Skip to main content

Advertisement

Log in

Circ_103809 Aggravates the Malignant Phenotype of Pancreatic Cancer Through Modulating miR-197-3p/TSPAN3 Axis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PC) is a malignant tumor with insidious clinical manifestations and dismal prognosis. Emerging reports have demonstrated that circRNAs exert pivotal biological function in PC. Here, we investigated the crucial biological role and underlying regulatory mechanisms of differentially expressed circ_103809 in PC. In this study, hsa_circ_103809 (hsa_circ_0072088) was identified as the research object via analyzing and screening the aberrantly expressed circRNAs in PC by GSE69362 dataset. The levels of circ_103809 in PC tissues and cells were assessed via qRT-PCR. Functional assays were conducted to monitor the impacts of circ_103809 on PC cells. Additionally, the downstream molecular targets and regulatory networks of circ_103809 were predicted by bioinformatics and validated using luciferase assays and rescue experiments. We found that circ_103809 was substantially upregulated in PC tissues and cells. Silencing circ_103809 restrained the growth viability, clonogenic rate, migration, and invasion capabilities of PC cells. Further mechanistic exploration disclosed that miR-197-3p was the downstream gene of circ_103809, while Tetraspanin-3 (TSPAN3) was a direct target of miR-197-3p. The suppressive effect of circ_103809 knockdown on malignant processes of PC cells was eliminated by miR-197-3p downregulation or TSPAN3 upregulation. Our study demonstrated that circ_103809 served as an innovative positive regulator in the growth and metastasis of PC cells. Furthermore, circ_103809 mediated the miR-197-3p/TSPAN3 axis to modulate the malignant progression of PC cells, which was prospected to be a probable biomarker and an efficient therapeutic target for PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

    PubMed  Google Scholar 

  2. Khalaf, N., El-Serag, H. B., Abrams, H. R., & Thrift, A. P. (2021). Burden of pancreatic cancer: From epidemiology to practice. Clinical Gastroenterology and Hepatology, 19(5), 876–884.

    Article  PubMed  Google Scholar 

  3. Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74(11), 2913–21.

    Article  CAS  PubMed  Google Scholar 

  4. Klein, A. P. (2021). Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nature Reviews Gastroenterology Hepatology, 18(7), 493–502.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Naudin, S., Viallon, V., Hashim, D., Freisling, H., Jenab, M., Weiderpass, E., et al. (2020). Healthy lifestyle and the risk of pancreatic cancer in the EPIC study. European Journal of Epidemiology, 35(10), 975–986.

    Article  PubMed  Google Scholar 

  6. Zanini, S., Renzi, S., Limongi, A. R., Bellavite, P., Giovinazzo, F., & Bermano, G. (2021). A review of lifestyle and environment risk factors for pancreatic cancer. European Journal of Cancer, 145, 53–70.

    Article  PubMed  Google Scholar 

  7. Wu, B., & Shi, L. (2020). Cost-effectiveness of maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. Journal of the National Comprehensive Cancer Network, 18(11), 1528–1536.

    Article  PubMed  Google Scholar 

  8. Manrai, M., Tilak, T., Dawra, S., Srivastava, S., & Singh, A. (2021). Current and emerging therapeutic strategies in pancreatic cancer: Challenges and opportunities. World Journal of Gastroenterology, 27(39), 6572–6589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strobel, O., Neoptolemos, J., Jager, D., & Buchler, M. W. (2019). Optimizing the outcomes of pancreatic cancer surgery. Nature Reviews Clinical Oncology, 16(1), 11–26.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, L., & Shan, G. (2021). CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Letters., 505, 49–57.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, G., Tang, W., Wang, S., Long, C., He, X., Yang, D., et al. (2021). Promising diagnostic and therapeutic circRNAs for skeletal and chondral disorders. International Journal of Biological Sciences, 17(5), 1428–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lauretti, E., Dabrowski, K., & Pratico, D. (2021). The neurobiology of non-coding RNAs and Alzheimer’s disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Research Reviews., 71, 101425.

    Article  CAS  PubMed  Google Scholar 

  13. Lu, D., & Thum, T. (2019). RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nature Reviews Cardiology, 16(11), 661–674.

    Article  PubMed  Google Scholar 

  14. Yang, B., Zhang, B., Qi, Q., & Wang, C. (2022). CircRNA has_circ_0017109 promotes lung tumor progression via activation of Wnt/beta-catenin signaling due to modulating miR-671-5p/FZD4 axis. BMC Pulmonary Medicine, 22(1), 443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, H., Luo, F., Jiang, X., Zhang, W., Xiang, T., Pan, Q., et al. (2022). CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-associated macrophage polarization toward the M2 phenotype. Journal for ImmunoTherapy of Cancer., 10(3), e004029.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang, Y., Zhao, J., Li, R., Liu, Y., Zhou, L., Wang, C., et al. (2022). CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. Journal of Experimental & Clinical Cancer Research, 41(1), 307.

    Article  CAS  Google Scholar 

  17. Zhang, X., Tan, P., Zhuang, Y., & Du, L. (2020). hsa_circRNA_001587 upregulates SLC4A4 expression to inhibit migration, invasion, and angiogenesis of pancreatic cancer cells via binding to microRNA-223. American Journal of Physiology-Gastrointestinal and Liver Physiology, 319(6), G703–G717.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, M., Luo, C., Dong, J., Guo, J., Luo, Q., Ye, C., et al. (2020). CircRNA_103809 suppresses the proliferation and metastasis of breast cancer cells by sponging MicroRNA-532-3p (miR-532-3p). Frontiers in Genetics., 11, 485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhan, W., Liao, X., Chen, Z., Li, L., Tian, T., Yu, L., et al. (2020). Circular RNA hsa_circRNA_103809 promoted hepatocellular carcinoma development by regulating miR-377-3p/FGFR1/ERK axis. J Cell Physiol, 235(2), 1733–1745.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, W., Lu, Y., Wang, F., Huang, X., & Yu, Z. (2020). Circular RNA circRNA_103809 accelerates bladder cancer progression and enhances chemo-resistance by activation of miR-516a-5p/FBXL18 Axis. Cancer Management and Research., 12, 7561–7568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, W., Ma, W., Yuan, Y., Zhang, Y., & Sun, S. (2018). Circular RNA hsa_circRNA_103809 promotes lung cancer progression via facilitating ZNF121-dependent MYC expression by sequestering miR-4302. Biochemical and Biophysical Research Communication, 500(4), 846–851.

    Article  CAS  Google Scholar 

  22. Babu, V. S., Mallipatna, A., Sa, D., Dudeja, G., Kannan, R., Shetty, R., et al. (2022). Integrated analysis of cancer tissue and vitreous humor from retinoblastoma eyes reveals unique tumor-specific metabolic and cellular pathways in advanced and non-advanced tumors. Cells, 11(10), 1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, H., Hao, X., Wang, H., Liu, Z., He, Y., Pu, M., et al. (2016). Circular RNA expression profile of pancreatic ductal adenocarcinoma revealed by microarray. Cellular Physiology and Biochemistry, 40(6), 1334–1344.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, J., Xu, R., Wang, C., Qiu, J., Ren, B., & You, L. (2021). Early screening and diagnosis strategies of pancreatic cancer: a comprehensive review. Cancer Communications (London), 41(12), 1257–1274.

    Article  CAS  Google Scholar 

  25. Yu, S., Zhang, C., & Xie, K. P. (2021). Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1875(1), 188461.

    Article  CAS  PubMed  Google Scholar 

  26. Xia, L., Song, M., Sun, M., Wang, F., & Yang, C. (2018). Circular RNAs as biomarkers for cancer. Advances in Experimental Medicine and Biology, 1087, 171–187.

    Article  CAS  PubMed  Google Scholar 

  27. Rong, Z., Xu, J., Shi, S., Tan, Z., Meng, Q., Hua, J., et al. (2021). Circular RNA in pancreatic cancer: A novel avenue for the roles of diagnosis and treatment. Theranostics, 11(6), 2755–2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y. Z., An, Y., Li, B. Q., Lu, J., & Guo, J. C. (2019). Research progress on circularRNAs in pancreatic cancer: Emerging but promising. Cancer Biology & Therapy, 20(9), 1163–1171.

    Article  CAS  Google Scholar 

  29. Liu, X., Zhou, L., Chen, Y., Jiang, X., & Jiang, J. (2021). CircRNF13 promotes the malignant progression of pancreatic cancer through targeting miR-139-5p/IGF1R Axis. Journal of Oncology, 2021, 6945046.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou, X., Liu, K., Cui, J., Xiong, J., Wu, H., Peng, T., et al. (2021). Circ-MBOAT2 knockdown represses tumor progression and glutamine catabolism by miR-433-3p/GOT1 axis in pancreatic cancer. J Exp Clin Cancer Res, 40(1), 124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, Y., Zhou, S., Cheng, G., Ruan, Y., Tian, Y., Lv, K., et al. (2022). CircLMTK2 silencing attenuates gemcitabine resistance in pancreatic cancer by sponging miR-485-5p and to target PAK1. Journal of Oncology, 2022, 1911592.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet, 20(11), 675–691.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y., Zhang, J., Jia, J., Qian, B., & Tian, X. (2022). Circ_0008768 suppresses the pancreatic cancer progression via miR-330- 3p/PTEN Axis. Protein Pept Lett, 29(9), 796–805.

    Article  CAS  PubMed  Google Scholar 

  34. Shi, Y., Shen, M., Yang, Y., & Qiu, J. (2022). CircDUSP22 overexpression restrains pancreatic cancer development via modulating miR-1178-3p and downstream BNIP3. Biochemical Genetics., 61(2), 651–668.

    Article  PubMed  Google Scholar 

  35. Huang, Q., Ma, B., Su, Y., Chan, K., Qu, H., Huang, J., et al. (2020). miR-197-3p represses the proliferation of prostate cancer by regulating the VDAC1/AKT/beta-catenin signaling axis. Int J Biol Sci, 16(8), 1417–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie, W., Shui, C., Fang, X., Peng, Y., & Qin, L. (2020). miR-197-3p reduces epithelial-mesenchymal transition by targeting ABCA7 in ovarian cancer cells. 3 Biotech., 10(8), 375.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yuan, J., Liu, Z., Liu, J., & Fan, R. (2022). Circ_0060055 promotes the growth, invasion, and radioresistance of glioblastoma by targeting MiR-197-3p/API5 Axis. Neurotox Res, 40(5), 1292–1303.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, J., Wang, S., Bai, Y., Ali, A. M., Deng, J., Chen, Y., et al. (2023). miR-197-3p promotes osteosarcoma stemness and chemoresistance by inhibiting SPOPL. Journal of Clinical Medicine., 12(3), 1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar, S., Saikia, J., Sharawat, S. K., Malik, P. S., Kumar, S., & Mohan, A. (2022). Analysis of miR-375-3p, miR-197-3p, and miR-15a-5p expression and their clinical relevance as biomarkers in lung cancer. Technology in Cancer Research & Treatment, 21, 15330338221080980.

    Article  Google Scholar 

  40. Wang, Y. Y., Wu, Z. Y., Wang, G. C., Liu, K., Niu, X. B., Gu, S., et al. (2016). LINC00312 inhibits the migration and invasion of bladder cancer cells by targeting miR-197-3p. Tumour Biol, 37(11), 14553–14563.

    Article  CAS  PubMed  Google Scholar 

  41. Kwon, H. Y., Bajaj, J., Ito, T., Blevins, A., Konuma, T., Weeks, J., et al. (2015). Tetraspanin 3 is required for the development and propagation of acute myelogenous leukemia. Cell Stem Cell, 17(2), 152–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, R., Tang, P., Wang, F., Xing, Y., Jiang, Z., Chen, S., et al. (2019). Tumor suppressor miR-139-5p targets Tspan3 and regulates the progression of acute myeloid leukemia through the PI3K/Akt pathway. J Cell Biochem, 120(3), 4423–4432.

    Article  CAS  PubMed  Google Scholar 

  43. Lei, W., Lin, J., Liu, F., & Chen, N. (2021). Long noncoding RNA GAS6 antisense RNA1 silencing attenuates the tumorigenesis of acute myeloid leukemia cells through targeting microRNA-370-3p/Tetraspanin3 axis. Clin Hemorheol Microcirc, 78(1), 69–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Ningbo Digestive System Cancer Clinical Medicine Research Center (2019A21003), and Medical and Health Science and Technology Program of Zhejiang Province (2023KY239).

Author information

Authors and Affiliations

Authors

Contributions

XW and SZ: designed the experiments, and drafted the manuscript. LW and JM: collected the clinical samples and processed statistical data. YR, YZ and HS: performed the experiments and analyzed the data. XZ: designed, and supervised the study. HL: designed, supervised the study and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xinhua Zhou or Hong Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This study was approved by the Ethics Committee of Ningbo Medical Center Li Huili Hospital. Informed consent was obtained from all patients for this study. All experiments were performed in accordance with relevant guidelines and regulations and in compliance with the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhou, S., Wang, L. et al. Circ_103809 Aggravates the Malignant Phenotype of Pancreatic Cancer Through Modulating miR-197-3p/TSPAN3 Axis. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00874-0

Keywords

Navigation