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Abstract
Liver cirrhosis is one of the most prevalent chronic liver disorders with high mortality. We aimed to explore changed gut 
microbiome and urine metabolome in compensatory liver cirrhosis (CLC) patients, thus providing novel diagnostic biomark-
ers for CLC. Forty fecal samples from healthy volunteers (control: 19) and CLC patients (patient: 21) were undertaken 16S 
rDNA sequencing. Chromatography-mass spectrometry was performed on 40 urine samples (20 controls and 20 patients). 
Microbiome and metabolome data were separately analyzed using corresponding bioinformatics approaches. The diagnostic 
model was constructed using the least absolute shrinkage and selection operator regression. The optimal diagnostic model 
was determined by five-fold cross-validation. Pearson correlation analysis was applied to clarify the relations among the 
diagnostic markers. 16S rDNA sequencing analyses showed changed overall alpha diversity and beta diversity in patient 
samples compared with those of controls. Similarly, we identified 841 changed metabolites. Pathway analysis revealed that 
the differential metabolites were mainly associated with pathways, such as tryptophan metabolism, purine metabolism, 
and steroid hormone biosynthesis. A 9-maker diagnostic model for CLC was determined, including 7 microorganisms and 
2 metabolites. In this model, there were multiple correlations between microorganisms and metabolites. Subdoligranu-
lum, Agathobacter, norank_f_Eubacterium_coprostanoligenes_group, Butyricicoccus, Lachnospiraceae_UCG_004, and 
L-2,3-Dihydrodipicolinate were elevated in CLC patients, whereas Blautia, Monoglobus, and 5-Acetamidovalerate were 
reduced. A novel diagnostic model for CLC was constructed and verified to be reliable, which provides new strategies for 
the diagnosis and treatment of CLC.
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Introduction

Liver cirrhosis (LC) is one of the most frequent chronic 
liver diseases worldwide and a dominant cause of death, 
accounting for 2% of global mortalities yearly [1, 2]. The 
main characteristics of LC are altered liver architecture 
induced by regenerative nodules and diffuse fibrosis, 

resulting in intrahepatic vascular change, portal hyperten-
sion, and secondary liver failure [3]. Furthermore, LC is a 
risk factor for hepatocellular carcinoma, and the morbidity 
of hepatocellular carcinoma in LC patients is 2–7% [4]. 
The progression of LC can be split into the compensatory 
(asymptomatic) and decompensated stages [5]. Asympto-
matic LC develops into the decompensated stage with the 
common clinical manifestations of ascites, hemorrhage, 
encephalopathy, and jaundice, conducing to decreased life 
quality and high mortality [6]. In China, approximately 
3% of cases of compensatory LC (CLC) progress into 
decompensated LC annually and a 5-year death rate of 
85% is estimated in patients with decompensated LC [7]. 
Despite liver transplantation can enhance survival rates, 
its clinical application is limited by donor shortage, high 
expenses, and severe post-transplantation complications 
[7]. Currently, liver biopsy is the major method available 
for clinical diagnosis of LC; however, it is not appropriate 
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for all patients and 2–3% of patients may undergo multiple 
complications [8]. Early diagnosis and timely treatment 
are crucial for improving the outcomes of patients with 
LC. Therefore, there is an urgent need for the discovery of 
novel diagnostic markers for early-stage LC.

Increasing studies indicate that gut dysbiosis plays a vital 
role in the occurrence and development of LC [5, 9]. The 
gut microbiota is defined as the complicated aggregation 
of microbes in the gut, including bacteria, archaea, fungi, 
and viruses [10]. The gut microbiota produces a mass of 
metabolites that facilitate the interaction between the gut 
microbiota and the host [11]. Normal microbial composition 
acts as a natural defense barrier, which has significant impli-
cations for the acquisition of nutrients and regulation of the 
immune system and metabolic ability on the host [12]. The 
liver is a highly active region of metabolism and immune 
homeostasis, which impacts the microbiota by secreting and 
modulating various immunogenic molecules and metabolites 
into the gut [13]. The abnormities in the gut microbiota in 
LC patients are marked by the elevated abundance of latently 
pathogenic bacteria and descended amounts of advantageous 
bacteria [14]. Previous research observed a rise in Strep-
tococcaceae, Peptostreptococcaceae, Erysipelotrichaceae, 
Clostridiaceae, and Pasteurellaceae and a reduction in Acid-
aminococcaceae, Porphyromonadaceae, Prevotellaceae, 
and Bacteroidaceae in the fecal samples from LC patients 
[14]. This suggests that alterations in the gut microbiota 
might serve as diagnostic signatures of LC, prompting us to 
investigate the status of the gut microbiota in CLC.

Microbiome analysis combined with metabolomics has 
been extensively applied as an effective method to figure out 
the correlation between health outcomes and microbiome 
[15]. Metabolomics is an assessment of multi-parametric 
metabolic reactions of multi-cellular systems, designed to 
determine and quantify different small molecules in multiple 
biological samples or specific physiological conditions [16]. 
As an emerging technique, metabolomics can not only be 
used to identify specific diagnostic biomarkers but also to 
clarify molecular mechanisms underlying specific pathology 
[17]. A previous study indicated that disordered gut micro-
biome conduced to LC progression, which might be associ-
ated with changed microbiome–metabolite interactions [8]. 
Hence, the integration of gut microbiota and metabolomics 
analyses is expected to obtain more efficient diagnosis bio-
markers for CLC.

In this study, 16S ribosomal DNA (rDNA) sequencing 
and untargeted metabolomics were performed on feces 
and urine samples, respectively. The findings of our study 
revealed the differences in the gut microbiome and urine 
metabolites between CLC patients and normal controls. 
Besides, we constructed a diagnostic model for CLC by 
integrating gut microbiome with metabolomics analyses 
and verified the model. This study may provide novel early 

diagnostic biomarkers for LC and furnish a reference for 
further research into the pathogenesis of LC.

Materials and Methods

Human Subjects and Clinical Samples

Forty-one human individuals aged 40–50 were involved in 
the study, including 20 healthy volunteers (control) and 21 
patients with CLC. These human individuals were enrolled 
in Tiantai People’s Hospital of Zhejiang Province (from 
2018 to 2021). Patients were diagnosed with LC in terms of 
medical history, liver biopsy, clinical symptoms, laboratory 
tests, imaging tests, histological examinations, and compli-
cations. The diagnosis for CLC was based on the criteria 
described in Chinese guidelines on the management of liver 
cirrhosis (abbreviated version) [18]. No participants suf-
fered hypertension, diabetes, inflammatory bowel disease, 
or necrotizing enteritis. Besides, none of these participants 
took proton pump inhibitors, antibiotics, or probiotics within 
2 weeks before sample collection. Feces and urine samples 
were collected in the morning after an overnight fast, then 
delivered to the laboratory within 2 h on dry ice, and stored 
at -80℃ until further analyses. We performed the sample 
collection following the principle of voluntariness. Finally, 
40 appropriate feces samples (control: 19; patient: 21) and 
urine samples (control: 20; patient: 20) were included for 
subsequent gut microbiota and urine metabolomics analyses, 
respectively. The sample sizes for these analyses conformed 
to a previous study [19]. The demographic and clinical data 
of subjects involved in this study are presented in Table S1. 
All participants signed written informed consent, and the 
experimental procedures were authorized by the Ethics 
Committee of Tiantai People’s Hospital of Zhejiang Prov-
ince (TYLL2019-06). This study was in line with the Dec-
laration of Helsinki.

16S rDNA Sequencing

According to the manufacturer’s instructions, the QIAamp 
DNA Mini Kit (Qiagen, Hilden, Germany) was used for 
DNA extraction from fecal samples. NanoDrop2000 spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA, 
USA) was utilized to measure the concentration and purity 
of the DNA, and DNA quality was evaluated through 1% 
agarose gel electrophoresis. Then, the V3–V4 regions of 
bacterial 16S rDNA were amplified using the universal 
primers 338F, 5′-ACT CCT ACG GGA GGC AGC A-3′ 
and 806R, 5′-GGA CTA CHV GGG TWT CTA AT-3′. Fol-
lowing PCR amplification, the products were obtained by 
2% agarose gel. The purified DNA fragments were then 
eluted using Tris–HCl and assessed using 2% agarose gel 
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electrophoresis. The following conditions for amplifica-
tion were applied: initial denaturation at 95 °C for 3 min, 
30 cycles of denaturation at 95 °C for 30 s, annealing at 
55 °C for 30 s, and primer elongation at 72 °C for 45 s. 
All amplicons were purified using Agencourt AMPure XP 
(Beckman Coulter, USA), which were quantified using Qubit 
dsDNA HS Assay Kit and Qubit 3.0 fluorometer (Thermo 
Fisher Scientific, Waltham, MA, USA). TruSeq DNA PCR-
Free Sample Preparation Kit (Illumina, USA) was used for 
sequencing library generation and index code addition. The 
library construction process involved the following steps: 
(1) ligation of the “Y”-shaped adapter, (2) removal of self-
ligated fragments using magnetic beads, (3) enrichment of 
the library through PCR amplification, and (4) denaturation 
of DNA using sodium hydroxide. Agilent 4200 Tapestation 
(Agilent Technologies, Palo Alto, CA, USA) was applied 
to determine library quality. Finally, the purified amplifica-
tion fragment was incorporated into a library of PE 2 × 300 
for sequencing on the HiSeq 2500 platform (Illumina, San 
Diego, CA, USA) following the manufacturer’s directions. 
Only high-quality reads were retained by removing all ter-
minal bases with low quality (< Q20) using Trimmomatic 
(version 0.35).The sequence data related to this study have 
been deposited in the NCBI Short Read Archive (SRA) data-
base (accession number: PRJNA1019460).

Bioinformatics Analyses of 16S rDNA Sequencing

Ultra-fast FASTQ preprocessor fastp (version 0.19.4, https:// 
github. com/ OpenG ene/ fastp) [20] was used for quality con-
trol of raw sequencing data. For quality control, reads with 
a length of 300 bp were truncated at sites where the average 
quality score across a sliding window of 50 bp fell below 20 
and truncated reads with a length of less than 50 bp were 
removed. Besides, the original sequences were compared 
using Burrows–Wheeler Aligner (BWA) software [21], and 
the contaminated reads with high similarity were removed, 
resulting in the optimized sequences. Double-ended splic-
ing of original sequences was performed using fast length 
adjustment of short reads (FLASH; version 1.2.11, http:// 
www. cbcb. umd. edu/ softw are/ flash) [22]. For splicing, the 
parameter of maximum mismatch rate between overlaps was 
limited to 0.2 and the length was longer than 10 bp. DADA2 
(version 1.2.1, https:// github. com/ benjj neb/ dada2) [23] was 
applied for denoising to identify amplicon sequence variants 
(ASVs). Taxonomy of the ASVs and species annotations 
(domain, kingdom, phylum, class, order, family, genus, and 
species) were performed using the naïve Bayesian classi-
fier, Ribosomal Database Project (RDP; version 11.1, http:// 
rdp. cme. msu. edu/) [24]. Clean tags were clustered into opti-
mal taxonomic units (OTUs) with a similarity threshold of 
97% using UPARSE (http:// drive5. com/ uparse/) [25]. The 
UCHIME (http:// www. drive5. com/ usear ch/ manual/ uchime_ 

algo. html) [26] was used to delete chimeric sequences. 
Then, a representative sequence was assigned to each OTU 
to obtain annotation information using the RDP classifier 
with the alignment threshold limited to 70% by comparison 
with SILVA database. The bar diagram, heatmap, and Cir-
cos diagram were drawn using “ggplot2,” “pheatmap,” and 
“RCircos” R packages to reflect the differences in microbial 
community composition between control and patient sam-
ples, respectively.

Pan/core-genome analyses of the 16S rDNA sequences 
were performed using “ggplot2” R package. Alpha diver-
sity indicators, including sobs, ace, chao, shannon, simpson, 
shannoneven, simpsoneven, coverage, and Faith’s Phyloge-
netic Diversity (PD) indices, were calculated using QIIME 
software (version 1.9.1) [27]. Graphs of alpha diversity 
indexes, rarefaction curves (Sobs and Shannon indices), and 
rank-abundance curve were drawn via “ggplot2” R pack-
age. For beta diversity analysis, the QIIME software was 
used to calculate the unweighted UniFrac distance, followed 
by construction of the unweighted pair-group method with 
arithmetic mean (UPGMA) sample clustering tree using 
“ape” R package. Principal component analysis (PCA) was 
performed using “ropls” R package. Furthermore, principal 
coordinate analysis (PCoA) based on the UniFrac distance 
and nonmetric multidimensional scaling (NMDS) analysis 
were carried out using “vegan” R package.

Urine Sample Preparation

First, 400-μL methanol (containing 1-μg/mL chloropheny-
lalanine as internal standard) was added to the urine sample 
(100 μL) in the 1.5-mL centrifuge tube. Then, the mixture 
was vortexed for 30 s and centrifuged for 10 min (14,000 × g; 
4 °C), followed by vacuum drying. The supernatant (200 μL) 
was transferred to the autosamplers for subsequent ultra-
performance liquid chromatography-mass spectrometry 
(UPLC-MS) analysis. Additionally, quality control (QC) 
samples were prepared by blending an equal portion of each 
urine sample. Prepared QC samples were inserted in every 
eight urine samples, which were subjected to regular analy-
sis to evaluate the stability and repeatability of the instru-
mental experiment.

Liquid Chromatography‑Mass Spectrometry (LC–
MS) Analysis

Sample separation for liquid chromatography analy-
sis was performed using XSelect HSS T3 Column 
(2.1 mm × 100 mm; 1.8 µm; Waters, Milford, MA, USA). 
The mobile phase was composed of 0.1% formic acid in 
water (A) and 0.1% formic acid in acetonitrile (B). The 
conditions of gradient elution were applied as follows: 
0–3.5 min, 0–24.5% B, 0.4 mL/min (flow rate); 3.5–5 min, 

https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
http://www.cbcb.umd.edu/software/flash
http://www.cbcb.umd.edu/software/flash
https://github.com/benjjneb/dada2
http://rdp.cme.msu.edu/
http://rdp.cme.msu.edu/
http://drive5.com/uparse/
http://www.drive5.com/usearch/manual/uchime_algo.html
http://www.drive5.com/usearch/manual/uchime_algo.html


 Molecular Biotechnology

1 3

24.5%-65% B, 0.4  mL/min; 5–5.5  min, 65–100% B; 
5.5–7.4  min, 100%B, 0.4–0.6  mL/min; 7.4–7.6  min; 
100–51.5%B, 0.6  mL/min; 7.6–7.8  min; 51.5–0%B, 
0.6–0.5  mL/min; 7.8–9  min; 0%B, 0.5–0.4  mL/min; 
9–10 min; and 0%B, 0.4 mL/min. Other parameters of the 

analysis were as follows: injection volume, 2 μL; column 
temperature, 40 °C; and sample room temperature, 10 °C.

For mass spectrometry analysis, positive- and negative-
ion modes were applied using the electrospray ionization 
source of the UHPLC-Q Exactive HF-XQ system (Thermo 

Fig. 1  Changed alpha diversity of gut microbiota in patients with 
CLC. A Box and whisker plots of alpha diversity indexes, includ-
ing sobs, ace, chao, shannon, simpson, shannoneven, simpsoneven, 
and PD of control and patient samples. B Rarefaction curve of sobs 
index. C Rarefaction curve of shannon index. Alpha diversity indices 

were calculated using QIIME software (version 1.9.1) and “ggplot2” 
R package was used for visualization. Control group, n = 19; patient 
group, n = 21. CLC, compensatory liver cirrhosis; PD, Faith’s Phylo-
genetic Diversity



Molecular Biotechnology 

1 3

Fisher). The mass scan range was set to 50–1000 m/z. The 
conditions of electrospray ionization were as follows: sheath 
gas flow rate, 50 arbitrary units; auxiliary gas flow rate, 13 
arbitrary units; heater temperature, 425 °C; capillary tem-
perature, 325 °C; ion spray voltage floating, 3500 V (posi-
tive mode) and −3500 V (negative mode); collision energy, 
20/40/60 eV; full MS resolution, 60,000; and MS/MS reso-
lution, 7500.

Urine Metabolomics Analyses

Raw data were entered into the Progenesis QI software (ver-
sion 2.2, Waters) for data pre-processing, including baseline 
filtering, peak identification, alignment, integration, reten-
tion time correction, and normalization. Then, a data matrix 
composed of retention time, mass-to-charge ratio values, 
and peak intensity was obtained. Metabolite annotation was 
performed using Human Metabolome Database (HMDB; 
version 5.0, http:// www. hmdb. ca/) [28], Kyoto Encyclo-
pedia of Genes and Genomes (KEGG; www. genome. jp/ 
kegg) [29], and Lipidmaps database (http:// www. lipid maps. 
org/) [30]. Data analysis was conducted using the online 
platform Majorbio Cloud (https:// cloud. major bio. com). 
Metabolomics features presenting more than 20% of missing 
values were eliminated from the analysis. After normaliza-
tion, variables with relative standard deviation > 30% of QC 
samples were removed. The final data matrix was obtained 
after log10 transformation and used for subsequent analysis.

PCA and orthogonal partial least-squares discrimina-
tion analysis (OPLS-DA) were carried out to determine 
the distinctions among variables using “ropls” R pack-
age. The reliability of OPLS-DA was evaluated via five-
fold cross-validation and permutation test with the criteria 
“R2Y (goodness of fit indicator) and  Q2 (predictive capacity 
indicator) > 0.5” [31]. On the basis of OPLS-DA analysis, 
metabolites meeting the criterion of “variable importance 
in projection (VIP) > 1” were selected as key variables. The 
following criteria were applied to identify differentially 
expressed metabolites: VIP > 1; p < 0.05 [32]. The top 50 
differential metabolites were screened based on the values 
of |log2 fold change| from high to low. The heatmap reflect-
ing the distribution of these metabolites in each sample was 
drawn by “pheatmap” R package. Besides, Pearson correla-
tion analysis was conducted to assess the links among the 
top 50 differential metabolites, which was visualized by 
“corrplot” R package. Then, all the differential metabolites 
were subjected to pathway enrichment analysis using Meta-
boAnalyst (version 4.0, https:// www. metab oanal yst. ca) [33], 
followed by network analysis using Metscape [34].

Construction and Verification of Diagnostic Model 
for CLC

Data of gut microbiota and metabolomics analyses were 
merged and a multi-factor classification model was built 
based on the least absolute shrinkage and selection opera-
tor (LASSO) regression algorithm using “caret” R package 
(https:// github. com/ topepo/ caret/) [35]. Then, the merged 
gut microbiota and metabolomics data were randomly 
divided into training (29 samples) and testing (10 samples) 
sets to avoid overfitting of the model. Through five-fold 
cross-validation, the optimal diagnostic markers were identi-
fied according to the lambda. min value. The final diagnostic 
model was generated, and the area under the curve (AUC) 
of the receiver operating characteristic (ROC) was calcu-
lated using SPSS software (version 26.0, IBM, Armonk, 
NY, USA) and visualized using “pROC” R package. Oth-
erwise, Pearson correlation analysis was applied to clarify 
the relations among the diagnostic markers and visualized 
by “corrplot” R package.

Statistical Analysis

Statistical analyses were undertaken using SPSS software 
(version 26.0, IBM) and R software (version 4.2.2). Data 
are exhibited as means ± standard deviation (SD) or medi-
ans with ranges. Fisher’s test was applied to identify sig-
nificantly enriched pathways related to differential metabo-
lites. Student’s t test was utilized for comparisons of the 
differences between two groups. The criterion for statistical 
significance is p < 0.05. For controlling multiple hypothesis 
testing, we employed Bonferroni correction method to adjust 
statistical significance.

Results

16S rDNA Sequencing Data Analyses

In this study, 16S rDNA sequencing was initially performed 
on 40 feces samples, including 19 from healthy volunteers 
(control) and 21 from patients with CLC, resulting in 
2,910,360 raw sequences. Quality control was performed 
using fastp with the following criteria: reads with a length 
of 300 bp were truncated at sites where the average quality 
score across a sliding window of 50 bp fell below 20; trun-
cated reads with a length of less than 50 bp were deleted. 
Furthermore, The raw sequences were compared using BWA 
software [21], and the contaminated reads with high similar-
ity were deleted, generating the optimized sequences. In this 
study, a total of 2,362,245 high-quality sequences with the 
mean length of 412.57 bp were obtained (Table S2).

http://www.hmdb.ca/
http://www.genome.jp/kegg
http://www.genome.jp/kegg
http://www.lipidmaps.org/
http://www.lipidmaps.org/
https://cloud.majorbio.com
https://www.metaboanalyst.ca
https://github.com/topepo/caret/


 Molecular Biotechnology

1 3

Pan- and core-genome analyses were utilized to deter-
mine whether the current sequencing sample size is suffi-
cient by evaluating alterations in total, and core ASVs as the 

sample number were elevated. Pan-genome analysis revealed 
that the total number of ASVs tended to be maximized with 
the increasing number of samples (Figure S1A). Moreover, 
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core-genome analysis showed that the number of key ASVs 
descended and then remained unchanged with the growing 
number of samples (Figure S1B). Furthermore, the rank-
abundance curves tended to be smooth, demonstrating that 
most of the microbial diversity on genus level in each sample 
had already been acquired at the present sequencing depth 
(Figure S1C).

Alpha and Beta Diversity Analyses

Based on the ASVs, alpha diversity analyses were per-
formed to evaluate the richness and diversity. In this study, 
we assessed 9 alpha diversity indicators, including Sobs, 
ace, chao, shannon, simpson, shannoneven, simpsoneven, 
coverage, and PD indexes. Sobs, ace, and chao indices reflect 
community richness [36]; shannon, simpson, and PD reflect 
community diversity [36, 37]; shannoneven and simpson-
even reflect community evenness [37]; and coverage index 
reflects community coverage [38]. Our data showed that 
sobs, ace, chao, simpson, and PD indexes of patient samples 
were lower than those of control samples, while simpsone-
ven index was higher in the patient samples (Fig. 1A). These 
alpha diversity indices of each sample are listed in Table S3. 
Furthermore, rarefaction curves were built using alpha diver-
sity indices (Sobs and Shannon) for each sample to reflect 
the microbial diversity of each sample at different sequenc-
ing amounts. Here, the rarefaction curves tended to be flat, 
indicating that the amount of present sequencing data was 
sound and large enough to mirror the majority of microbial 
information in the feces samples (Fig. 1B, C).

Beta diversity analyses were conducted to figure out 
the similarity or difference in the community composi-
tion between controls and patients. UPGMA clustering 
tree analysis is a data visualization approach to reflect 
the degree of variation in microbial evolution in multiple 
samples [39]. UPGMA clustering tree analysis and related 
heatmap showed different degrees of discrepancies and 
similarities in the microbial composition among the sam-
ples, as the distances varied between every two samples 
(Fig. 2A, B). PCA reflects the discrepancies in various 
datasets on a two-dimensional coordinate plot through 

variance decomposition. The higher the similarity in the 
sample composition between two samples, the shorter the 
distance between them presented in the PCA plot [40]. 
According to PCA on ASV level, the vast majority of 
dots (samples) in patient group were separated from those 
in control group (PC1 = 16.6%; PC2 = 10.2%; Fig. 2C). 
PCoA is a data dimensionality reduction analysis method, 
allowing visualization of discrepancies between sam-
ples [41]. In this study, most of the dots in patient group 
were significantly isolated from those in control group 
in the pots of PCoA (PCoA1 = 15.9%; PCoA2 = 10.42%; 
Fig.  2D). NMDS is also a widely used visualization 
method to study sample differences [42]. NMDS on ASV 
level further demonstrated the differences in the overall 
microbial composition between normal subjects and CLC 
patients (Fig. 2E).

Microbial Community Structure Analyses

The bar diagram, heatmap, Circos diagram, and histogram 
of microbial average abundance were used to clarify the 
discrepancies in microbial community structure between 
control and patient fecal samples. The bar diagram showed 
variations in the relative abundance of different microbiota 
among these 40 fecal samples on the genus level (Fig. 3A). 
Bacteroides (a maximum of 59% in control, 38% in patient), 
Faecalibacterium (a maximum of 41% in control, 49% in 
patient), Blautia (a maximum of 31% in control, 24% in 
patient), and Escherichia. Shigella (a maximum of 58% 
in control, 51% in patient) were the major genera in these 
samples (Table S4). Besides, the heatmap illustrated that 
each genus was differently distributed in each sample, which 
further verified the findings of the bar diagram analysis 
(Fig. 3B). The Circos diagram directly reflected the distri-
bution of each genus in control and patient samples. In the 
Circos diagram, the overall abundance of some genera (e.g., 
Blautia) in patient samples was lower than that of control 
samples, while some genera (e.g., Escherichia. Shigella) 
showed higher overall abundance in patient samples (Fig-
ure S2). Through analysis of average microbial abundance, 
we found changed microbial abundance of some genera in 
patient samples compared with that of control samples. For 
instance, the average abundance of Bifidobacterium, Lach-
noclostridium, and Ruminococcus_gnavus_group was ele-
vated in patient samples compared with that in control sam-
ples (Fig. 4A). However, decreased average abundance of 
Christensenellaceae_R_7_group, Coprococcus, and Eubac-
terium_ventriosum_group was observed in patient samples 
by comparison with control samples (Fig. 4B).

Fig. 2  Altered beta diversity of gut microbiota in patients with CLC. 
A UPGMA clustering tree of the control and patient samples. The 
unweighted UniFrac distance was calculated using QIIME software 
(version 1.9.1) and visualized by “ape” R package. B Heatmap of the 
unweighted UniFrac distance among the control and patient samples, 
visualized by “pheatmap” R package. C PCA analysis of control and 
patient samples using “ropls” R package. D PCoA analysis of control 
and patient samples using “vegan” R package. E NMDS analysis of 
control and patient samples using “vegan” R package. Control group, 
n = 19; patient group, n = 21. CLC, compensatory liver cirrhosis; 
UPGMA, unweighted pair-group method with arithmetic mean; PCA, 
principal component analysis; PCoA, principal coordinate analysis; 
NMDS, nonmetric multidimensional scaling
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Urine Metabolomics Analysis

Metabolomics analysis was conducted on 40 urine samples 
(control: 20; patient: 20). Through UPLC-MS and data pre-
processing, 9,351 peaks were picked and 2,637 metabolites 
with specific names were identified (Table S5).

To assess the metabolic variations in CLC patients com-
pared with healthy individuals, PCA and OPLS-DA analyses 
were conducted on the patient and control urine samples. 
According to PCA analysis based on QC and testing sam-
ples, PC1 and PC2 accounted for 15.6% and 9.5% variables, 
respectively; significantly, the majority of patient samples 
were isolated from control samples (Fig. 5A). Besides, a 
notable separation tendency was observed between control 
and patient samples based on the OPLS-DA model (Fig. 5B). 
Further, the OPLS-DA model exhibited a favorable explan-
atory ability (R2Y = 0.876; p value < 0.01) and predictive 
capacity (Q2 = 0.703, p value < 0.01) through five-fold cross-
validation and permutation test (Fig. 5C).

Determination of Differential Metabolites

In the plot of VIP scores of the identified metabolites, 
the red dots denoted the metabolites with VIP > 1 and 
were regarded as potential biomarkers for CLC based on 
the OPLS-DA model (Fig. 6A). Notably, 841 differential 
metabolites were identified under the criteria of “VIP > 1; 
p < 0.05” and Bonferroni correction was used to adjust the 
p values (Table S6). The volcano plot showed 533 upregu-
lated metabolites (red dots) and 308 downregulated metabo-
lites (blue dots) (Fig. 6B). For example, the abundance of 
3-Oxovalproic acid and 2-(4′-Methylthio)butylmalate was 
markedly upregulated in patient samples compared with 
those in control samples (p < 0.05; Fig. 6C). Conversely, 
9-(2, 3-Dihydroxypropoxy)-9-Oxononanoic acid and 
methionine glutamate exhibited notable downregulated 
abundance in patient samples by comparison with those in 
control samples (p < 0.01; Fig. 6C). The distribution of the 
top 50 differential metabolites in all samples was displayed 
in the heatmap (Figure S3A).

Correlation and Pathway Analyses of Differential 
Metabolites

Also, Pearson correlation analysis was performed to fig-
ure out the correlations among these 841 differential 

metabolites. Results showed multiple relations among 
the top 50 differential metabolites (Figure S3B). Pathway 
enrichment analysis showed that the differential metabolites 
were concentrated in 36 pathways. The top 5 significantly 
enriched pathways included tryptophan metabolism, nico-
tinate and nicotinamide metabolism, purine metabolism, 
steroid hormone biosynthesis, and histidine metabolism 
(p < 0.05; Fig. 7). The corresponding networks of the top 5 
pathways are displayed in Figure S4.

Establishment and Validation of a Diagnostic Model 
for CLC

Through five-fold cross-validation, a 9-marker diagnos-
tic model for CLC was built. This model consisted of 7 
intestinal microorganisms (Blautia, Subdoligranulum, 
Agathobacter, norank_f_Eubacterium_coprostanoli-
genes_group, Butyricicoccus, Monoglobus, and Lachno-
spiraceae_UCG_004) and 2 metabolites (L-2,3-Dihydrodi-
picolinate and 5-Acetamidovalerate) (Table 1). Notably, 
ROC curves showed that the 9-marker model had optimal 
performance with favorable AUC values in both train-
ing set (AUC = 0.924, 95% CI = 0.834–1) and testing set 
(AUC = 0.95, 95% CI = 0.811–1) (specificity > 90%, sensi-
tivity > 90%; Fig. 8A). Furthermore, the heatmap showed 
various relations among these intestinal florae and metabo-
lites (Fig. 8B). For example, Agathobacter was positively 
related to L-2,3-Dihydrodipicolinate (r = 0.42), while nega-
tively related to 5-Acetamidovalerate (r = 0.18). Norank_f_
Eubacterium_coprostanoligenes_group was positively 
correlated with L-2,3-Dihydrodipicolinate (r = 0.2) and 
5-Acetamidovalerate (r = 0.05). In this model, the relative 
abundance of Subdoligranulum, Agathobacter, norank_f_
Eubacterium_coprostanoligenes_group, Butyricicoccus, and 
Lachnospiraceae_UCG_004 was increased in CLC patients, 
whereas Blautia and Monoglobus were decreased (Fig. 8C). 
Otherwise, the abundance of L-2,3-Dihydrodipicolinate was 
markedly elevated in CLC patients, while 5-Acetamidovaler-
ate was reduced (p < 0.05; Fig. 8D).

Discussion

LC is a primary cause of death and a common outcome of 
multiple progressive liver disorders, leading to more than 
one million deaths worldwide each year [43, 44]. In the 
present study, 16S ribosomal DNA (rDNA) sequencing and 
untargeted metabolomics were used to investigate the status 
of the gut microbiota and metabolome in patients with CLC. 
We observed differences in the intestinal microorganisms 
and urinary metabolites between healthy participants and 
patients with CLC. Finally, a 9-signature diagnostic model 
for CLC based on the differential gut and metabolites was 

Fig. 3  Changed microbial community composition in patients with 
CLC. A Bar diagram of the relative abundance of different microbial 
taxa on genus level of each control and patient sample, visualized by 
“ggplot2” R package. B Heatmap of the microbial community com-
position of each control and patient sample, visualized by “pheatmap” 
R package. Control group, n = 19; patient group, n = 21. CLC, com-
pensatory liver cirrhosis
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constructed and verified to be reliable. The diagnostic model 
comprised 7 intestinal microorganisms (Blautia, Subdol-
igranulum, Agathobacter, norank_f_Eubacterium_copros-
tanoligenes_group, Butyricicoccus, Monoglobus, and 
Lachnospiraceae_UCG_004) and 2 metabolites (L-2,3-Di-
hydrodipicolinate and 5-Acetamidovalerate).

Accumulating evidence indicates that disordered gut 
microbiome is implicated in the pathogenesis of LC [5, 9]. 
Currently, impaired gut-liver axis has been recognized as 

perturbed intestinal microbial structure, disrupted intesti-
nal barrier, and enhanced permeability of intestinal barrier 
and found in various liver disorders [10, 45]. In this study, 
we found that the microbial alpha diversity indexes (sobs, 
ace, chao, simpson, and PD) were decreased in patients with 
CLC compared with those in healthy participants. Moreover, 
the beta diversity analysis showed that the microbial compo-
sition in patients with CLC significantly varied from that in 
healthy participants. These results suggest that abnormalities 

Fig. 4  Altered microbial community composition in patients with 
CLC. A Box and whisker plots of elevated average abundance of 
microbial taxa in patient samples compared with that in control sam-
ples. Bifidobacterium, Lachnoclostridium, and Ruminococcus_gna-
vus_group were displayed. B Box and whisker plots of reduced aver-

age abundance of microbial taxa in patient samples compared with 
that in control samples. Box and whisker plots were visualized by 
“ggplot2” R package. Control group, n = 19; patient group, n = 21. 
Christensenellaceae_R_7_group, Coprococcus, and Eubacterium_
ventriosum_group were displayed. CLC, compensatory liver cirrhosis
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Fig. 5  Altered urine metabo-
lome in patients with CLC. A 
PCA analysis of urine samples 
in control and patient groups 
based on QC samples using 
“ggplot2” R package. Control 
group, n = 20; patient group, 
n = 20; QC, n = 5. B OPLS-DA 
analysis of urine samples in 
control and patient groups using 
“ropls” R package. Control 
group, n = 20; patient group, 
n = 20. C OPLS-DA permuta-
tion test in the negative and 
positive ion modes. CLC, com-
pensatory liver cirrhosis; PCA, 
principal component analysis; 
QC, quality control; OPLS-DA, 
orthogonal partial least-squares 
discrimination analysis
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in gut microbiome occurred in patients with CLC, which 
may conduce to the onset of LC. We found elevated abun-
dance of the key microorganisms, Subdoligranulum, Agatho-
bacter, norank_f_Eubacterium_coprostanoligenes_group, 
Butyricicoccus, and Lachnospiraceae_UCG_004 in patients 
with CLC compared with those in healthy participants. 
Oppositely, the abundance of Blautia and Monoglobus was 
reduced in patients with CLC.

Subdoligranulum, Butyricicoccus, and Agathobacter are 
the common producers of butyrate, a short-chain fatty acid 
(SCFA) [46, 47]. SCFAs, including acetate, propionate, 
and butyrate, are the major energy source for colonocytes, 
which have been proven to enhance the function of gut bar-
rier [48, 49]. The liver is exposed to inflammatory signaling 
by impaired gut barrier, resulting in liver injury [49]. Usu-
ally, SCFAs are thought to be advantageous to the body. 
However, a previous study indicated that increased SCFAs 
could enhance liver inflammation and fibrosis, conducing 
to the progression of hepatocellular carcinoma [50]. It was 
previously revealed that increased Agathobacter induced by 
protein intake could promote the development of hepatic 
encephalopathy in LC [51]. In terms of norank_f_Eubac-
terium_coprostanoligenes_group, little is known about its 
role in LC development. Nevertheless, a recent study showed 
that norank_f_Eubacterium_coprostanoligenes_group level 
was notably elevated in rheumatoid arthritis (RA) [52]. 
Further, it was revealed that lowering norank_f_Eubac-
terium_coprostanoligenes_group and the overall level of 
SCFAs could alleviate RA [52]. Thus, we can hypothesize 
the crosstalk between norank_f_Eubacterium_coprostanoli-
genes_group and SCFAs in the inflammatory mechanism 
in LC. Lachnospiraceae species are also involved in the 
production of butyrate. Previous data observed a rise in 
Lachnospiraceae_UCG_004 in human immunodeficiency 
virus (HIV) patients [53]. Moreover, HIV infection has 
been reported to contribute to LC [54]. Blautia are anaero-
bic bacteria with a probiotic feature, extensively found in 
mammalian feces and guts and they can produce acetate 
[55, 56]. Lately, a reduction in the abundance of Blautia has 
been found in patients with liver injury [57]. Monoglobus 
have been demonstrated to be implicated in dietary fiber 

fermentation and related to healthy communities [58]. A 
recent study has indicated that Monoglobus are specialized 
pectin-degrading bacteria linked with neutrophilic inflam-
mation and serious liver damage [59]. Downregulation of 
Monoglobus promotes systemic inflammation, as evidenced 
by recent studies [59, 60]. Taken together, these findings 
suggest that these potential bacteria markers may participate 
in the pathogenesis of early-stage LC by regulating SCFA 
production and inflammatory responses.

Increasing data indicate that aberrant gut microbiome is 
closely associated with metabolic alterations in LC devel-
opment [8, 11]. Abnormal gut-liver axis results in the 
transposition of microorganisms and their products, such 
as lipopolysaccharide and other metabolites into the portal 
bloodstream, straightly directed at the liver [45]. Through 
PCA and OPLS-DA analyses, we observed notable differ-
ences in the urine metabolome between CLC patients and 
healthy subjects. Specifically, we obtained 841 differential 
metabolites in CLC patients, including 533 metabolites 
upregulated and 308 downregulated.

Through pathway enrichment analysis, we observed 
that these differential metabolites were primarily concen-
trated in pathways, such as tryptophan metabolism, purine 
metabolism, and steroid hormone biosynthesis. Reduced 
tryptophan, elevated tryptophan-associated enzymes, and 
increased downstream metabolites are related to aggravated 
metabolic inflammation and fibrosis [45]. The tryptophan 
catabolic responses are mediated by intestinal bacteria, such 
as Ruminococcus gnavus [61]. A previous study demon-
strated tryptophan metabolism was impaired in LC patients, 
which might be implicated in the pathogenesis of LC [62]. 
Purine metabolism acts as a switch in various biological 
processes (e.g., energy generation and DNA/RNA synthe-
sis) [63]. Abnormal purine metabolism can conduce to the 
development of multiple disorders, especially hyperurice-
mia [64]. Lately, notable alterations in purine metabolic 
pathways have been observed in LC mice, indicating that 
dysregulated purine metabolism might give rise to LC [11]. 
Steroid hormones modulate a variety of biological mecha-
nisms, principally in the reproductive system and multiple 
metabolic pathways [65]. As the pivotal metabolic organ, 
the liver acts as a key part in the homeostasis of steroid hor-
mones [65]. Aberrant steroid hormone levels have been dem-
onstrated to be closely linked with several liver conditions. 
For example, hypoestrogenism can result in the occurrence 
of and progression of NAFLD in post-menopausal females 
[66]. Otherwise, a previous study revealed that lacking of 
the major androgen, testosterone, might lead to sarcopenia 
in male patients with LC [67]. To sum up, these data indicate 
the involvement of various disturbed metabolic pathways in 
the onset and development of LC.

In terms of the metabolite markers, the abundance of 
L-2,3-Dihydrodipicolinate was increased in CLC patients, 

Fig. 6  Identification of differential metabolites in patients with CLC. 
A Plot of VIP scores of the identified metabolites. Red dots denote 
the metabolites with VIP > 1; gray dots denote the metabolites with 
VIP < 1. B Volcano plot of differential metabolites. Red dots denote 
upregulated differential metabolites; blue dots denote downregulated 
differential metabolites. VIP > 1; p < 0.05. C Box and whisker plots 
of the abundance of differential metabolites in control and patient 
samples. “ggplot2” R package was used for visualization. Control 
group, n = 20; patient group, n = 20. 3-Oxovalproic acid, 2-(′-meth-
ylthio)butylmalate, 9-(2, 3-dihydroxypropoxy)-9-oxononanoic acid, 
and methionine glutamate were displayed. *p < 0.05, **p < 0.01, and 
***p < 0.001 vs control group. CLC, compensatory liver cirrhosis; 
VIP, variable importance in projection

◂



 Molecular Biotechnology

1 3

Fig. 7  Pathway enrichment analysis of differential metabolites in CLC patients using MetaboAnalyst software. CLC, compensatory liver cirrho-
sis

Table 1  Parameters of the 
optimal diagnostic model for 
CLC

Marker Coef

(Intercept) 0.095743656
g_Blautia g_Blautia −3.111189964
g_Subdoligranulum g_Subdoligranulum 1.135761231
g_Agathobacter g_Agathobacter 1.495834703
g_norank_f_Eubacterium_coprostanoli-

genes_group
g_norank_f_Eubacterium_coprostanoli-

genes_group
0.750636129

g_Butyricicoccus g_Butyricicoccus 5.608887244
g_Monoglobus g_Monoglobus −2.592074156
g_Lachnospiraceae_UCG_004 g_Lachnospiraceae_UCG_004 2.253676077
metab_403 L-2,3-Dihydrodipicolinate 0.136301022
metab_7496 5-Acetamidovalerate –0.131219474
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Fig. 8  Construction and validation of the diagnostic model for CLC. 
A ROC analysis in the training and testing sets using “pROC” R 
package. B Heatmap of correlation analysis of the 9 diagnostic bio-
markers for CLC, visualized by “corrplot” R package. C Box and 
whisker plots of the average abundance of the 7 gut microbiota bio-
markers in control and patient samples, visualized by “ggplot2” R 

package. Control group, n = 19; patient group, n = 21. D Box and 
whisker plots of the abundance of the 2 metabolite biomarkers in con-
trol and patient samples. Control group, n = 20; patient group, n = 20. 
*p < 0.05 and ***p < 0.001 vs control group. CLC, compensatory liver 
cirrhosis; ROC, receiver operating characteristic
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while 5-Acetamidovalerate was decreased. To our knowl-
edge, L-2,3-Dihydrodipicolinate is a member of the class of 
alpha amino acids and derivatives and a major metabolite, 
found in all living organisms, from bacteria to humans. How-
ever, few investigations regarding l-2,3-Dihydrodipicolinate 
have been carried out. Otherwise, 5-Acetamidovalerate 
belongs to the straight chain fatty acid family, which can be 
formed by the enzymatic reduction of 5-aminopentanoate or 
enzymatic oxidation of 2-keto-6-acetamidocaproate (http:// 
www. hmdb. ca/). Accumulating evidence indicates that dis-
rupted fatty acid levels conduce to liver diseases, includ-
ing LC [68, 69]. A previous investigation found that altered 
5-Acetamidovalerate was associated with inflammation in 
aging mice, and it was positively related to Ruminococcus 
[70]. These results suggest that the onset and development of 
LC may be attributed to the abnormal metabolism of alpha 
amino acids and straight chain fatty acids.

Nonetheless, this study has some limitations need to be 
paid attention to. First, a larger number of human subjects 
are required to validate the sequencing and metabolomics 
analyses. Second, the crosstalk between microbiome and 
metabolome in CLC should be thoroughly analyzed. Third, 
the potential diagnostic model for CLC remains to be clini-
cally confirmed.

Conclusion

In this study, we determined a 9-signature diagnostic model 
for CLC, including Blautia, Subdoligranulum, Agatho-
bacter, norank_f_Eubacterium_coprostanoligenes_group, 
Butyricicoccus, Monoglobus, Lachnospiraceae_UCG_004, 
L-2,3-Dihydrodipicolinate, and 5-Acetamidovalerate. 
Besides, abnormal tryptophan, nicotinate and nicotinamide, 
purine, and histidine metabolism, and steroid hormone bio-
synthesis were implicated in the pathogenesis of CLC. This 
study may provide a novel strategy for early diagnosis and 
treatment of LC and a basis for the discovery of drug target-
ing microbiome or metabolism for CLC.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12033- 023- 00922-9.

Acknowledgements Not applicable.

Author Contributions YC participated in the conceptualization, data 
curation, formal analysis, investigation, funding acquisition, and writ-
ing of the original draft. SC participated in the conceptualization, 
data curation, methodology, software, visualization, and validation. 
CX participated in the methodology, data curation, formal analysis, 
and validation. SC participated in the methodology, data curation, for-
mal analysis, and validation. JB participated in the formal analysis, 
investigation, supervision, and validation. JW participated in the data 
curation, formal analysis, and investigation. JW participated in the con-
ceptualization, project administration, resources, supervision, funding 

acquisition, and writing, reviewing, and editing of the manuscript. All 
authors read and approved the final manuscript.

Funding This work was supported by [Public Welfare Project of the 
Science and Technology Agency, Zhejiang Province] under grant 
[number LGF19H030001] and [Medical and Health Research Project 
of Zhejiang Province] under grant [number 2021ZH057].

Data Availability The data used to support the findings of this study are 
available from the corresponding author upon request.

Declarations 

Conflict of Interest The authors declare that there is no conflict of in-
terest regarding the publication of this paper.

Ethics Approval All participants signed written informed consent, and 
the experimental procedures were authorized by the Ethics Committee 
of Tiantai People’s Hospital of Zhejiang Province (TYLL2019-06). 
This study was in line with the Declaration of Helsinki.

Informed Consent Informed consent was obtained from all individual 
participants included in the study.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Wilson, R., & Williams, D. M. (2022). Cirrhosis. Medical Clin-
ics of North America, 106, 437–446.

 2. Rashid, A., Gupta, A., Adiamah, A., West, J., Grainge, M., & 
Humes, D. J. (2022). Mortality following appendicectomy in 
patients with liver cirrhosis: A systematic review and meta-
analysis. World Journal of Surgery, 46, 531–541.

 3. Rojas-Acuña, D., Polo-Samillan, N., Vasquez-Chavesta, A. Z., 
Escalante-Arias, C., Rios-Perez, C. J., & Toro-Huamanchumo, 
C. J. (2022). Morbimortality associated with liver cirrhosis in 
Peru: an ecological analysis for the period of 2004–2016. Inter-
national Journal of Environmental Research Public Health, 19, 
9036.

 4. Lurje, I., Hammerich, L., & Tacke, F. (2020). Dendritic cell and 
T cell crosstalk in liver fibrogenesis and hepatocarcinogenesis: 
implications for prevention and therapy of liver cancer. Interna-
tional Journal of Molecular Sciences, 21, 7378.

 5. Fan, Y., Li, Y., Chu, Y., Liu, J., Cui, L., & Zhang, D. (2021). 
Toll-like receptors recognize intestinal microbes in liver cirrhosis. 
Frontiers in Immunology, 12, 608498.

 6. Ou, M., Guo, X., Li, Y., Zhang, H., Liu, T., Liu, Q., et al. (2022). 
Differences in anxiety among patients with liver cirrhosis with dif-
ferent compensation abilities. American Journal of Translational 
Research, 14, 5187–5194.

http://www.hmdb.ca/
http://www.hmdb.ca/
https://doi.org/10.1007/s12033-023-00922-9
http://creativecommons.org/licenses/by/4.0/


Molecular Biotechnology 

1 3

 7. Xie, Y., He, C., & Wang, W. (2022). A potential novel inflam-
mation biomarker for predicting the prognosis of decompensated 
liver cirrhosis. Annals of Medicine, 54, 3201–3210.

 8. Shao, L., Ling, Z., Chen, D., Liu, Y., Yang, F., & Li, L. (2018). 
Disorganized gut microbiome contributed to liver cirrhosis pro-
gression: A meta-omics-based study. Frontiers in Microbiology, 
9, 3166.

 9. Lee, N. Y., & Suk, K. T. (2020). The role of the gut microbiome 
in liver cirrhosis treatment. International Journal of Molecular 
Sciences, 22, 199.

 10. Wang, R., Tang, R., Li, B., Ma, X., Schnabl, B., & Tilg, H. 
(2021). Gut microbiome, liver immunology, and liver diseases. 
Cellular and Molecular Immunology, 18, 4–17.

 11. Xiong, Y., Wu, L., Shao, L., Wang, Y., Huang, Z., Huang, X., 
et al. (2021). Dynamic alterations of the gut microbial pyrimi-
dine and purine metabolism in the development of liver cirrho-
sis. Frontiers in Molecular Biosciences, 8, 811399.

 12. Li, J., Cao, Y., Lu, R., Li, H., Pang, Y., Fu, H., et al. (2020). 
Integrated fecal microbiome and serum metabolomics analy-
sis reveals abnormal changes in rats with immunoglobulin a 
nephropathy and the intervention effect of Zhen Wu Tang. Fron-
tiers in Pharmacology, 11, 606689.

 13. Philips, C. A., Augustine, P., Yerol, P. K., Ramesh, G. N., 
Ahamed, R., Rajesh, S., et al. (2020). Modulating the intestinal 
microbiota: therapeutic opportunities in liver disease. Journal of 
Clinical and Translational Hepatology, 8, 87–99.

 14. Liu, Y., Jin, Y., Li, J., Zhao, L., Li, Z., Xu, J., et al. (2018). Small 
bowel transit and altered gut microbiota in patients with liver cir-
rhosis. Frontiers in Physiology, 9, 470.

 15. Zhao, L., Wang, C., Peng, S., Zhu, X., Zhang, Z., Zhao, Y., et al. 
(2022). Pivotal interplays between fecal metabolome and gut 
microbiome reveal functional signatures in cerebral ischemic 
stroke. Journal of Translational Medicine, 20, 459.

 16. Hu, Y., Chen, J., Xu, Y., Zhou, H., Huang, P., Ma, Y., et al. 
(2020). Alterations of gut microbiome and metabolite profil-
ing in mice infected by Schistosoma japonicum. Frontiers in 
Immunology, 11, 569727.

 17. Bauset, C., Gisbert-Ferrándiz, L., & Cosín-Roger, J. (2021). 
Metabolomics as a promising resource identifying potential bio-
markers for inflammatory bowel disease. Journal of Clinical 
Medicine, 10, 622.

 18. Xu, X. Y., Ding, H. G., Li, W. G., Xu, J. H., Han, Y., Jia, J. D., 
et al. (2020). Chinese guidelines on the management of liver 
cirrhosis (abbreviated version). World Journal of Gastroenterol-
ogy, 26, 7088–7103.

 19. Wang, Z., Cai, Z., Ferrari, M. W., Liu, Y., Li, C., Zhang, T., 
et al. (2021). The correlation between gut microbiota and serum 
metabolomic in elderly patients with chronic heart failure. 
Mediators of Inflammation, 2021, 5587428.

 20. Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast 
all-in-one FASTQ preprocessor. Bioinformatics, 34, i884–i890.

 21. Li, H., & Durbin, R. (2010). Fast and accurate long-read align-
ment with burrows-wheeler transform. Bioinformatics, 26, 
589–595.

 22. Magoč, T., & Salzberg, S. L. (2011). FLASH: Fast length adjust-
ment of short reads to improve genome assemblies. Bioinformat-
ics, 27, 2957–2963.

 23. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., John-
son, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sam-
ple inference from illumina amplicon data. Nature Methods, 13, 
581–583.

 24. Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., 
Sun, Y., et al. (2014). Ribosomal database project: data and tools 
for high throughput rRNA analysis. Nucleic Acids Research, 42, 
D633-642.

 25. Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences 
from microbial amplicon reads. Nature Methods, 10, 996–998.

 26. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, 
R. (2011). UCHIME improves sensitivity and speed of chimera 
detection. Bioinformatics, 27, 2194–2200.

 27. Lawley, B., & Tannock, G. W. (2017). Analysis of 16S rRNA gene 
amplicon sequences using the QIIME software package. Methods 
in Molecular Biology, 1537, 153–163.

 28. Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, 
H., et al. (2022). HMDB 5.0: the human metabolome database for 
2022. Nucleic Acids Research, 50, D622-d631.

 29. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, 
K. (2017). KEGG: New perspectives on genomes, pathways, dis-
eases and drugs. Nucleic Acids Research, 45, D353-d361.

 30. Wang, X., & Zhi, Y. (2022). Altered urinary metabolomics in 
hereditary angioedema. Metabolites, 12, 1140.

 31. Yang, B., Zhang, C., Cheng, S., Li, G., Griebel, J., & Neuhaus, J. 
(2021). Novel metabolic signatures of prostate cancer revealed by 
(1)H-NMR metabolomics of urine. Diagnostics (Basel), 11, 149.

 32. Wang, R., Kang, H., Zhang, X., Nie, Q., Wang, H., Wang, C., et al. 
(2022). Urinary metabolomics for discovering metabolic biomark-
ers of bladder cancer by UPLC-MS. BMC Cancer, 22, 214.

 33. Chong, J., Wishart, D. S., & Xia, J. (2019). Using MetaboAnalyst 
4.0 for comprehensive and integrative metabolomics data analysis. 
Current Protocols in Bioinformatics, 68, e86.

 34. Gao, J., Tarcea, V. G., Karnovsky, A., Mirel, B. R., Weymouth, T. 
E., Beecher, C. W., et al. (2010). Metscape: A cytoscape plug-in 
for visualizing and interpreting metabolomic data in the context 
of human metabolic networks. Bioinformatics, 26, 971–973.

 35. López-Díaz, J. Ó. M., Méndez-González, J., López-Serrano, P. M., 
Sánchez-Pérez, F. J., Méndez-Encina, F. M., Mendieta-Oviedo, 
R., et al. (2022). Dummy regression to predict dry fiber in Agave 
lechuguilla Torr. in two large-scale bioclimatic regions in Mexico. 
PLoS ONE, 17, e0274641.

 36. Liu, W., Zhang, R., Shu, R., Yu, J., Li, H., Long, H., et al. (2020). 
Study of the relationship between microbiome and colorectal can-
cer susceptibility using 16SrRNA sequencing. BioMed Research 
International, 2020, 7828392.

 37. Li, P., Shuai, P., Shen, S., Zheng, H., Sun, P., Zhang, R., et al. 
(2023). Perturbations in gut microbiota composition in patients 
with polycystic ovary syndrome: A systematic review and meta-
analysis. BMC Medicine, 21, 302.

 38. Zhu, D., Ma, Y., Ding, S., Jiang, H., & Fang, J. (2018). Effects of 
melatonin on intestinal microbiota and oxidative stress in colitis 
mice. BioMed Research International, 2018, 2607679.

 39. Lin, Y.-S., Lin, C.-Y., Hung, C.-L., Chung, Y.-C., & Lee, K.-Z. 
(2015). GPU-UPGMA: High-performance computing for 
UPGMA algorithm based on graphics processing units. Concur-
rency and Computation: Practice and Experience, 27, 3403–3414.

 40. Li, C., Zhou, K., Xiao, N., Peng, M., & Tan, Z. (2022). The effect 
of qiweibaizhu powder crude polysaccharide on antibiotic-associ-
ated diarrhea mice is associated with restoring intestinal mucosal 
bacteria. Frontiers in Nutrition, 9, 952647.

 41. Shi, Y., Zhang, L., Do, K. A., Peterson, C. B., & Jenq, R. R. 
(2020). aPCoA: Covariate adjusted principal coordinates analysis. 
Bioinformatics, 36, 4099–4101.

 42. Gong, W., Zhu, Y., Shi, X., Zhang, W., & Wen, P. (2021). Influ-
ence of tissue type on the bacterial diversity and community in 
pork bacon. Frontiers in Microbiology, 12, 799332.

 43. Kwak, K. A., Cho, H. J., Yang, J. Y., & Park, Y. S. (2018). Current 
perspectives regarding stem cell-based therapy for liver cirrhosis. 
Canadian Journal of Gastroenterology and Hepatology, 2018, 
4197857.

 44. Agarwal, R., & Wisnu, W. (2022). The effect of statin therapy on 
mortality in adult patients with liver cirrhosis: An evidence-based 
case report. Acta Medica Indonesiana, 54, 491–499.



 Molecular Biotechnology

1 3

 45. Teunis, C., Nieuwdorp, M., & Hanssen, N. (2022). Interactions 
between tryptophan metabolism, the gut microbiome and the 
immune system as potential drivers of non-alcoholic fatty liver 
disease (NAFLD) and metabolic diseases. Metabolites, 12, 514.

 46. Gradisteanu Pircalabioru, G., Liaw, J., Gundogdu, O., Corcion-
ivoschi, N., Ilie, I., Oprea, L., et al. (2022). Effects of the lipid pro-
file, type 2 diabetes and medication on the metabolic syndrome-
associated gut microbiome. International Journal of Molecular 
Sciences, 23, 7509.

 47. Iversen, K. N., Dicksved, J., Zoki, C., Fristedt, R., Pelve, E. A., 
Langton, M., et al. (2022). The effects of high fiber rye, compared 
to refined wheat, on gut microbiota composition, plasma short 
chain fatty acids, and implications for weight loss and metabolic 
risk factors (the RyeWeight Study). Nutrients, 14, 1669.

 48. Vallianou, N., Christodoulatos, G. S., Karampela, I., Tsilingiris, 
D., Magkos, F., Stratigou, T., et al. (2021). Understanding the 
role of the gut microbiome and microbial metabolites in non-
alcoholic fatty liver disease: current evidence and perspectives. 
Biomolecules, 12, 1–56.

 49. Pohl, K., Moodley, P., & Dhanda, A. (2022). The effect of increas-
ing intestinal short-chain fatty acid concentration on gut perme-
ability and liver injury in the context of liver disease: A system-
atic review. Journal of Gastroenterology and Hepatology, 37, 
1498–1506.

 50. Singh, V., Yeoh, B. S., Chassaing, B., Xiao, X., Saha, P., Aguilera 
Olvera, R., et al. (2018). Dysregulated microbial fermentation of 
soluble fiber induces cholestatic liver cancer. Cell, 175, 679-694.
e622.

 51. Hussain, S. K., Dong, T. S., Agopian, V., Pisegna, J. R., Durazo, 
F. A., Enayati, P., et al. (2020). Dietary protein, fiber and coffee 
are associated with small intestine microbiome composition and 
diversity in patients with liver cirrhosis. Nutrients, 12, 1395.

 52. He, Y., Cheng, B., Guo, B. J., Huang, Z., Qin, J. H., Wang, Q. 
Y., et al. (2023). Metabonomics and 16S rRNA gene sequencing 
to study the therapeutic mechanism of Danggui Sini decoction 
on collagen-induced rheumatoid arthritis rats with Cold Bi syn-
drome. Journal of Pharmaceutical and Biomedical Analysis, 222, 
115109.

 53. Nascimento, W. M., Machiavelli, A., Ferreira, L. G. E., Cruz 
Silveira, L., de Azevedo, S. S. D., Bello, G., et al. (2021). Gut 
microbiome profiles and associated metabolic pathways in HIV-
infected treatment-naïve patients. Cells, 10, 385.

 54. Adekunle, R. O., DeSilva, K., & Cartwright, E. J. (2020). Hepa-
titis C care continuum in a human immunodeficiency virus (HIV) 
positive cohort: data from the HIV Atlanta Veterans Affairs 
Cohort Study. Open Forum Infectious Diseases, 7, ofaa085.

 55. Liu, X., Mao, B., Gu, J., Wu, J., Cui, S., Wang, G., et al. (2021). 
Blautia-a new functional genus with potential probiotic proper-
ties? Gut Microbes, 13, 1–21.

 56. Ryvchin, R., Dubinsky, V., Rabinowitz, K., Wasserberg, N., 
Dotan, I., & Gophna, U. (2021). Alteration in urease-producing 
bacteria in the gut microbiomes of patients with inflammatory 
bowel diseases. Journal of Crohn’s and Colitis, 15, 2066–2077.

 57. Rodriguez-Diaz, C., Taminiau, B., García-García, A., Cueto, A., 
Robles-Díaz, M., Ortega-Alonso, A., et al. (2022). Microbiota 
diversity in nonalcoholic fatty liver disease and in drug-induced 
liver injury. Pharmacological Research, 182, 106348.

 58. Liang, X. Q., Mai, P. Y., Qin, H., Li, S., Ou, W. J., Liang, J., 
et al. (2022). Integrated 16S rRNA sequencing and metabolomics 
analysis to investigate the antidepressant role of Yang-Xin-Jie-
Yu decoction on microbe-gut-metabolite in chronic unpredictable 
mild stress-induced depression rat model. Frontiers in Pharmacol-
ogy, 13, 972351.

 59. Li, R., Yi, X., Yang, J., Zhu, Z., Wang, Y., Liu, X., et al. (2022). 
Gut microbiome signatures in the progression of hepatitis B virus-
induced liver disease. Frontiers in Microbiology, 13, 916061.

 60. Dang, J. T., Mocanu, V., Park, H., Laffin, M., Hotte, N., Karmali, 
S., et al. (2022). Roux-en-Y gastric bypass and sleeve gastrectomy 
induce substantial and persistent changes in microbial communi-
ties and metabolic pathways. Gut Microbes, 14, 2050636.

 61. Ganesan, R., Jeong, J. J., Kim, D. J., & Suk, K. T. (2022). Recent 
trends of microbiota-based microbial metabolites metabolism in 
liver disease. Frontiers in Medicine (Lausanne), 9, 841281.

 62. Wei, X., Jiang, S., Zhao, X., Li, H., Lin, W., Li, B., et al. (2016). 
Community-metabolome correlations of gut microbiota from 
child-turcotte-pugh of A and B patients. Frontiers in Microbiol-
ogy, 7, 1856.

 63. Huang, Z., Xie, N., Illes, P., Di Virgilio, F., Ulrich, H., Semyanov, 
A., et al. (2021). From purines to purinergic signalling: Molecular 
functions and human diseases. Signal Transduction and Targeted 
Therapy, 6, 162.

 64. Yin, H., Liu, N., & Chen, J. (2022). The role of the intestine in 
the development of hyperuricemia. Frontiers in Immunology, 13, 
845684.

 65. Charni-Natan, M., Aloni-Grinstein, R., Osher, E., & Rotter, V. 
(2019). Liver and steroid hormones-can a touch of p53 make a 
difference? Front Endocrinol (Lausanne), 10, 374.

 66. Robeva, R., Mladenović, D., Vesković, M., Hrnčić, D., Bjekić-
Macut, J., Stanojlović, O., et al. (2021). The interplay between 
metabolic dysregulations and non-alcoholic fatty liver disease in 
women after menopause. Maturitas, 151, 22–30.

 67. Moctezuma-Velázquez, C., Low, G., Mourtzakis, M., Ma, M., 
Burak, K. W., Tandon, P., et al. (2018). Association between low 
testosterone levels and sarcopenia in cirrhosis: A cross-sectional 
study. Annals of Hepatology, 17, 615–623.

 68. Chu, X., Jin, Q., Chen, H., Wood, G. C., Petrick, A., Strodel, 
W., et al. (2018). CCL20 is up-regulated in non-alcoholic fatty 
liver disease fibrosis and is produced by hepatic stellate cells in 
response to fatty acid loading. Journal of Translational Medicine, 
16, 108.

 69. Hliwa, A., Ramos-Molina, B., Laski, D., Mika, A., & Sledzinski, 
T. (2021). The role of fatty acids in non-alcoholic fatty liver dis-
ease progression: An update. International Journal of Molecular 
Sciences, 22, 6900.

 70. Zhang, J., Chen, Z., Yu, H., Lu, Y., Yu, W., Miao, M., et al. 
(2021). Anti-aging effects of a functional food via the action of 
gut microbiota and metabolites in aging mice. Aging (Albany NY), 
13, 17880–17900.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Identification of Diagnostic Biomarkers for Compensatory Liver Cirrhosis Based on Gut Microbiota and Urine Metabolomics Analyses
	Abstract
	Introduction
	Materials and Methods
	Human Subjects and Clinical Samples
	16S rDNA Sequencing
	Bioinformatics Analyses of 16S rDNA Sequencing
	Urine Sample Preparation
	Liquid Chromatography-Mass Spectrometry (LC–MS) Analysis
	Urine Metabolomics Analyses
	Construction and Verification of Diagnostic Model for CLC
	Statistical Analysis

	Results
	16S rDNA Sequencing Data Analyses
	Alpha and Beta Diversity Analyses
	Microbial Community Structure Analyses
	Urine Metabolomics Analysis
	Determination of Differential Metabolites
	Correlation and Pathway Analyses of Differential Metabolites
	Establishment and Validation of a Diagnostic Model for CLC

	Discussion
	Conclusion
	Anchor 23
	Acknowledgements 
	References


