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Abstract
Modern biological science is trying to solve the fundamental complex problems of molecular biology, which include protein 
folding, drug discovery, simulation of macromolecular structure, genome assembly, and many more. Currently, quantum 
computing (QC), a rapidly emerging technology exploiting quantum mechanical phenomena, has developed to address 
current significant physical, chemical, biological issues, and complex questions. The present review discusses quantum 
computing technology and its status in solving molecular biology problems, especially in the next-generation computational 
biology scenario. First, the article explained the basic concept of quantum computing, the functioning of quantum systems 
where information is stored as qubits, and data storage capacity using quantum gates. Second, the review discussed quantum 
computing components, such as quantum hardware, quantum processors, and quantum annealing. At the same time, article 
also discussed quantum algorithms, such as the grover search algorithm and discrete and factorization algorithms. Further-
more, the article discussed the different applications of quantum computing to understand the next-generation biological 
problems, such as simulation and modeling of biological macromolecules, computational biology problems, data analysis 
in bioinformatics, protein folding, molecular biology problems, modeling of gene regulatory networks, drug discovery and 
development, mechano-biology, and RNA folding. Finally, the article represented different probable prospects of quantum 
computing in molecular biology.
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Introduction

Modern biological science is trying to solve the fundamental 
complex problems of biology, incredibly in the domain of 
structural and functional biology. Several areas of modern 

biological problems include protein folding, drug discovery, 
simulation of macromolecular structural mobility, genome 
assembly, and many more. To solve the critical questions in 
modern biological science, scientists are solving the prob-
lems using computational biology, system biology, statistical 
and mathematical models, and computational algorithms. 
Researchers require advanced computation power and next-
generation experimental methods to demonstrate more 
complex biological phenomena. In recent times, many real-
life problems in biology have become more challenging as 
they need a significant quantity of computational resources. 
Therefore, in the same space, speedy supercomputing and 
enormous parallel computing facilities are the need of the 
present day, which is changing the present scenario of com-
putational resources and creating entirely new computing 
paradigms. Now, quantum computing (QC) has developed 
a plethora of ways to address modern biological problems 
and complex biological questions [1–4].

The promise of quantum computing has started with the 
execution of the faster on a quantum processor. In the year 
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of 2019, researchers executed quantum supremacy success-
fully in a 53 qubit superconducting machine. In this study, 
researchers have used a programmable superconducting 
qubit processor and generated quantum states on 53 qubits. 
With this experiment, the possibility of the fast computing 
using quantum computing has been unlocked with the new 
computational capacity. The researchers have explained 
that their sycamore processor takes about 200s to compute. 
A similar job would take approximately 10,000 years by 
a state-of-the-art classical supercomputer [5]. After that, 
Zhong et al. generated up to 76 output photon clicks. This 
experiment yielded an output state-space dimension of  1030 
by the photonic quantum computer, Jiuzhang. It is the fastest 
calculation than the state-of-the-art simulation approach [6].

Planck, Bohr, and Einstein were the founders of quan-
tum theory in the early twentieth century; Feynman and 
Manin introduced a revolutionary idea in the 1980s, i.e., 
quantum computing. The underlying rule postulated in 
quantum theory was that energy can be considered as 
distinct packets termed ‘quantum,’ and this empowered 
researchers to express energy–matter interactions in the 
realm of subatomic understanding, in quantum comput-
ing. In 1980, the first mechanical model of a computer was 
developed using the Schrodinger equation. It was known 
as Quantum Turing Machine (QTM). Paul Benioff illus-
trated the first QTM model of a quantum computer. After 
that, the quantum computer dramatically evolved from 
time to time to reach the present-day quantum computer 

architecture based on trapped-ion QCCD (Fig. 1). How-
ever, in quantum computing, the fundamental essence is 
to keep information at the quantum level of matter and 
apply quantum gate action to evaluate that information by 
programming quantum interference. Then, coming to the 
scope of what quantum computing can achieve in biologi-
cal interactions, its contribution is possible in biochemical 
systems [7], biology [8], biochemistry [9], computation of 
protein–ligand interplay [10], mRNA codon optimization 
[11], and protein folding [12] to name a few with higher-
order speeds compared with conventional computers. To 
understand this higher velocity magnitude, we must accept 
that quantum computers work differently than their tradi-
tional counterparts. It is pertinent to mention that using 
the quantum processor for processing quantum informa-
tion requires a rudimentary switch in comprehending ‘pro-
gramming’ as we do today. However, this article presents 
the quantum information principles and in what way these 
are utilized to undertake computation. The article eluci-
dates the functioning of quantum systems where informa-
tion is stored as qubits and in what capacity this data could 
be used with quantum gates. In quantum computing, the 
elementary constituents of algorithms comprise qubits and 
quantum gates. Further, the technical hurdles in quantum 
computer development are also highlighted. Finally, the 
review represented a wide range of probable applications 
of molecular biology in future days.

Fig. 1  Evolving path of a quantum computer with a timeline. The evolving pathway shows, from Quantum Turing Machine (QTM), how quan-
tum computers dramatically evolved from time to time to reach the present-day quantum computer architecture based on trapped-ion QCCD
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Quantum Computing Using Quantum 
Mechanics: New Notations

Quantum computing has used several new notations. We 
have provided several notations, auxiliary qubit, NOT gate, 
identity gate, quantum assembly language (QASM), qiskit 
program, qubit, toffoli gate, hadamard (H) gate, Y gate, 
phase gate, classical gate, etc. in Supplementary Table S1 
following Dirac notation [13]. Several standard textbooks 
have used the notations [14, 15]. Some examples are QASM, 
toffoli gate, hadamard (H) gate, etc. QASM is a set of text-
based instructions to describe and visualize quantum cir-
cuits. Similarly, the toffoli gate is a double-controlled-NOT 
gate (CCX) with two control qubits and one target. Like-
wise, the hadamard gate rotates the states │0 > and │1 > to 
│ + > and │- >, one to one. It helps to make the superposi-
tions. Some significant notations are as follows:

Qubit: Quantum Bit and Quantum Information

Quantum bit, i.e., qubit in quantum computing, is the ele-
mentary component of information and can be considered 
analogous to the 'bit' in classical computing (Fig. 2). The 
quantum processor, which is used for quantum comput-
ing, handles information in the form of qubits. Qubits can 
be considered conceptual mathematical entities [15]. The 
use of qubits as conceptual objects is of great, advantage 
because quantum computation theory can be built for 
quantum data processing independent of any particular 
system. A classical bit can be associated with states 0 and 
1. In classical computers, binary numbers are represented 
by only two symbols or digits, 0 and 1. Likewise, a qubit 
also has a state. However, along with 0 and 1, it can adopt 

any combination of the states 0 and 1. Interestingly, when 
viewed, the superposition no longer exists, and the qubit 
collapses to either 0 or 1, which is analogous to Schrod-
inger’s cat being living or dead [16]. Another hallmark 
feature of the qubit is that when several are amalgamated 
together, they probably get correlated, and interactivity 
with any one unit of these has fine-drawn intimation in 
the whole system state [17]. It is well established that this 
interconnection among several qubits, termed ‘quantum 
entanglement,’ is essential to perform quantum computing.

A qubit can be expressed in mathematical form with 
the idea that the quantum analog of a bit is referred to as a 
qubit. The two states of the qubit are denoted as �0⟩ and �1⟩ 
which one may assume to link these with 0 and 1 states of 
bit. Here, Dirac notation is used and �⋅⟩ is represented as 
quantum state [13]. The main distinction qubit displays, 
when compared with bits, is that it may exist in states in 
addition to �0⟩ or �1⟩ . This phenomenon is known as the 
superposition of �0⟩ and �1⟩ states and is expressed as fol-
lows [17]:

where α and β are coefficients having complex form and des-
ignated as amplitudes of the states �0⟩ and �1⟩ , respectively. It 
is not possible to exactly find the quantum state of qubit, i.e., 
α and β estimates. When qubit is gauged, the result comes as 
0 having probability |α|2 or 1 having probability |β|2. There-
fore, |α|2 +|β|2 = 1 as sum of the probabilities has to be 1 
[15]. However, we can use a scheme to measure qubit states 
as qubits can also be accepted as physical systems.

As an illustration, if �0⟩ and �1⟩ states can be associated 
with electron states of spin-down and spin-up, respectively, 
when present in a magnetic field, then the estimate of qubit 
state as per this foundation will be an estimate of the sys-
tem’s energy [17]. However, we must also keep in mind that 
the measurement action will demolish the superposition 
states (i.e., amplitudes), and we have either 0 or 1.

In the case of multiple qubit systems, the principles of 
quantum entanglement will also be applicable. It means 
when a set of qubits are matched up with each other, then 
action on any one influences the combined state of all. For 
a two-qubit system, the possible states would be the super-
position of any of the following states denoted by �00⟩ , �01⟩ , 
�10⟩ , and �11⟩ . Superposition can be represented by the bell 
state equation as follows [15]:

In the two-qubit system, if anyone measures the first 
qubit, it can only detect any of the states �0⟩ and �1⟩ , with a 
chance of 50 percent. It is similar to the measurement of a 
single-qubit scenario.

(1)��⟩ = ��0⟩ + ��1⟩ �, � ∈ ℂ ���2 + ���2 = 1

(2)��⟩ = 1√
2

(�10⟩ + �01⟩)

Fig. 2  The figure depicts the conceptual design of bit and qubit. 
A qubit state represents a unit of a sphere with the north and south 
poles. The north and south poles correspond to the states 0 and 1 of a 
classical bit. The figure also illustrates that the space of 3 qubits is a 
 23-dimensional complex vector
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Now, for the explanation, let us assume that the result of 
the first qubit’s measurement is �0⟩ . Then the system settles 
to �01⟩ . Thus estimation of the second qubit gives �1⟩ , a result 
with a chance of 100 percent. Similarly, if the result of the 
first qubit is �1⟩ , the estimation of the second qubit will give 
the result �0⟩.

We can see that any action (here estimation with result 
‘0’) executed on the first qubit influences the results of 
the assessment of the second qubit. When we generalize 
with n-qubit system, the computing rudimentary states for 
such a system will have binary string form ��x1x2..xn⟩ , where 
x
i(i=1,2,..n) can be 0 or 1. Therefore, for this n-qubit system, 

the possible states would be superposition of any of the fol-
lowing  2n states denoted by �0… 0⟩ till �1… 1⟩.

Quantum Information and Their Properties

Quantum computers have several advantages using the 
amalgamation of three significant characteristics — quan-
tum interference, superposition, and entanglement. The 
combination of these three characteristics is substantial in 
a particular case and is observed to be unique to quantum 
mechanical systems.

Quantum Interference

This interference provides the outcome due to the amplitudes 
among two quantum states which are subtracted or summed. 
It might result in destructive and constructive interference 
[1, 18]. Some examples can be shown in the single-qubit 
quantum gate and its repeated application, known as the 
hadamard gate [19].

Quantum Entanglement

Quantum Entanglement is a unique computational resource 
in the view of computation. It occurs when a cluster of par-
ticles are generated and they interact. Finally, these particles 
share spatial closeness so that the quantum state of every 
group particle cannot be explained separately from the 
state. It is also unique to quantum computational systems. 
Researchers have demonstrated that it has multiple theoreti-
cal quantum advantages [1, 20].

Perhaps the one of the known examples of entanglement is 
the set of four 2 qubit bell states, 

�
�Φ+⟩, �Φ−⟩, �Ψ+⟩, �Ψ−⟩

�
 . 

It corresponds to the four maximally entangled states for two 
qubits [1]. For example, the given bell state

A dimension of the first-qubit state instantly implies 
knowledge of the second-qubit state.

(3)��Φ+
�
=

1√
2

(�00⟩ + �11⟩)

The ‘quantum entanglement phenomenon’ is the corner-
stone of quantum calculation speed and pieces of literature 
are available [21, 22]. It has been demonstrated that if the 
‘quantum entanglement phenomenon’ is not used in the 
quantum algorithm, then the same algorithm can be worked 
with classical 0 and 1 bits computer systems without any 
remarkable change in computational speed. As an illus-
tration, in the n-qubit system, the ‘quantum entanglement 
phenomenon’ empowers each of the amplitudes to be free, 
which yields a  2n spatial vector system. Hence, it can be 
seen that quantum computation algorithms can perform the 
calculation at much higher-order speeds than their classical 
counterparts.

Superposition in Quantum Computing

A quantum particle can be present in two separate states 
together. However, the two quantum states or more can be 
“superposed” or added simultaneously. In this direction, 
multiple qubits can be superposed as a linear amalgamation 
over a foundation set, known as a coherent superposition. It 
is one of the fundamental properties of quantum mechanics. 
One of the examples is in the case of two qubits on the ideal 
basis [1], which is as follows:

Quantum Gates: Quantum Logic Gates for Quantum 
Computing

Quantum gates are a pivotal piece of the quantum computing 
technology and play an essential role in the progress of quan-
tum computers. They are a form of operation implemented 
on qubits, the crucial components of quantum computing. A 
quantum gate is a unitary transformation that works on either 
one or multiple qubits and changes the qubits’ state. Quan-
tum gates are utilized to govern the evolution of a quantum 
system and are thus used to execute various operations on a 
quantum computer. They are used as the building blocks of 
quantum algorithms and to manipulate qubits and perform 
operations on them. Combining quantum gates in different 
ways makes it possible to create a wide selection of quantum 
algorithms [23]. These gates can be understood with abstract 
operations [15], yet quantum mechanics postulates that they 
make it necessary for these operations to be shown in the 
form of the unitary matrix. These linear transformations 
maintain the coordination of the system. To be more spe-
cific, applying a quantum gate in an array having ‘n’ number 
of qubits is the same as performing multiplication to a  2n × 
 2n matrix and  2n entry vector. This capacity of the quantum 
computers is to gather, store, and operate on calculations 
having large amounts of data, i.e.,  2n, while manipulating 

(4)��⟩ = ��00⟩ + ��01⟩ + ��10⟩ + ��11⟩
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only a few elements, say ‘n’ that makes it so powerful as 
compared to the classical computers [23].

In basic terms, a quantum gate is an action that can be 
taken on a qubit system. The laws of quantum mechanics 
set two precise prerequisites for how quantum gates must 
be formed. Firstly, linear quantum operators must be consid-
ered. This linear phenomenon is an important mathematical 
concept that has a significant impact on the nature of the 
physics of quantum systems and operations and their use-
fulness in computing. If, as an illustration, we consider one 
linear operator Ô and apply it to a mix of states, the outcome 
is the combination of all the affected states after being acted 
upon by this operator. Concerning one single qubit, it trans-
lates into as follows [15]:

where �′ and � ′ are complex numbers associated with the 
quantum state after the qubit gate has functioned. Opera-
tors of the linear form can be shown as matrices, i.e., tables 
demonstrating linear execution on every base state. How-
ever, all matrices does not represent valid quantum gates. 
It is anticipated that a quantum gate should put on an array 
of qubits, giving rise to another legitimate accumulation of 
qubits, particularly one being normalized. This condition is 
satisfied when the matrix symbolizing a quantum gate must 
be unitary i.e., U*U = UU* = I. Here, U* represents the same 
matrix U in which columns and rows are interchanged, and 
each complex number is the conjugate of the previous one 
(in other words, each imaginary part has a negative factor). 
I is a 2 × 2 identity matrix. Any  2n ×  2n unitary matrix rep-
resents a legitimate quantum gate associated with n qubits 
[15].

In conventional computing, the only single-bit gate avail-
able is the NOT gate, which transforms 0 to 1 and vice versa. 
However, in quantum computation, a vast amount of 2 × 2 
unitary matrices can be used as a qubit quantum gate of a 
single form. Researchers tried to understand the X or quan-
tum-NOT gate in quantum circuits from time to time 
(Fig. 3). The quantum circuit is well studied. In the quantum 
circuit, the bell state was generated ( 1√

2
(�00⟩ + �11⟩)) using 

(5)Ô(𝛼�0⟩ + 𝛽�1⟩) = 𝛼
�
Ô�0⟩

�
+ 𝛽

�
Ô�1⟩

�
= 𝛼��0⟩ + 𝛽��1⟩

the hadamard gate (Fig. 4). One of the earliest achievements 
in quantum computation is the realization of the possible 
options that can be enacted using a unique set comprising 
the universal gates for one qubit or two qubits [24, 25]. To 
put it simply, given any quantum gate, it can be implemented 
with a circuit constructed with one- and two-qubit gates with 
high accuracy [23]. However, more accuracy is needed to 
perform efficiently. Approximation of most of the quantum 
gates can only be achieved with the enormous quantity of 
gates taken from the universal set [15], meaning that imple-
menting them would take an exponential amount of time, 
thus negating any quantum advantage. Classical gates are 
logic gates that manipulate binary values using boolean 
logic. These are used in digital electronic circuits to perform 
logical operations, such as AND, XOR, and NAND [19]. 
Classical gates are the basis of most digital systems today. 
Quantum gates, on the other hand, are quantum versions of 
classical gates. They use quantum mechanical phenomena 
such as superposition and entanglement to manipulate 
qubits, which are quantum versions of the classical bits used 
in classical gates. Quantum gates are used in quantum com-
puters to perform quantum operations and computations. 
The most fundamental contrast between the classical and 
quantum gates is the way that they manipulate information. 
Classical gates work with binary values using boolean logic. 
Quantum gates, however, manipulate qubits using quantum 
mechanical phenomena. It allows quantum gates to operate 
on much larger datasets than classical gates and to perform 
operations much more quickly [23].

Quantum gates can also perform operations that classical 
gates cannot, such as teleportation, entanglement, and super-
dense coding. These operations are essential for performing 
quantum computations, which can be used to solve com-
plex problems that are intractable for classical computers. 
In short, quantum gates can perform operations that classical 
gates cannot and can process much larger datasets than clas-
sical gates [23, 26]. It makes them immensely powerful for 
solving complex problems  than classical computers. Quan-
tum gates can also be used to create secure communication 
networks. They can protect data from being intercepted and 

Fig. 3  The figure depicts a quantum circuit implementing the X or 
quantum-NOT gate

Fig. 4  In the quantum circuit, the bell state was generated (1/√2 (ǀ00⟩
+ǀ11⟩ )) using the hadamard gate. It also shows the controlled-NOT 
gate
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decrypted by employing quantum cryptography, which relies 
on the principles of quantum mechanics. Quantum gates are 
essential for the development of quantum computing, and 
their use will become more widespread as the technology 
advances. The most common type of quantum gate is the 
CNOT gate. This gate performs two-qubit operations, in 
which one qubit acts as control and the other qubit acts as a 
target. Other standard quantum gates include the hadamard 
gate, the toffoli gate, and the phase gate [15, 19, 26].

Quantum Hardware for Quantum Computer

Quantum hardware is an emerging field in advancing tech-
nology that can transform how we think about computing. 
For quantum algorithms to tackle challenging problems, they 
must be executed on suitable quantum hardware. Quantum 
hardware describes the physical systems and components of 
the quantum computer [23]. These components are usually 
made up of superconducting material, which allow them to 
operate at extremely low temperatures. The essential quan-
tum hardware components are the qubits, among the sim-
plest units of knowledge and information in the quantum 
computer. To create a qubit,  physicists must first cool down 
a material to near absolute zero [27]. Then, they must care-
fully apply a magnetic field to trap a single electron in a 
tiny orbit around the atom’s nucleus. This process is called 
quantum confinement. Once the qubit has been created, it 
can be manipulated using various techniques. For exam-
ple, the strength of the magnetic field can be increased or 
decreased to change the qubit’s spin. By carefully controlling 
the qubit’s spin, a physicist can store a single quantum bit 
of information [28]. Conventional computers utilize binary 
bits to represent knowledge and information. However, a 
quantum computer uses qubits, which are the quantum bits 
that can exist in multiple states simultaneously. It allows for 
manipulating information at the quantum level, leading to 
unprecedented speed and accuracy. In contrast, a classical 
computer would require multiple bits to store the same data 
[23].

An unavoidable issue in all of these approaches is the 
presence of errors while computing, which could drastically 
impair the quality of the results. Thankfully, quantum error 
correcting codes have been discovered to reduce the impact 
of these errors, although they come with the drawback of 
needing an excessive number of qubits. Consequently, many 
engineering advances are still required for the system to tol-
erate faults [23]. A multitude of factors can lead to mis-
takes on a quantum computer, such as decoherence.  Even 
subtle alterations can cause the intended quantum gate to 
be shifted, and the results will be dissimilar to what was 
expected. Additionally, the imperfect control systems of 
these machines will still cause a certain number of errors. 

Currently, the least prone error to quantum gates has been 
found in trapped-ion processors, with single-qubit gate 
errors of one part at  106 and two-qubit gate errors of 0.1% 
[29, 30]. As an illustration, a type of superconducting pro-
cessor used for Google’s quantum supremacy experiment 
had single-qubit and two-qubit gate errors of 0.1% and 0.3%, 
respectively [5].

A single malfunction in a gate could ruin a delicate 
calculation and thus, errors can cause the computation to 
become useless after a handful of gate sequences. As part 
of the quantum computing process, constructing codes to 
correct errors in quantum computation has been a critical 
factor. In the late nineties, several organizations and groups 
demonstrated codes that could produce fault-free comput-
ing as long as the gate errors stay under a specific bound-
ary that depends entirely on the particular code [31]. The 
surface code, one of the most frequently used techniques, 
can operate with error rates close to 1% [32]. Sadly, codes 
to correct the quantum errors necessitate plenty of actual 
tangible qubits to encrypt a theoretically analytical form of 
the qubit, which is used for the computation process. As 
an illustration, a quantum algorithm used for factorizing 
prime numbers can, in a setting free of any noise, factorize 
a number of 2,000 bits with qubits ranging to almost 4,000. 
This factorization can be undertaken with an assumption of 
a 16-GHz gate rate, which takes approximately one day to 
complete [33]. Presently available technology of 433 qubit 
quantum processor [34] can perform computations that still 
need to be more to realize the full benefit of quantum com-
puting. Hence, there is ample scope to develop the technol-
ogy further.

Several teams have sought to establish unique algo-
rithms for producing quantum processors at an intermedi-
ate level [35] that are subjected to noise. For instance, the 
variational algorithms employ a classic computer together 
with a smaller quantum processor to complete many short 
forms of quantum computations before noise disrupts them. 
These established algorithms incorporate the parameterized 
circuits of quantum that carries out a challenging task, and 
the classical computer optimizes these frameworks. Error 
mitigation is an essential technique that attempts to reduce 
the number of errors with a minimal effort to operate larger 
circuits instead of reaching fault tolerance. Methods for 
doing this include discarding runs with errors through addi-
tional operations or handling the error percentage to arrive 
at the correct conclusion [36]. Even though the most signifi-
cant applications will need unimaginably huge and resilient 
quantum computers, it is predicted that the quantum devices 
available in the coming years will ultimately be capable of 
accomplishing practical tasks [35].

In addition to quantum computers, there are other forms 
of quantum hardware. These include quantum sensors 
which can detect and measure physical phenomena at the 
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quantum level and quantum communication systems which 
can securely transmit information over long distances [37]. 
The developmental process to build successful quantum 
hardware is in the early stages, but until now, great prom-
ise has already been shown in this field. In future, quantum 
hardware could be used to solve complex problems beyond 
traditional computers’ capabilities. It could also be used to 
create new forms of communication and encryption and to 
develop new areas in artificial intelligence. In conclusion, 
quantum hardware is a fast-developing technology with 
enormous potential to change how we think about comput-
ing. As technology develops, quantum hardware will likely 
become integral to our lives.

State‑of‑the‑Art Quantum Processors

Several quantum processors are available in the supercon-
ducting architecture that IBM predominantly manufactures. 
Xanadu Quantum Technologies also manufactures some 
quantum processors. Intel quantum processors are also avail-
able. The processing units in quantum computers are called 
quantum processing units (QPUs). In the quantum comput-
ing system, different ranges of qubit quantum processors 
are available (Fig. 5), and the qubit (Q) of the processor 
ranges are noted from 2 to 433 qubits. 2 qubit processor is 
developed by the Delft University of Technology (known as 
TU Delft). At the same time, 433 qubit processor is designed 
by IBM in the IBM Osprey architecture. Recently, a startup 
company from China known as SpinQ Technology informed 
about the development of the first-desktop quantum com-
puter with a high-speed processor [8, 19, 38, 39].

Quantum RAM (qRAM) and Big Data Analysis

Presently, quantum computer models are unable to access 
large classical datasets during the superposition. Therefore, 
current quantum computers have less advantage in unrave-
ling problems using large datasets. However, a tentative pos-
sibility for a quantum hardware solution is qRAM. It might 
provide the ability to coherently enquire a big dataset as a 
superposition of qubits in a quantum computer. The output 

yield would be composed of a superposition of the contents 
of the memory cell [8].

Quantum Annealing (QA) Devices

The device (QA device) provides an opportunity for another 
approach to quantum computing with noisy intermediate-
scale quantum (NISQ) hardware (Fig. 6). NISQ hardware is 
specialized based on classical simulated annealing. It might 
provide several quantum computing advantages, such as 
simulation and optimization [1]. QA has been explained by 
researchers using available QA hardware. A single-nucle-
otide sequence model’s feature has been solved using QA 
devices [40, 41].

Quantum Algorithms

We are aware of the capability of quantum computers which 
can be used in solving various jobs [32, 42–45]. To under-
stand ‘how fast’ these interesting machines are [46], one 
needs to comprehend the differences between the classical 
algorithms with the quantum ones. However, it is to be noted 
that in many situations, researchers cannot decide the best 
achievable quantum algorithm.

Several algorithms have tried to implement in the quan-
tum computation platform, like the classical computations, 
such as ensemble methods, persistent homology, k-Means 
clustering, boltzmann machines, and gaussian process 
regression.  For quantum computation, the algorithms have 
used the quantum computation in ơ(N) and related factors. 
It has been noted that some algorithms use quantum ran-
dom access memory (QRAM), such as k-Means clustering, 
gaussian process regression, and gaussian mixture models 
(Table 1) [23].

Fig. 5  The figure depicts a 5 qubit quantum processor layout in a chip

Fig. 6  The figure explains the quantum annealing process. In this pro-
cess, the qubits are physically evolved from a situation run by a Ham-
iltonian H0. For H0, the ground state is known a situation governed 
by H1
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An exception to it is the best achievable quadratic speedup 
on search problem, which has already been demonstrated 
with grover’s algorithm [41]. However, the knowledge from 
scenarios elucidates that ‘quantum speedup’ has not been 
validated.

Search Algorithm in the Quantum Computation

A vital advantage of the quantum computer over its classi-
cal counterpart is its extraordinary database searching speed 
[19]. An exciting algorithm on ‘search’ proposed by Grover 
illustrates this superiority. This algorithm can quadratically 
quicken a search problem of unstructured nature. It can play 
the role of ‘subroutine or trick’ to acquire enhancement in 
run time (quadratic form) in several different algorithms. 
This concept is known as the ‘amplitude amplification trick.’ 
When there is a need to determine marked items in a lengthy 
listing, ‘quadratic speedup theory’ as present in the grover 
algorithm, plays a crucial role in order to save time. In addi-
tion, this algorithm does not utilize the lengthy list’s inner 
form; hence, it can be categorized as generic.

Grover’s algorithm is usually considered as a helpful one 
for database searching. Sometimes, grover’s search shows 
worse performance than shor’s algorithm. However, srover’s 
algorithm is used to solve problems with appropriate oracles. 
The algorithm is applied to find maximal cliques, finding 
cycles, and finding triangles in a graph [47],

Consequently, for various classical problems, the instan-
taneous quadratic speedup can be obtained with its use. 
Grover’s algorithm determines one specific output out of 
N options in the case of queries [41]. Interestingly, this 
particular output is optimal [48]. It can act as a subroutine 
of many complex algorithms used in computational biol-
ogy for data processing, such as advanced proposition in 
protein sequence comparison [49], the neuronal version to 
understand the intracellular  Ca2 + dynamics [50], and leading 
algorithms in the quantum domain of machine learning [51].

Discrete and Factorization Algorithm

It can be recalled that an established and effective quantum 
algorithm is available for problems dealing with integer fac-
torization and discrete logarithms [47], providing remark-
able computational speed over the most significant classical 
algorithm. Even though an integer can be decomposed as a 
‘product of primes,’ determining the prime factors can be 
challenging. As an illustration [47], it may be noted that the 
safety of many internet transactions depends on the follow-
ing theory: factoring integers possessing a huge number of 
digits (say, ≥ thousand) is almost impossible. Shor [52] chal-
lenged this theory and demonstrated a quantum algorithm 
with polynomial time. Researchers developed the algorithm 
to determine the prime factors of an integer N and executed 
it in polynomial time. Further, in the presently employed 

Table 1  Synopsis of some essential quantum computing algorithms with their features

These algorithms have been reported from time to time in the literature

Sl. No Algorithm type Classical computation in 
ơ(N) and related factors

Quantum computation in 
ơ(N) and related factors

Quantum random access 
memory (QRAM)

References

1 Ensemble methods ơ(N) ơ(√N) No [87–89]
2 Persistent homology ơ(expN) ơ(N5) No [90]
3 Hidden Markov models ơ(N) Unclear No [91, 92]
4 k-Means clustering ơ(kN) ơ(log kN) Yes [93–95]
5 Bayesian deep learning ơ(N) ơ(√N) No [96]
6 Boltzmann machines ơ(N) ơ(√N) No [97–101]
7 Gaussian process regression ơ(N3) ơ(log N) Yes [102, 103]
8 Variational autoencoder ơ(expN) Unclear No [104]
9 Support vector machines ≈ơ(N2)-ơ(N3) ơ(log N) Yes [105–107]
10 Linear regression ơ(N) ơ(log N) Yes [108–111]
11 Graphical models ơ(N) Unclear No [112]
12 Principal component analysis ơ(N) ơ(log N) No [113]
13 Multilayer perceptrons ơ(N) Unclear No [114–116]
14 Bayesian networks ơ(N) ơ(√N) No [117, 118]
15 Gaussian mixture models ơ(log N) ơ(polylogN) Yes [119, 120]
16 Decision trees ơ(N log N) Unclear No [120]
17 Generative adversarial networks ơ(N) ơ(polylogN) No [121, 122]
18 Reinforcement learning ơ(N) ơ(√N) No [123]
19 Convolutional neural networks ơ(N) ơ(log N) No [124]
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cryptography algorithms, this algorithm [52] has potential 
use in performing cryptanalysis where public-key cryptog-
raphy could be broken. With this background, we note that 
quantum technology has not yet developed to that extent of 
solving and implementing these types of problems in totality. 
Nevertheless, future researchers can take benefit of Shor’s 
algorithm in which ‘subroutine parts’ can be considered. 
One such example of the ‘subroutine part’ is the ‘Quantum 
Fourier Transform,’ which has potential use in various quan-
tum algorithms as ‘subroutines’ [41].

The Reliability and Validity Studies Proved 
the Efficiency and Effectiveness of Quantum 
Computing and its Qubit

Only some studies conclusively demonstrated the effec-
tiveness and efficiency of quantum processing and qubits, 
despite ongoing research and development in the field. 
Tannu and Qureshi tried to understand the variability of the 
two qubits. These researchers found a Noisy system with 
a few hundred qubits, entitled NISQ (Noisy Intermediate-
Scale Quantum computers). They observed variations in 
the error rates of different qubits [53]. Cross et al. tried to 
validate the quantum computers using randomized model 
circuits and have attempted to introduce a method for NISQ 
[54]. Similarly, Piveteau et al. mitigated the error for uni-
versal gates on programmed qubits [55]. The necessity for 
accurate and effective error correction, the game-changing 
potential for energy applications, and the developing ecosys-
tem and industry around quantum computing are all topics 
covered in papers and articles that explore the drawbacks 
and possible advantages of quantum computing. All national 
governments have made significant investments in experi-
mental research to create scalable qubits with longer coher-
ence durations and reduced error rates because it has proven 
challenging to construct high-quality qubits physically.

Applications of Quantum Computing 
to Understand the Next‑Generation 
Biological Problems

Presently, considerable interest is increasing in quantum 
computing to solve biological problems [56–61]. Research-
ers are currently trying to solve next-generation biological 
problems using the quantum computing approach. Quantum 
computing devices are used to solve biologically significant 
problems. Quantum computing devices include NISQ and 
fault-tolerant quantum computing (FTQC) devices which 
are very much usual to solve biological problems (Table 2). 
Some biological problems which are being solved by the 
quantum computing approach are described as follows: Ta
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Simulation and Modeling of Biological 
Macromolecules

Researchers are using the present classical approaches to 
understand the simulation and modeling of biological mac-
romolecules. Simulation is one of the significant interfaces 
between biology, chemistry, and physics. The simulation 
might provide a deeper insight into biological macromol-
ecules, such as the association of small molecules with mac-
romolecules, computation of ligand’s binding free energies, 
dynamics of transport and ion channels across membranes, 
and the information might be the basis of clinical features. 
The study might contribute to the structure and function 
relationship of biological macromolecules [62]. Quantum 
computers have shown their promise in fastest problem solv-
ing and simulation [23].

The quantum simulator’s primary role is to divulge 
details of a conceptual mathematical function associated 
with a physical model [51]. However, it must consider the 
particular objective and setting of that simulation. Generally, 
a simulation indicates if the model correctly represents the 
system under study. When the simulation model’s depiction 
is precise, the given quantum simulator can be accepted for 
our system. The simulator definition can be related to estab-
lished scenarios where the term has been applied. Several 
devices that are publicized in the name ‘quantum simula-
tion’ are, in fact, analog simulators [63–67]. Hamiltonians of 
these devices can be manipulated and used in expressing real 
systems. This tallies our explanation of the simulator and the 
context in which it is discussed above. Thus quantum simu-
lators can be regarded as a ‘universal quantum computer.’ 
It is noteworthy that we can program quantum computers to 
simulate localized quantum systems [68]. This capability 
indicates that it can encode quantum mechanical entities in 
qubits and gates. Simultaneously, the current scientific belief 
is that quantum systems cannot be accurately simulated with 
classical computers. Therefore, quantum computers can play 
a crucial role in performing precise simulations for chemical 
processes and procedures in biological sciences [9, 69–71].

Computational Biology and Quantum Computing

Bioinformatics performs a key role in understanding and 
optimization of the different computational tasks, like de 
novo assembly, phylogenetic tree inference, and sequence 
alignment. For these problems, classical algorithms are often 
used. However, these areas can be studied with quantum 
algorithms. Recently, quantum algorithms can be used to 
solve some bioinformatics problems (Table 3). Researchers 
target NP-hard problems in FTQC devices for theoretical 
algorithms of quantum computing. One example includes 
sequence alignment [49, 72]. Prousalis and Konofaos per-
formed a quantum pattern recognition method to develop 

advanced pairwise sequence alignment. However, in terms 
of time and space complexity, the proposed method dis-
played a better alignment quality and succeeded among the 
others [49]. Another example is phylogenetic tree devel-
opment using a quantum-inspired computer. Phylogenetic 
tree development methods are a crucial area of evolution-
ary biology, which is fundamental for many biological sci-
ence studies. It presents ample information on evolution-
ary events among organisms [73]. Recently, Onodera et al. 
reconstructed a phylogenetic tree using graph cut. In this 
study, the researchers used a quantum-inspired computer. 
However, current research in quantum computing shows 
significant promise in bioinformatics [74].

Data Analysis in Bioinformatics

It is a popular fact that linear and differential equations have 
broad applications in numerous engineering and other sci-
entific domains. Recent research trends indicate ‘data sets’ 
which are used to define these equations, which can be enor-
mous depending on the specific application [75], where data 
of the order petabytes could be required to process to get 
a solution. Quantum computation has the power to pro-
cess magnanimous data sets at exponential speeds and can 
feed data to AI techniques. Several researchers have used 
quantum computation in data analysis. Available pieces of 
literature reveal the application of quantum algorithms to 
solve linear [75] and differential equations [76–78], where 
these algorithms play the role of ‘subroutines’ in algorithms 
on data processing. As proposed by Harrow et al. [75], the 
quantum algorithm is capable enough to give solutions to 
definite linear systems at exponentially rapid speed com-
pared to any existing algorithm. This group [75] reported 
that their algorithm was related to the traditional Monte 
Carlo ones, which are pretty quick and operate with samples 
of a statistical distribution involving N objects instead of 
using all the N constituents of distribution. They proved that 
even though these traditional sampling ones are quick, any 
traditional algorithm, in general, needs much more time than 
their [75] algorithm to complete the identical matrix inver-
sion job. On the specific applications of this algorithm [75], 
its use is possible in computational biology, where numeric 
models can be solved, and also in the domain of machine 
learning techniques.

Protein Folding

The protein-folding problem is quite old and was proposed 
one half-century ago. The protein-folding problem is one 
of the significant and complex problems in computational 
biology [79]. Researchers tried to predict the protein’s three-
dimensional structure using a given amino acid sequence. 
However, the protein-folding problem has been studied 
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intensively in quantum computers. Researchers reformu-
lated the lattice problem to make the issue of protein fold-
ing compatible with the present day’s quantum comput-
ers. Several lattice protein-folding models were developed 
from time to time. In this direction, using Hamiltonian was 
studied. The model is a specific example of a thermody-
namic system that can understand phase transitions. The 
problem was attempted to slove using quantum annealing 
[80]. Perdomo–Ortiz et al. used quantum annealing to find 
low-energy conformations of different lattice protein models 
[81]. The study was standard execution of quantum anneal-
ing to solve the lattice protein-folding problems. In this 
direction, several algorithms have been developed from time 
to time. One significant algorithm is Quantum Approximate 
Optimization Algorithm (QAOA). However, machine learn-
ing models in quantum computing might speed up solving 
the protein-folding problem.

Molecular Biology Problems

One of the significant areas in molecular biology is tran-
scription factor-binding sites in DNA. These factors are 
essential in regulating gene expression. Researchers tried to 
identify the different transcription factors for DNA binding 
using quantum computing. Li et al. used quantum anneal-
ing to predict binding specificity using a small number of 
DNA sequences datasets derived from actual binding affinity 
experiments [82]. The researchers described that quantum 
annealing is as an efficient technique to solve computational 
biology problems in quantum computing.

Modeling of Gene Regulatory Networks

Modeling of gene regulatory networks is a fascinating 
area in quantum computing. To perform modeling of gene 

Table 3  Some significant quantum computation approaches to address complex biological problems. It illustrates the next-generation computa-
tional biology landscape

Sl. No Types of biological 
application

Type of  
algorithm

Hardware Experimental 
validation

Classical  
complexity

Remarks References

1 Sequence alignment Optimization Universal gate-
based quantum 
device

Not available Experimental 
estimate and 
polynomial

Expected 
advantage in 
polynomial

[125–129]

2 Inference of phylo-
genetic trees

Optimization Universal gate-
based quantum 
device

Not available Super- polyno-
mial

Predictable 
advantage in 
polynomial

[130]

3 Molecular docking 
simulation

Sampling Gaussian boson 
sampler

Not available Super- polyno-
mial

Up to super-
polynomial in 
unknown state

[131]

4 Neural networks QML Universal gate-
based quantum 
device

Completed Super-polynomial 
and polynomial 
(Boltzmann 
machine)

Predictable 
advantage in 
polynomial 
and problem 
specific, which 
differs by 
measure

[132–136]

5 Inference of bio-
logical networks

Optimization Quantum 
annealer

Completed Super-polynomial 
and polynomial

Predictable 
advantage in 
polynomial

[137–139]

6 Conformation simu-
lation and folding 
of protein

Quantum 
annealing

Quantum 
annealer

Completed Experimental 
estimate and 
polynomial

Up to polynomial 
in unknown 
state

[23, 80, 140–142]

7 Sequence matching Search, QML Universal gate-
based quantum 
device

Not available Polynomial Advantage 
probably up to 
super-polyno-
mial

[136, 143, 144]

8 Transcription 
factor-binding 
analysis

Optimization Quantum 
annealer

Completed Experimental 
estimate and 
polynomial

Expected 
advantage up to 
polynomial in 
unknown state

[145]

9 De novo assembly Quantum 
annealing, 
optimization

Universal gate-
based quantum 
device, quan-
tum annealer

Completed Experimental 
estimate and 
polynomial

Probably up to 
polynomial in 
unknown state

[146, 147]
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regulatory networks, Weidner et al. have created a quantum 
circuit from a series of quantum gates using the development 
network of the mammalian cortical area. Here, the circuit 
executes a state transition on the superposition of the identi-
cal  and finally, they have measured the output [83].

Drug Discovery and Development

Quantum computing is exploring in the field of drug dis-
covery and development. At the same time, quantum com-
puting can be used in the manufacturing, supply chain, and 
other use of drug distribution. Zinner et al. proposed a plan 
for using quantum computing along with the CADD and 
AI during drug discovery, development, and distribution 
[4]. Recently, Lau et al. enriched the drug discovery and 
development area by inventing a hybrid classical quantum 
workflow model for drug design entitled HypaCADD. This 
model incorporates quantum machine learning (QML) with 
classical docking and molecular dynamics. Finally, they pre-
sented a case study with SARS-CoV-2 protease and related 
mutants using the model [84].

Mechano‑Biology

Quantum computing is also being applied in mechano-biol-
ogy. Recently, Sohail and Ashiq have tried to use a model for 
quantum-inspired AI for the sensor development of a cardiac 
problem, like cardiac amyloidosis. It is a good example of 
quantum computing in the field of mechano-biology [85].

RNA Folding

Understanding an RNA-fold pattern is an exciting area of 
biology. Recently, Fox and his colleagues have shown that 
the RNA secondary structure prediction issue can be solved 
as Binary Quadratic Model, which can be addressed using 
quantum computing [86]. Soon, more applications are yet 
to come, which might solve the RNA secondary structure 
prediction issue more profoundly.

Challenges and Limitations of Quantum 
Computing

Although quantum computing is a new technology with 
immense promise to address complicated problems, it also 
has several difficulties and constraints. Due to their extreme 
sensitivity to environmental disturbances and the require-
ment for expensive refrigerators with temperatures close to 
absolute zero, quantum computers provide one of the key 
hurdles. Because of this, they are unstable and challenging 
to use. Error correction is a severe problem for quantum 
computers because they are noise sensitive and difficult to 

calibrate. Because qubits can exist in an endless number of 
states, unlike conventional computers that undergo a bit flip 
from 0 to 1 or vice versa, quantum faults are more challeng-
ing to fix. The fact that quantum computers are still being 
developed and still need to be economically viable presents 
another challenge. With only 70 qubits, current machines fall 
well short of the one-million qubits required to make quan-
tum computers economically viable. Such a breakthrough, 
according to researchers, may occur within the next ten 
years, but in the meantime, quantum computers will con-
tinue to be costly and specialized devices. The hardware and 
software limitations of quantum computing also have their 
limits. Quantum computing relies on quantum gates, which 
alter data and apply logical operations to electronic signals.

A quantum logic gate or quantum gate is an elemental 
quantum circuit operating on a small number of qubits.  It 
is formal and foundational for quantum mechanics based 
on modifying some rules. Quantum gates cannot store data, 
though, which makes it challenging to scale quantum com-
puting to more complex issues. Furthermore, strictly quan-
tum algorithms are challenging to implement, especially 
with current hardware.

Conclusion

The field of quantum computing is passing through main 
phases of development. The software and hardware in the 
field of quantum computing are progressing. However, there 
are considerable knowledge gaps in this area which remain 
as the main challenges. However, more than hundred organi-
zations, including research, academic, government labora-
tories, and computer organizations worldwide, are working 
to address these challenges to fill the knowledge gaps. Pres-
ently high-end ion-trap quantum computers are expected to 
develop very soon with more than 450 to 500 qubit proces-
sor with highly dynamic features. It will handle the larger 
data set sizes more prominently. The new quantum algorithm 
development for next-generation biological problems is one 
of the significant challenges in quantum computing in com-
putational biology. However, computational biologists will 
probably have substantial challenges. Therefore, our review 
will enrich the computational biology field and help the 
future researchers to solve the significant, modern molecu-
lar biological problems for the future generation very easily.
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