Skip to main content

Advertisement

Log in

Novel Bimolecular Fluorescence Complementation (BiFC) Assay for Visualization of the Protein–Protein Interactions and Cellular Protein Complex Localizations

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Investigations of protein–protein interactions (PPIs) are of paramount importance for comprehending cellular processes within biological systems. The bimolecular fluorescence complementation (BiFC) assay presents a convenient methodology for visualizing PPIs within live cells. While a range of fluorescent proteins have been introduced into the BiFC system, there is a growing demand for new fluorescent proteins to accommodate the expanding requirements of researchers. This study describes the introduction of Tagged blue fluorescent protein 2 (TagBFP2) into the BiFC assay to verify the interaction between two proteins, with Enhanced yellow fluorescent protein (EYFP) employed as a positive control. Both fluorescent proteins demonstrated optimal performance in this study. Compared to EYFP, the BiFC system utilizing TagBFP2 yielded a higher signal-to-noise ratio, which facilitated differentiation of the signal of PPIs from noise and enabled employment of other fluorescent proteins within the BiFC assay. Notably, the utilization of a fluorescent secondary antibody in immunofluorescence applications or the tagging of an interest protein with a fluorescent protein occupied the green or yellow channel. Overall, the present article introduces a BiFC assay that is highly straightforward, reliable, and replicable, with the ability to be completed within 1 week. This method requires neither expensive instrumentation nor technical skills of a high order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the manuscript.

Abbreviations

BiFC:

Bimolecular fluorescence complementation

PPIs:

Protein–protein interactions

Co-IP:

Co-immunoprecipitation

FRET:

Fluorescence resonance energy transfer

GFP:

Green-fluorescent proteins

bZIP:

Basic region-leucine zipper

AP-1:

Activator protein-1

cDNA:

Complementary DNA

DMEM:

Dulbecco’s modified Eagle’s medium

EYFP:

Enhanced yellow fluorescent protein

TagBFP2:

Tag blue fluorescent protein 2

References

  1. Chen, M., Yan, C., Ma, Y., & Zhang, X. E. (2021). A tandem near-infrared fluorescence complementation system with enhanced fluorescence for imaging protein-protein interactions in vivo. Biomaterials, 268, 120544.

    Article  CAS  PubMed  Google Scholar 

  2. Schmitz, F., Glas, J., Neutze, R., & Hedfalk, K. (2021). A bimolecular fluorescence complementation flow cytometry screen for membrane protein interactions. Scientific Reports, 11(1), 19232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ghosh, I., Hamilton, A., & Regan, L. (2000). Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein. Journal of The American Chemical Society. https://doi.org/10.1021/ja994421w

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kodama, Y., & Hu, C.-D. (2012). Bimolecular fluorescence complementation (BiFC): A 5-year update and future perspectives. BioTechniques, 53(5), 285–298. https://doi.org/10.2144/000113943

    Article  CAS  PubMed  Google Scholar 

  5. Heim, R., Prasher, D. C., & Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12501–12504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu, C.-D., Chinenov, Y., & Kerppola, T. K. (2002). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Molecular Cell, 9(4), 789–798. https://doi.org/10.1016/S1097-2765(02)00496-3

    Article  CAS  PubMed  Google Scholar 

  7. Shyu, Y. J., Liu, H., Deng, X., & Hu, C. D. (2006). Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. BioTechniques, 40(1), 61–66.

    Article  CAS  PubMed  Google Scholar 

  8. Kodama, Y. (2011). A bright green-colored bimolecular fluorescence complementation assay in living plant cells. Plant Biotechnology, 28(1), 95.

    Article  CAS  Google Scholar 

  9. Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544.

    Article  CAS  PubMed  Google Scholar 

  10. Sarkar, M., & Magliery, T. J. (2008). Re-engineering a split-GFP reassembly screen to examine RING-domain interactions between BARD1 and BRCA1 mutants observed in cancer patients. Molecular BioSystems, 4(6), 599–605.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, J., Lin, J., Zhou, C., Deng, X., & Xia, B. (2011). An improved bimolecular fluorescence complementation tool based on superfolder green fluorescent protein. Acta Biochimica et Biophysica Sinica, 43(3), 239–244.

    Article  CAS  PubMed  Google Scholar 

  12. Ando, R., Mizuno, H., & Miyawaki, A. (2004). Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science (New York, N.Y.), 306(5700), 1370–1373.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, Y. R., Park, J. H., Hahm, S. H., Kang, L. W., Chung, J. H., Nam, K. H., Hwang, K. Y., Kwon, I. C., & Han, Y. S. (2010). Development of bimolecular fluorescence complementation using Dronpa for visualization of protein–protein interactions in cells. Molecular Imaging and Biology, 12(5), 468–478.

    Article  PubMed  Google Scholar 

  14. Jach, G., Pesch, M., Richter, K., Frings, S., & Uhrig, J. F. (2006). An improved mRFP1 adds red to bimolecular fluorescence complementation. Nature Methods, 3(8), 597–600.

    Article  CAS  PubMed  Google Scholar 

  15. Kodama, Y., & Wada, M. (2009). Simultaneous visualization of two protein complexes in a single plant cell using multicolor fluorescence complementation analysis. Plant Molecular Biology, 70(1–2), 211–217.

    Article  CAS  PubMed  Google Scholar 

  16. Fan, J. Y., Cui, Z. Q., Wei, H. P., Zhang, Z. P., Zhou, Y. F., Wang, Y. P., & Zhang, X. E. (2008). Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein–protein interactions in living cells. Biochemical and Biophysical Research Communications, 367(1), 47–53.

    Article  CAS  PubMed  Google Scholar 

  17. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22(12), 1567–1572.

    Article  CAS  PubMed  Google Scholar 

  18. Chu, J., Zhang, Z., Zheng, Y., Yang, J., Qin, L., Lu, J., Huang, Z. L., Zeng, S., & Luo, Q. (2009). A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosensors & Bioelectronics, 25(1), 234–239.

    Article  CAS  Google Scholar 

  19. Subach, O. M., Cranfill, P. J., Davidson, M. W., & Verkhusha, V. V. (2011). An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS ONE, 6(12), e28674. https://doi.org/10.1371/journal.pone.0028674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bejjani, F., Evanno, E., Zibara, K., Piechaczyk, M., & Jariel-Encontre, I. (2019). The AP-1 transcriptional complex: Local switch or remote command? Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1872(1), 11–23. https://doi.org/10.1016/j.bbcan.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Hu, C. D., & Kerppola, T. K. (2003). Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature Biotechnology, 21(5), 539–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. The UniProt, C. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100

    Article  CAS  Google Scholar 

  23. Miller, K. E., Kim, Y., Huh, W.-K., & Park, H.-O. (2015). Bimolecular fluorescence complementation (BiFC) analysis: Advances and recent applications for genome-wide interaction studies. Journal of Molecular Biology, 427(11), 2039–2055. https://doi.org/10.1016/j.jmb.2015.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, T. Y. (2021). Using tripartite split-sfGFP for the study of membrane protein–protein interactions. Methods in Molecular Biology (Clifton, N.J.), 2200, 323–336.

    Article  CAS  PubMed  Google Scholar 

  25. Han, Y., Wang, S., Zhang, Z., Ma, X., Li, W., Zhang, X., Deng, J., Wei, H., Li, Z., Zhang, X. E., & Cui, Z. (2014). In vivo imaging of protein–protein and RNA–protein interactions using novel far-red fluorescence complementation systems. Nucleic Acids Research, 42(13), e103. https://doi.org/10.1093/nar/gku408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (82273278, 82002630, 81874215), Shanghai Association for Science and Technology (201409003000, 201409002400 and 20YF1426200), Outstanding Leaders Training Program of Pudong Health Committee of Shanghai (PWRl2017-03), Pudong Science and Technology Development Fund (pkj2019-y35).

Author information

Authors and Affiliations

Authors

Contributions

YL designed the structure of the manuscript. ZS, XG, BC, MW, KL, ZW, and YZ contributed to the performance of experiments, ZS, XG, WZ, LR, YQ and XW contributed to the written and revision sections to the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xuhui Wang or Yingying Lin.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Gao, X., Zhang, W. et al. Novel Bimolecular Fluorescence Complementation (BiFC) Assay for Visualization of the Protein–Protein Interactions and Cellular Protein Complex Localizations. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00860-6

Keywords

Navigation