Skip to main content
Log in

Generation of Zebrafish Models of Human Retinitis Pigmentosa Diseases Using CRISPR/Cas9-Mediated Gene Editing System

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Generating animal models can explore the role of new candidate genes in causing diseases and the pathogenicity of a specific mutation in the underlying genes. These animals can be used to identify new pharmaceutical or genetic therapeutic methods. In the present experiment, we developed a rpe65a knock out (KO) zebrafish as a retinitis pigmentosa (RP) disease model. Using the CRISPR/Cas9 system, the rpe65a gene was KO in zebrafish. Two specific single-guide RNAs (sgRNAs) were designed for the zebrafish rpe65a gene. SgRNAs were cloned into the DR274 plasmid and synthesized using in vitro transcription method. The efficiency of Ribonucleoprotein (synthesized sgRNA and recombinant Cas9) was evaluated by in vitro digestion experiment. Ribonucleoprotein complexes were microinjected into one to four-celled eggs of the TU zebrafish strain. The effectiveness of sgRNAs in KO the target gene was determined using the Heteroduplex mobility assay (HMA) and Sanger sequencing. Online software was used to determine the percent of mosaicism in the sequenced samples. By examining the sequences of the larvae that showed a mobility shift in the HMA method, the presence of indels in the binding region of sgRNAs was confirmed, so the zebrafish model for RP disease established. Zebrafish is an ideal animal model for the functional study of various diseases involving different genes and mutations and used for evaluating different therapeutic approaches in human diseases. This study presents the production of rpe65a gene KO zebrafish models using CRISPR/Cas9 technology. This model can be used in RP pathophysiology studies and preclinical gene therapy experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are not publicly available but are available from the corresponding author upon request.

References

  1. Mukherjee, P., Roy, S., Ghosh, D., & Nandi, S. (2022). Role of animal models in biomedical research: A review. Laboratory Animal Research, 38(1), 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Latta, L., Figueiredo, F., Ashery-Padan, R., Collinson, J., Daniels, J., Ferrari, S., et al. (2021). Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions. The Ocular Surface, 22, 245–266.

    Article  CAS  PubMed  Google Scholar 

  3. Khan, F. R., & Alhewairini, S. S. (2018). Zebrafish (Danio rerio) as a model organism. Current Trends in Cancer Management, 27, 3–18.

    Google Scholar 

  4. Meyers, J. R. (2018). Zebrafish: Development of a vertebrate model organism. Current Protocols Essential Laboratory Techniques, 16(1), e19.

    Article  Google Scholar 

  5. Richardson, R., Tracey-White, D., Webster, A., & Moosajee, M. (2017). The zebrafish eye—A paradigm for investigating human ocular genetics. Eye, 31(1), 68–86.

    Article  CAS  PubMed  Google Scholar 

  6. Schmitt, E. A., & Dowling, J. E. (1999). Early retinal development in the zebrafish, Danio rerio: Light and electron microscopic analyses. Journal of Comparative Neurology., 404(4), 515–536.

    Article  CAS  PubMed  Google Scholar 

  7. Gestri, G., Link, B. A., & Neuhauss, S. C. (2012). The visual system of zebrafish and its use to model human ocular diseases. Developmental Neurobiology, 72(3), 302–327.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Veleri, S., Lazar, C. H., Chang, B., Sieving, P. A., Banin, E., & Swaroop, A. (2015). Biology and therapy of inherited retinal degenerative disease: Insights from mouse models. Disease Models & Mechanisms, 8(2), 109–129.

    Article  Google Scholar 

  9. Min, K.-T., & Chang, K. (2011). Animal models of human disease. Academic Press.

    Google Scholar 

  10. Cassar, S., Dunn, C., & Ramos, M. F. (2021). Zebrafish as an animal model for ocular toxicity testing: A review of ocular anatomy and functional assays. Toxicologic Pathology, 49(3), 438–454.

    Article  CAS  PubMed  Google Scholar 

  11. Raghupathy, R., Patnaik, S., & Shu, X. (2013). Transgenic zebrafish models for understanding retinitis pigmentosa. Clon Transgen, 2(110), 2.

    Google Scholar 

  12. Salmaninejad, A., Bedoni, N., Ravesh, Z., Quinodoz, M., Shoeibi, N., Mojarrad, M., et al. (2020). Whole exome sequencing and homozygosity mapping reveals genetic defects in consanguineous Iranian families with inherited retinal dystrophies. Scientific Reports, 10(1), 19413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Comander, J., Weigel-DiFranco, C., Maher, M., Place, E., Wan, A., Harper, S., et al. (2017). The genetic basis of pericentral retinitis pigmentosa—A form of mild retinitis pigmentosa. Genes, 8(10), 256.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Santhanam, A., Shihabeddin, E., Atkinson, J. A., Nguyen, D., Lin, Y.-P., & O’Brien, J. (2020). A zebrafish model of retinitis pigmentosa shows continuous degeneration and regeneration of rod photoreceptors. Cells, 9(10), 2242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhardwaj, A., Yadav, A., Yadav, M., & Tanwar, M. (2022). Genetic dissection of non-syndromic retinitis pigmentosa. Indian Journal of Ophthalmology, 70(7), 2355–2385.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rehman, A. U., Sepahi, N., Bedoni, N., Ravesh, Z., Salmaninejad, A., Cancellieri, F., et al. (2021). Whole exome sequencing in 17 consanguineous Iranian pedigrees expands the mutational spectrum of inherited retinal dystrophies. Scientific Reports, 11(1), 19332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nicoletti, A., Wong, D. J., Kawase, K., Gibson, L. H., Yang-Feng, T. L., Richards, J. E., et al. (1995). Molecular characterization of the human gene encoding an abundant 61 kDa protein specific to the retinal pigment epithelium. Human Molecular Genetics, 4(4), 641–649.

    Article  CAS  PubMed  Google Scholar 

  18. Cai, X., Conley, S. M., & Naash, M. I. (2009). RPE65: Role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genetics, 30(2), 57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salmaninejad, A., Pourali, G., Shahini, A., Darabi, H., & Azhdari, S. (2022). MicroRNA and exosome in retinal-related diseases: Their roles in the pathogenesis and diagnosis. Combinatorial Chemistry & High Throughput Screening, 25(2), 211–228.

    Article  CAS  Google Scholar 

  20. Salmaninejad, A., Motaee, J., Farjami, M., Alimardani, M., Esmaeilie, A., & Pasdar, A. (2019). Next-generation sequencing and its application in diagnosis of retinitis pigmentosa. Ophthalmic Genetics, 40(5), 393–402.

    Article  PubMed  Google Scholar 

  21. Schonthaler, H. B., Lampert, J. M., Isken, A., Rinner, O., Mader, A., Gesemann, M., et al. (2007). Evidence for RPE65-independent vision in the cone-dominated zebrafish retina. European Journal of Neuroscience, 26(7), 1940–1949.

    Article  PubMed  Google Scholar 

  22. Prado, D. A., Acosta-Acero, M., & Maldonado, R. S. (2020). Gene therapy beyond luxturna: A new horizon of the treatment for inherited retinal disease. Current Opinion in Ophthalmology, 31(3), 147–154.

    Article  PubMed  Google Scholar 

  23. Hu, M. L., Edwards, T. L., O’Hare, F., Hickey, D. G., Wang, J.-H., Liu, Z., et al. (2021). Gene therapy for inherited retinal diseases: Progress and possibilities. Clinical and Experimental Optometry, 104(4), 444–454.

    Article  PubMed  Google Scholar 

  24. Shankaran, S. S., Dahlem, T. J., Bisgrove, B. W., Yost, H. J., & Tristani-Firouzi, M. (2017). CRISPR/Cas9-directed gene editing for the generation of loss-of-function mutants in high-throughput zebrafish F0 screens. Current Protocols in Molecular Biology, 119(1), 31–39.

    Article  PubMed Central  Google Scholar 

  25. Kawahara, A. (2017). CRISPR/Cas9-mediated targeted knockin of exogenous reporter genes in zebrafish. In Genome editing in animals: Methods and protocols, pp. 165–173.

  26. Westerfield, M. (2007). The zebrafish book: A guide for the laboratory use of zebrafish Danio (Brachydanio) rerio. Institute of Neuroscience, University of Oregon.

    Google Scholar 

  27. Williams, S. Y., & Renquist, B. J. (2016). High throughput Danio rerio energy expenditure assay. JoVE (Journal of Visualized Experiments)., 107, e53297.

    Google Scholar 

  28. Foster, S. D., Glover, S. R., Turner, A. N., Chatti, K., & Challa, A. K. (2019). A mixing heteroduplex mobility assay (mHMA) to genotype homozygous mutants with small indels generated by CRISPR-Cas9 nucleases. Methods X, 6, 1–5.

    CAS  Google Scholar 

  29. Brinkman, E. K., Kousholt, A. N., Harmsen, T., Leemans, C., Chen, T., Jonkers, J., et al. (2018). Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Research, 46(10), e58.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li, Y., Jia, Z., Zhang, S., & He, X. (2021). Progress in gene-editing technology of zebrafish. Biomolecules, 11(9), 1300.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kroll, F., Powell, G. T., Ghosh, M., Gestri, G., Antinucci, P., Hearn, T. J., et al. (2021). A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife, 10, e59683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kalueff, A. V., Stewart, A. M., & Gerlai, R. (2014). Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences, 35(2), 63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanungo, J., Cuevas, E., Ali, S., & Paule, M. G. (2014). Zebrafish model in drug safety assessment. Current Pharmaceutical Design, 20(34), 5416–5429.

    Article  CAS  PubMed  Google Scholar 

  34. Guyon, J. R., Steffen, L. S., Howell, M. H., Pusack, T. J., Lawrence, C., & Kunkel, L. M. (2007). Modeling human muscle disease in zebrafish. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1772(2), 205–215.

    Article  CAS  PubMed  Google Scholar 

  35. Gore, A. V., Monzo, K., Cha, Y. R., Pan, W., & Weinstein, B. M. (2012). Vascular development in the zebrafish. Cold Spring Harbor Perspectives in Medicine, 2(5), a006684.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lieschke, G. J., Oates, A. C., Crowhurst, M. O., Ward, A. C., & Layton, J. E. (2001). Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood, The Journal of the American Society of Hematology, 98(10), 3087–3096.

    CAS  Google Scholar 

  37. Santoriello, C., & Zon, L. I. (2012). Hooked! Modeling human disease in zebrafish. The Journal of Clinical Investigation, 122(7), 2337–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cunliffe, V. T. (2003). Zebrafish: A practical approach. Edited by C. NÜSSLEIN-VOLHARD and R. DAHM. Oxford University Press. 2002. 322 pages. ISBN 0 19 963808 X. Price£ 40.00 (paperback). ISBN 0 19 963809 8. Price£ 80.00 (hardback). Genetics Research, 82(1), 79.

    Article  Google Scholar 

  39. Carpio, Y., & Estrada, M. P. (2006). Zebrafish as a genetic model organism. Biotecnología Aplicada, 23(4), 265–270.

    Google Scholar 

  40. Nusslein-Volhard, C., & Dahm, R. (2002). Zebrafish. Oxford University Press.

    Book  Google Scholar 

  41. Hamel, C. P., Tsilou, E., Pfeffer, B. A., Hooks, J. J., Detrick, B., & Redmond, T. (1993). Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. Journal of Biological Chemistry, 268(21), 15751–15757.

    Article  CAS  PubMed  Google Scholar 

  42. Jacinto, F. V., Link, W., & Ferreira, B. I. (2020). CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine, 24(7), 3766–3778.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, M., Zhao, L., Page-McCaw, P. S., & Chen, W. (2016). Zebrafish genome engineering using the CRISPR-Cas9 system. Trends in Genetics: TIG, 32(12), 815–827.

    Article  PubMed  Google Scholar 

  45. Gupta, D., Bhattacharjee, O., Mandal, D., Sen, M. K., Dey, D., Dasgupta, A., et al. (2019). CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sciences, 232, 116636.

    Article  CAS  PubMed  Google Scholar 

  46. Flora, A., & Welcker, J. (2017). CRISPR genome engineering: Advantages and limitations. Rodent Research Models, 22.

  47. Anzalone, A. V., Koblan, L. W., & Liu, D. R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 38(7), 824–844.

    Article  CAS  PubMed  Google Scholar 

  48. Shah, A. N., Davey, C. F., Whitebirch, A. C., Miller, A. C., & Moens, C. B. (2015). Rapid reverse genetic screening using CRISPR in zebrafish. Nature Methods, 12(6), 535–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Varshney, G. K., Pei, W., LaFave, M. C., Idol, J., Xu, L., Gallardo, V., et al. (2015). High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Research, 25(7), 1030–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mo, G., Ding, Q., Chen, Z., Li, Y., Yan, M., Bu, L., et al. (2014). A novel mutation in the RPE65 gene causing Leber congenital amaurosis and its transcriptional expression in vitro. PLoS ONE, 9(11), e112400.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pourghadamyari, H., Rezaei, M., Ipakchi-Azimi, A., Eisa-Beygi, S., Basiri, M., Tahamtani, Y., et al. (2019). Establishing a new animal model for muscle regeneration studies. Molecular Biology Research Communications, 8(4), 171.

    PubMed  PubMed Central  Google Scholar 

  52. Pourghadamyari, H., Rezaei, M., Basiri, M., Tahamtani, Y., Asgari, B., Hassani, S.-N., et al. (2019). Generation of a transgenic zebrafish model for pancreatic beta cell regeneration. Galen Medical Journal, 8, e1056.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rezaei, M., Basiri, M., Hasani, S.-N., Asgari, B., Kashiri, H., Shabani, A., et al. (2019). Establishment of a transgenic zebrafish expressing GFP in the skeletal muscle as an ornamental fish. Galen Medical Journal, 8, e1068.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided by Mashhad University of Medical Sciences (Grant No. 991444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Mojarrad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, F., Eslahi, A., Karimi, S. et al. Generation of Zebrafish Models of Human Retinitis Pigmentosa Diseases Using CRISPR/Cas9-Mediated Gene Editing System. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00907-8

Keywords

Navigation