debiec, H., Madden, B., Charlesworth, M. C., Morelle, J., Gross, L., Ravindran, A., Buob, D., Jadoul, M., & Fervenza, F. C. (2020). Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney International, 97, 163–174. https://doi.org/10.1016/j.kint.2019.09.014

    Article  CAS  PubMed  Google Scholar 

  104. Ronco, P., & Debiec, H. (2021). Membranous nephropathy: Current understanding of various causes in light of new target antigens. Current Opinion in Nephrology and Hypertension, 30, 287–293. https://doi.org/10.1097/mnh.0000000000000697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sethi, S., Debiec, H., Madden, B., Vivarelli, M., Charlesworth, M. C., Ravindran, A., Gross, L., Ulinski, T., Buob, D., & Tran, C. L. (2020). Semaphorin 3B–associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney international, 98, 1253–1264. https://doi.org/10.1016/j.kint.2020.05.030

    Article  CAS  PubMed  Google Scholar 

  106. Caza, T. N., Hassen, S. I., Kuperman, M., Sharma, S. G., Dvanajscak, Z., Arthur, J., Edmondson, R., Storey, A., Herzog, C., & Kenan, D. J. (2021). Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney international, 100, 171–181. https://doi.org/10.1016/j.kint.2020.09.016

    Article  CAS  PubMed  Google Scholar 

  107. Sethi, S., Madden, B., Debiec, H., Morelle, J., Charlesworth, M. C., Gross, L., Negron, V., Buob, D., Chaudhry, S., & Jadoul, M. (2021). Protocadherin 7–associated membranous nephropathy. Journal of the American Society of Nephrology: JASN, 32, 1249–1261. https://doi.org/10.1681/ASN.2020081165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Al-Rabadi, L. F., Caza, T., Trivin-Avillach, C., Rodan, A. R., Andeen, N., Hayashi, N., Williams, B., Revelo, M. P., Clayton, F., & Abraham, J. (2021). Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy. Journal of the American Society of Nephrology: JASN, 32, 1666–1681. https://doi.org/10.1681/ASN.2020101395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Caza, T. N., Hassen, S. I., Kenan, D. J., Storey, A., Arthur, J. M., Herzog, C., Edmondson, R. D., Bourne, T. D., Beck, L. H. J., & Larsen, C. P. (2021). Transforming Growth Factor Beta Receptor 3 (TGFBR3)–Associated Membranous Nephropathy. Kidney, 360(2), 1275–1286. https://doi.org/10.34067/kid.0001492021

    Article  Google Scholar 

  110. Le Quintrec, M., Teisseyre, M., Bec, N., Delmont, E., Szwarc, I., Perrochia, H., Machet, M. C., Chauvin, A., Mavroudakis, N., & Taieb, G. (2021). Contactin-1 is a novel target antigen in membranous nephropathy associated with chronic inflammatory demyelinating polyneuropathy. Kidney International, 100, 1240–1249. https://doi.org/10.1016/j.kint.2021.08.014

    Article  CAS  PubMed  Google Scholar 

  111. Reinhard, L., Machalitza, M., Wiech, T., Gröne, H.-J., Lassé, M., Rinschen, M. M., Ferru, N., Bräsen, J. H., Drömann, F., Rob, P. M., Sethi, S., Hoxha, E., & Stahl, R. A. K. (2022). Netrin G1 is a novel target antigen in primary membranous nephropathy. Journal of the American Society of Nephrology, 33, 1823–1831. https://doi.org/10.1681/asn.2022050608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sethi, S., Madden, B., Casal Moura, M., Nasr, S. H., Klomjit, N., Gross, L., Negron, V., Charlesworth, M. C., Alexander, M. P., Leung, N., Specks, U., Fervenza, F. C., & Haas, M. (2022). Hematopoietic stem cell transplant-membranous nephropathy is associated with protocadherin FAT1. Journal of the American Society of Nephrology, 33, 1033–1044. https://doi.org/10.1681/asn.2021111488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gong, Z., Yuan, S., Zhu, X., Wang, Y., Yu, F., Yang, D., Xu, X., Liu, H., Li, J., & Sun, L. (2020). Clinical significance of M-type phospholipase A2 receptor and thrombospondin Type 1 domain-containing 7A in primary membranous nephropathy. Zhong Nan Da Xue Xue Bao. Yi Xue Ban, 45, 693–700. https://doi.org/10.11817/j.issn.1672-7347.2020.190109

    Article  PubMed  Google Scholar 

  114. Matsumoto, A., Matsui, I., Mano, K., Mizuno, H., Katsuma, Y., Yasuda, S., Shimada, K., Inoue, K., Oki, T., Hanai, T., Kojima, K., Kaneko, T., & Isaka, Y. (2021). Recurrent membranous nephropathy with a possible alteration in the etiology: A case report. BMC Nephrology, 22, 253. https://doi.org/10.1186/s12882-021-02457-0

    Article  PubMed  PubMed Central  Google Scholar 

  115. Watanabe, S., Suzuki, T., Han, W., Nakata, M., Koitabashi, K., Ichikawa, D., Kamijo-Ikemori, A., Koike, J., & Shibagaki, Y. (2021). Spontaneous remission of thrombospondin type-1 domain-containing-associated membranous nephropathy. Internal Medicine, 60, 3125–3128. https://doi.org/10.2169/internalmedicine.6413-20

    Article  PubMed  PubMed Central  Google Scholar 

  116. De Vriese, A. S., Glassock, R. J., Nath, K. A., Sethi, S., & Fervenza, F. C. (2017). A Proposal for a Serology-Based Approach to Membranous Nephropathy. Journal of the American Society of Nephrology, 28, 421–430. https://doi.org/10.1681/ASN.2016070776

    Article  PubMed  Google Scholar 

  117. Sola-Porta, E., Buxeda, A., Lop, J., Naranjo-Hans, D., Gimeno, J., Lloveras-Rubio, B., Perez-Saez, M. J., Redondo-Pachon, D., & Crespo, M. (2023). THSD7A-positive membranous nephropathy after kidney transplantation: A case report. Nefrologia (Engl Ed). https://doi.org/10.1016/j.nefroe.2022.09.005

    Article  PubMed  Google Scholar 

  118. Francis, J. M., Beck, L. H., Jr., & Salant, D. J. (2016). Membranous nephropathy: A journey from bench to bedside. American Journal of Kidney Diseases, 68, 138–147. https://doi.org/10.1053/j.ajkd.2016.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Maifata, S. M., Hod, R., Zakaria, F., & Abd Ghani, F. (2019). Primary membranous glomerulonephritis: The role of serum and urine biomarkers in patient management. Biomedicines. https://doi.org/10.3390/biomedicines7040086

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lipshultz, S. E., Orav, E. J., Sanders, S. P., & Colan, S. D. (1995). Immunoglobulins and left ventricular structure and function in pediatric HIV infection. Circulation, 92, 2220–2225. https://doi.org/10.1161/01.cir.92.8.2220

    Article  CAS  PubMed  Google Scholar 

  121. Tin, C. M., Yuan, L., Dexter, R. J., Parra, G. I., Bui, T., Green, K. Y., & Sosnovtsev, S. V. (2017). A Luciferase Immunoprecipitation System (LIPS) assay for profiling human norovirus antibodies. Journal of virological methods, 248, 116–129. https://doi.org/10.1016/j.jviromet.2017.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Burbelo, P. D., Olson, S. W., Keller, J. M., Joshi, M., Schwartz, D. M., Chuang, Y.-J., Lambeau, G., Beck, L. H. J., & Waldman, M. (2023). Prediagnostic appearance of thrombospondin type-1 domain 7A autoantibodies in membranous nephropathy. Kidney, 360(4), 217–225. https://doi.org/10.34067/kid.0005112022

    Article  Google Scholar 

  123. Von Haxthausen, F., Reinhard, L., Pinnschmidt, H. O., Rink, M., Soave, A., Hoxha, E., & Stahl, R. A. (2018). Antigen-specific IgG subclasses in primary and malignancy-associated membranous nephropathy. Frontiers in immunology, 9, 3035. https://doi.org/10.3389/fimmu.2018.03035

    Article  CAS  Google Scholar 

  124. Tesar, V., & Hruskova, Z. (2021). Autoantibodies in the Diagnosis, Monitoring, and Treatment of Membranous Nephropathy. Frontiers in Immunology, 12, 593288. https://doi.org/10.3389/fimmu.2021.593288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dahan, K., Debiec, H., Plaisier, E., Cachanado, M., Rousseau, A., Wakselman, L., Michel, P.-A., Mihout, F., Dussol, B., Matignon, M., Mousson, C., Simon, T., Ronco, P., Group, o. b. o. t. G. S. and Group, t. G. S. (2017). Rituximab for Severe Membranous Nephropathy: A 6-Month Trial with Extended Follow-Up. Journal of the American Society of Nephrology, 28, 348–358. https://doi.org/10.1681/asn.2016040449

    Article  CAS  Google Scholar 

  126. Tseke, P., & Griveas, I. (2022). Immunoadsorption and covid 19 pandemic. Transfusion and Apheresis Science, 61, 103599. https://doi.org/10.1016/j.transci.2022.103599

    Article  PubMed  PubMed Central  Google Scholar 

  127. Weinmann-Menke, J., Holtz, S., Sollinger, D., Dörken, M., Boedecker, S., Schamberger, B., Pfister, F., Amann, K., & Lutz, J. (2019). Treatment of membranous nephropathy in patients with THSD7A antibodies using immunoadsorption. American Journal of Kidney Diseases, 74, 849–852. https://doi.org/10.1053/j.ajkd.2019.05.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SJ designed this review and wrote the article, DJ, ZL, TL and YZ contributed to the data collection, SJ and XH revised the article. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shuiqing Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest related to this review article.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Jiang, D., Lian, Z. et al. THSD7A as a Promising Biomarker for Membranous Nephrosis. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00934-5

Keywords

Navigation