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Abstract
The discovery of new fungal effector proteins is necessary to enable the screening of cultivars for disease resistance. 
Sequence-based bioinformatics methods have been used for this purpose, but only a limited number of functional effector 
proteins have been successfully predicted and subsequently validated experimentally. A significant obstacle is that many 
fungal effector proteins discovered so far lack sequence similarity or conserved sequence motifs. The availability of experi-
mentally determined three-dimensional (3D) structures of a number of effector proteins has recently highlighted structural 
similarities amongst groups of sequence-dissimilar fungal effectors, enabling the search for similar structural folds amongst 
effector sequence candidates. We have applied template-based modelling to predict the 3D structures of candidate effector 
sequences obtained from bioinformatics predictions and the PHI-BASE database. Structural matches were found not only 
with ToxA- and MAX-like effector candidates but also with non-fungal effector-like proteins—including plant defensins and 
animal venoms—suggesting the broad conservation of ancestral structural folds amongst cytotoxic peptides from a diverse 
range of distant species. Accurate modelling of fungal effectors were achieved using RaptorX. The utility of predicted struc-
tures of effector proteins lies in the prediction of their interactions with plant receptors through molecular docking, which 
will improve the understanding of effector–plant interactions.
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Introduction

Effector proteins are secreted from the cells of plant patho-
genic fungi and typically locate to the plant cytoplasm (cyto-
plasmic effectors) or apoplastic space (apoplastic effectors), 
to cause disease in plants [1]. Secreted effector proteins are 

usually less than 200 amino acids long and cysteine-rich, 
particularly in the case of apoplastic effectors. Studies of 
effector proteins have been ongoing for over three decades 
[2], with the  identification of new effectors crucially allow-
ing the screening of disease resistance/susceptibility in the 
breeding of new plant cultivars. However, their identifica-
tion has not been straightforward because most have low 
sequence similarity with other known fungal effectors or 
other proteins [3, 4]. Sequence similarity is low amongst 
many fungal effectors due to high genome plasticity, which 
plays an important role in fungal pathogenic fitness [5–7]. 
This is attributed to high rates of mutation in structur-
ally plastic and repeat-rich genome regions that typically 
containing effector proteins [6, 7]. However, a few effec-
tor families can be identified based on loosely conserved 
sequence motifs or domains, such as the RxLR-like and 
LysM families [8]. Recently developed tools have enabled 
computational prediction of effector candidates based on 
predicted sequence properties with limited success, such as 
EffectorP 3.0 [9] and Predector [10], and remote homol-
ogy has also been used to predict structural homology from 
sequence data with RemEff [3]. However, these predictive 
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methods do not offer the level of functionality that could be 
achieved using homologous three-dimensional (3D) protein 
structures.

In 2015, de Guillen et al. reported the presence of struc-
tural similarities amongst Magnoparthe oryzae and ToxB 
(Pyrenophora tritici repentis) effectors, termed the MAX 
family, despite having less than 20% sequence similar-
ity [11]. Similar observations have also been reported in 
other effector families with available 3D protein structures 
resolved by X-ray crystallography (XRD) or nuclear mag-
netic resonance (NMR), such as ToxA family, as well as for 
a number of lone members: RNAse like protein expressed 
in the haustoria (RALPH), knottin-like and Tox3 [12–14]. 
None of these effectors have sequence similarity to any other 
fungal effectors or known proteins despite having similar 
structures/secondary structures [11]. This demonstrates 
the challenge in sequence-based identification of these 
effector families, but holds out hope for structure-based 
identification.

The increased rate of genome sequencing of agricul-
turally important plant pathogenic fungi has led to a sub-
stantial increase in genome and associated ‘-omics’ data 
to enable the search for new fungal effectors; however, the 
aforementioned challenges to sequence-based identifica-
tion have imposed significant bottlenecks [4, 15]. There is 
currently an abundance of unconfirmed effector candidate 
sequences lacking 3D structures [3, 4, 15, 16], but solv-
ing their 3D structures using XRD and NMR approaches, 
although highly accurate, requires substantial resources and 
time. The application of computational approaches, such as 
template- and non-template-based modelling, can enable 
the determination of the structure of fungal effector can-
didates from their sequences, which might help to address 
this problem. In template-based modelling, structure-based 
identification of effectors relies on available 3D structures 
as a template/reference during modelling, which involves 
the use of homology modelling, threading and/or fold rec-
ognition approaches. Template-based modelling may thus 
enable the categorisation of many effector candidates into 
either established or novel structural families on the basis 
of a common predicted structural fold/motif and/or overall 
structural homology. This may also provide additional sup-
port for the experimental validation of effector proteins that 
are predicted to belong to structural effector families based 
on sequence-derived predictions. In addition, template-based 
modelling may enable the identification of novel folds/motifs 
if a predicted structure contains at least some regions that 
are homologous to a known, non-effector protein structure. 
There is a limited number of currently known structural 
effector families, and many more folds/motifs are yet to be 
discovered, which is indicated by broad survey of proteins 
folds found in nature [17].

This study focuses on the well-established ToxA and 
MAX effector families, which contain virulence factors of 
devastating cereal diseases, caused by fungal pathogen spe-
cies including M. oryzae (infecting rice), P. tritici repentis 
(wheat), Parastagonospora nodorum (wheat) and Bipolaris 
sorokiniana (maize). Both families have the largest number 
of experimentally confirmed 3D protein structures amongst 
the currently proposed structural families of fungal effectors. 
The ToxA-like family structures consist of ToxA, Avr2 and 
AvrL567 whilst the MAX family structures consist of ToxB, 
AvrPia, AvrPib, AvrPizt and AvrPik variants. Both families 
share a β-sandwich fold, with an additional short α-helix at 
the N-terminus found in the ToxA-like effectors (Fig. 1).

To date, there is no structure-based approach in the con-
text of template-based modelling dedicated to the prediction 
of fungal effector protein structures, largely due to the lim-
ited number of experimentally confirmed structures avail-
able. Secondly, template-based modelling is dependent on 
sequence homology between template and the sequence 
candidates in order to make accurate predictions, which is 
challenging because sequence homology is typically low 
amongst fungal effector proteins. Until recently, it was also 
not computationally feasible to model thousands of effector 
candidate structures in a high-throughput manner to enable 
large-scale structural homology comparisons. Very recently, 
a significant number of public protein datasets for multiple 
species has become publicly available via the DeepMind 
(AlphaFold) project [18], which uses ab initio or non-tem-
plate-based approaches for protein modelling.

Template-based modelling can generally be categorised 
into basic homology modelling, threading and fold recog-
nition, and the selection of each approach depends on the 
percentage of sequence similarity of the target sequence with 
its template(s). In general, the most commonly used homol-
ogy modelling programs are SWISS-MODEL and MODEL-
LER [19]. Other modelling programs such as Phyre2 [20], 
I-TASSER [21] and RaptorX [22, 23] are based on threading 
and fold recognition. These programs have been widely used 
to successfully predict the structure of a diverse range of 
proteins from different organisms. The main advantage of 
using template-based modelling compared to non-template-
based methods is the higher confidence and reliability of the 
predicted structures, since an existing experimentally con-
firmed structure (template) guides the folding, rather than 
following a first principles (ab initio) approach. Studies of 
template-based modelling of uncharacterised sequence can-
didates have also shown it to be reliable for “transferring” 
protein function of homologous proteins onto the predicted 
structures [24].

The application of computational modelling to fungal 
effector proteins has been recently published by Seong 
et al. based on the secretome of M. oryzae [25]. Structures 
were predicted for effector protein candidates obtained 
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from secreted and non-transmembrane sequence sets of 
M. oryzae secretome. Protein modelling was done using 
TrRosetta, which applies co-evolutionary information 
from multiple sequence alignment (MSA) of the target 
sequences and homologues, and the template library for 
MSA was obtained from the I-TASSER server. Full atomic 
models were generated using PyRosetta and the structures 
with the lowest energy score were selected. Predicted 
structures were assessed with RUPEE, SCOP and CATH. 
The study reported here differs from this previous work 
because it focusses on elucidating the structure of fungal 
effector proteins from diverse fungal species and improv-
ing overall knowledge of effector structural families, rather 
than a single species. Furthermore, in this study, a fully 
structure-based rather than sequence-based approach was 

adopted. Template-based modelling was assessed for its 
ability to model the structure of fungal effector proteins, 
and the advantages and limitations of this approach are 
explored.

Methods

Effector Candidate Sequences

Thirty-three ToxA candidate protein sequences were 
obtained from bioinformatics predictions generated using 
sequence-derived hidden-Markov model (HMM) clustering 
(remote homology) [3] (Fig. S1; Table S1 in Supporting 
Information, SI), and 55 MAX effector candidate protein 

Fig. 1   Structures of effector proteins. A ToxA-like family with ToxA 
(a), AvrL567 (b) and Avr2 (c), and B MAX-like family with AvrPib 
(a), AvrPizt (b), Avr1CO39 (c), AvrPia (d), AvrPikD (e) and ToxB 
(f). Structures are shown in ribbon representation with β-strands col-

oured in purple, α-helices in cyan and loops in gold. The structural 
topology of the secondary structure is shown below each protein. 
Panel B was adapted from Zhang et al. (2018). Copyright (2018) John 
Wiley and Sons
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sequences were obtained from de Guillen et al. [11] (Fig. 
S2; Table S2 in SI). Protein sequences of 87 effector candi-
dates (with experimentally validated virulence phenotypes) 
were downloaded from PHI-base v4.4 [26] and based on the 
training dataset used in EffectorP version 1.0 and 2.0 [27, 
28] (Fig. S3 in SI). The training dataset includes some effec-
tors with structures available in the PDB and which were 
subsequently omitted from effector candidate analysis in this 
study but were used for benchmarking. All sequences were 
obtained in FASTA format and were pre-processed with Sig-
nalP v4.1 [29] using default parameters to remove the N-ter-
minal secretion signal peptide, resulting in mature secreted 
sequences. Sequences of fungal effector candidates within 
the same family were viewed and aligned using BioEdit [30] 
under ClustalW alignment with default parameters [31]. Fig-
ures S1 and S2 in SI show the sequence alignment of the 
candidates of ToxA and MAX-like effector families, respec-
tively. Details of effector candidate sequences are compiled 
in Tables S1 and S2 in SI.

Template‑Based Modelling

RaptorX version 3.0 (http://​rapto​rx.​uchic​ago.​edu/) [23] was 
used to model the structure of effector candidates. Both the 
web and standalone versions were utilised. RaptorX ranks 
models based on the top RaptorX score, and each model is 
assigned a p-value, RaptorX score, un-normalised global 
distance test (uGDT)/GDT, un-normalised sequence iden-
tity (uSeqID)/SeqID, alpha carbon (Cα) root mean square 
displacement (RMSD) and TM-score. RaptorX score is the 
alignment score in a range between 0 and the total sequence 
length, with 0 being the worst. SeqID/SeqID is the num-
ber of identical residues in the alignment. SeqID is uSe-
qID normalised by the sequence length and multiplied by 
100. Higher uSeqID/SeqID is better and SeqID of > 30% 
(in proteins of > 200 amino acid residues) suggests that the 
predicted model has a correct fold [22, 32]. uGDT is un-nor-
malised GDT, defined as 1 × N(1) + 0.75 × N(2) + 0.5 × N(4) 
+ 0.25 × N(8), with N(x) being the number of residues with 
estimated modelling error in Å smaller than x. GDT is uGDT 
normalised by the protein domain length, and measures the 
quality of a model by comparing it with the native structure, 
having a value of 0 to 100. For a protein with > 100 amino 
acid residues, uGDT > 50 is an indicator of good quality. For 
a protein < 100 amino acid residues, GDT > 50 is an indica-
tor of good quality. p-value assesses the relative quality of 
a model, with smaller p-values reflecting better model qual-
ity. A small p-value < 10−5 also indicates that the model has 
uGDT/GDT ≥ 50 [23].

Comparison with Other Template‑Based Modelling 
Approaches

Two other well-known template-based modelling programs 
were used for comparison with RaptorX: SWISS-MODEL 
(homology modelling) (https://​swiss​model.​expasy.​org/) [19] 
and Phyre2 (fold recognition) (http://​www.​sbg.​bio.​ic.​ac.​uk/​
phyre2/) [20]. Both of these programs were used through 
their online webservers. In SWISS-MODEL, the automated 
mode was applied, whereby suitable templates are identi-
fied based on BLAST and HHblits searches. In the case of 
Phyre2, its normal mode was applied, which uses HHblits 
and fold library scanning.

Structural Analysis

The predicted protein structures were superimposed onto 
their respective templates based on their Cα, and the RMSD 
and TM-score values were calculated using TM-align [33]. 
TM-score compares structures based on global topology and 
is less sensitive to local structure variations compared to 
the use of RMSD. TM-score values range between 0 and 
1, where a score greater than 0.5 indicates that structures 
have the same fold, and a higher value indicates greater 
similarity [34]. Domain and fold analysis of the predicted 
models was done using CATH [35, 36] and SCOP [17, 37]. 
The structural quality of the predicted models was assessed 
using PROCHECK [38]. Protein structures were visualised 
using PyMol Open Source (https://​github.​com/​schro​dinger/​
pymol-​open-​source).

Results

In this study, three different candidate sequence datasets 
were used as input for template-based modelling: ToxA-
like effectors, MAX-like effectors, and phenotypically vali-
dated virulence proteins obtained from PHI-base. The first 
two datasets were obtained from bioinformatics sequence-
based predictions implementing sequence–profile/pro-
file–profile-based approaches specific for ToxA and MAX 
effector families [3, 11]. The identification of ToxA-like 
candidates applied a remote homology clustering method 
using MMSeq2 profiles, HMM–HMM searches and HHBlits 
search iterations [3], whilst sequences of MAX-like candi-
dates were obtained using HMM search, NCBI PSI-BLAST 
and HMMERsearch (HMMER v 3.0) [11]. The templates 
used in the modelling of these two datasets were thus 
expected to correspond to either ToxA or MAX structures. 
The third sequence dataset from PHI-base contains some 
effector sequences with structures available in the PDB, 
and which were excluded as effector candidates and instead 

http://raptorx.uchicago.edu/
https://swissmodel.expasy.org/
http://www.sbg.bio.ic.ac.uk/phyre2/
http://www.sbg.bio.ic.ac.uk/phyre2/
https://github.com/schrodinger/pymol-open-source
https://github.com/schrodinger/pymol-open-source


788	 Molecular Biotechnology (2024) 66:784–813

1 3

later used instead as input for the benchmarking of template-
based modelling approach ("Modelling of Fungal Effector 
Candidates Using Templates from Known Effector Struc-
tural Families" section). This third dataset was also tested for 
predicted 3D models that matched known structural families.

We divide the presentation of our findings into three 
major parts. "Modelling of Fungal Effector Candidates 
Using Templates from Known Effector Structural Families" 
section presents the predictions of template-based model-
ling with matches to templates that belong to known effec-
tor structural families, which includes sequence datasets of 
ToxA-like and MAX candidates as well as phenotypically 
validated PHI-base sequences. "Modelling of Fungal Effec-
tor Candidates Based on Templates Belonging to Non-effec-
tor Proteins" section presents and discusses the predictions 
of structural modelling that used templates from protein 
structures other than the known fungal effector structural 
families. "Comparison with Other Template-Based Model-
ling Programs" section presents the comparison of effectors 
modelled with RaptorX with SWISS-MODEL and Phyre2.

Modelling of Fungal Effector Candidates Using 
Templates from Known Effector Structural Families

This subsection describes the predictions of the model-
ling of the structure of effector candidates from ToxA-like, 
MAX-like and phenotypically validated virulence proteins 

that utilises templates from known fungal effector structural 
families using RaptorX. Currently, there are thirteen known 
effector structural families, with ToxA and MAX having the 
largest number of resolved 3D structures deposited in the 
PDB compared to other fungal effector families.

For each candidate sequence, the top five models ranked 
according to the best RaptorX score are reported, with the 
top-ranked model deemed to be the best model. In addi-
tion to the scoring function given by RaptorX and its cor-
responding p-value, RaptorX score, uGDT/GDT, uSeqID/
SeqID, Cα–RMSD and TM-score were used to determine 
structural similarity between the modelled structure (target) 
and the reference template structure. The sequences of fun-
gal effector proteins with available structures in the PDB 
(Table 1; Fig. S4 in the SI) were used for benchmarking to 
determine the optimum cut-offs for the scoring functions 
used in RaptorX, which were subsequently applied for the 
assessment of all effector candidates.

In the benchmarking predictions, RaptorX scores for all 
predicted effector models were higher than 50 (Table 1), 
which confirmed the reliability of this scoring function since 
a model with a score above 50 is highly likely to exhibit the 
correct fold of the target sequence [22]. The highest RaptorX 
score was 325 for effector FGL1 and the lowest was 53 for 
NIP2. TM-score values were all above 0.8, ranging from 
the highest value of 0.99987 to the lowest value of 0.83321, 
revealing the high similarity of the predicted models to the 
respective 3D reference structures.

Table 1   Benchmarking predictions using RaptorX for sequences of effectors with 3D structures available in the PDB

The table reports the p-value, RaptorX score, uGDT/GDT, uSeqID/SeqID, PDB ID of the template, Cα–RMSD and TM-score of the predicted 
models

Structural family Effector (PDB ID) p-value RaptorX score uGDT/GDT uSeqID/SeqID RMSD (Å) TM-score

ToxA AvrL567A (2opcA) 1.60E−13 100 119/93 115/91 0.12 0.99908
ToxA (1zldA) 3.20E−06 70 96/59 97/60 0.13 0.98892
Six3 (5od4A) 2.50E−09 96 120/84 123/85 0.12 0.99916

MAX ToxB (2mm0A) 3.10E−06 60 64/100 64/100 0.16 0.99655
Avr1Co39 (2myvA) 9.40E−10 60 67/100 67/100 0.19 0.84511
AvrPia (5jhjA) 2.70E−06 62 65/99 66/100 0.16 0.83321
AvrPik (5a6wC) 1.60E−12 76 84/91 83/90 0.13 0.99843
AvrPizt (2lw6A) 1.20E−10 66 77/86 80/89 0.14 0.99805

Zinc-binding AvrP123 (5vjjA) 7.80E−13 65 65/69 48/51 0.89 0.94371
LARS AvrLm4-7 (4fprA) 2.80E−10 98 107/87 118/97 0.37 0.93397
RxLR AvrM (4bjmA) 1.70E−06 243 204/71 226/79 0.39 0.99636
C2-like PevD1 (5xmzA) 2.40E−09 125 110/81 122/89 0.14 0.99891
Regulatory enzyme Cmu1 (6fpgC) 1.19E−08 234 235/87 262/97 0.07 0.99987
Hydrolase/lipase FGL1 (3ngmA) 3.10E−12 325 275/82 293/87 0.65 0.99313
Chitin-binding Ecp6 (4b8vA) 9.50E−12 158 160/76 189/90 0.10 0.99965

Avr4 (6bn0A) 1.60E−11 64 66/56 79/68 0.17 0.99718
Necrosis inducing NEP1 (3gnuP) 6.85E−19 204 174/77 89/39 0.26 0.98383

NIP1 (1kg1A) 2.63E−09 53 55/88 60/97 0.242 0.99162
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ToxA‑Like Effector Candidates

The prediction of the structures of all 33 ToxA-like effec-
tor candidates used the structure of ToxA effector (PDB 
structure 1zldA) as the template in the modelling of the 
top-ranked model (Table 2). The lowest RaptorX score 
was 41 and the highest was 63. Twenty-one of the pre-
dicted models had a RaptorX score of 50 and above, which 
was regarded as successful. TM-score values ranged from 
the lowest of 0.66836 to the highest of 0.93961. The 
remaining twelve models had a RaptorX score below 50 
(41–49) and three of these models had the lowest RaptorX 

score of 41 (p0de_mRNA10272, p2g1_PZD05769.1 and 
p2g2_PZC93680.1), which were predicted to have two 
β-strands missing out of the seven β-strands forming the 
β-sandwich structure of ToxA effector (Fig. S5 in SI) due 
to the absence of 28 residues in the C-terminal region. 
This deficiency was, however, not observed in the models 
with a RaptorX score of 50 and above since the length of 
the target sequences were either equal or larger than the 
length of the template sequence. The sequence length and 
missing β-strands likely contributed to the low RaptorX 
scores of the predicted models.

Table 2   RaptorX predictions for the top-ranked models of each ToxA-like effector candidate that had a match to a template in the ToxA-like 
structural family, sorted by alphabetical order

The table reports the p-value, RaptorX score, uGDT/GDT, and uSeqID/SeqID, as well as the structure used as the reference template (PDB ID). 
Pairwise structural differences between each model and reference template are estimated by Cα–RMSD and TM-score

ToxA-like effector candidates p-value RaptorX score uGDT/GDT uSeqID/SeqID Template PDB ID RMSD (Å) TM-score

p05c_mRNA16607 1.9 × 10−4 49 71/53 18/13 1zldA 1.12 0.88709
p05d_mRNA9122 1.5 × 10−4 49 68/51 17/13 1zldA 0.92 0.89386
p05e_mRNA13670 2.3 × 10−4 49 72/53 19/14 1zldA 1.00 0.88914
p05g_mRNA17320 1.9 × 10−4 50 71/53 19/14 1zldA 0.87 0.90005
p05k_mRNA3392 1.9 × 10−4 50 71/53 19/14 1zldA 0.87 0.90005
p05m_mRNA12409 1.9 × 10−4 50 71/53 19/14 1zldA 0.91 0.90067
p05n_mRNA11205 1.9 × 10−4 50 71/53 19/14 1zldA 0.99 0.89235
p09v_mRNA10419 1.9 × 10−4 51 69/49 18/13 1zldA 1.26 0.87117
p09v_mRNA9195 7.3 × 10−4 47 64/46 17/12 1zldA 1.10 0.8552
p0dd_mRNA2255 7.0 × 10−5 51 71/53 23/17 1zldA 1.01 0.89151
p0de_mRNA10272 5.4 × 10−4 41 62/61 18/18 1zldA 0.84 0.66836
p1ap_mRNA3793 2.2 × 10−4 49 72/55 19/15 1zldA 0.87 0.90312
p1b1_EXF72942.1 2.3 × 10−4 49 72/53 19/14 1zldA 0.91 0.89719
p1bd_mRNA10016 2.0 × 10−4 49 71/53 19/14 1zldA 0.79 0.90687
p1bd_mRNA1147 1.8 × 10−4 50 70/53 18/14 1zldA 1.07 0.88942
p1bi_OBR06575.1 1.6 × 10−4 48 66/49 15/11 1zldA 1.32 0.89174
p1bo_mRNA4951 2.0 × 10−4 49 71/54 18/14 1zldA 0.82 0.90455
p22r_EXK24251.1 8.9 × 10−5 51 66/49 20/15 1zldA 1.16 0.88646
p2fk_EMD96331.1 4.6 × 10−5 63 96/66 38/26 1zldA 0.39 0.9509
p2fl_ENH98532 .1 4.6 × 10−5 63 96/66 38/26 1zldA 0.39 0.95141
p2fn_EUC44184.1 9.1 × 10−5 56 67/55 27/22 1zldA 1.19 0.90785
p2fq_EUC36307.1 2.3 × 10−4 56 71/57 18/14 1zldA 0.73 0.93061
p2g0_EFQ93895.1 7.0 × 10−5 51 71/53 23/17 1zldA 1.01 0.89152
p2g1_PZD05769.1 5.4 × 10−4 41 62/61 18/18 1zldA 0.79 0.67131
p2g2_PZC93680.1 5.4 × 10−4 41 62/61 18/18 1zldA 0.78 0.67124
p2g3_PZD24241.1 1.0 × 10−4 51 74/56 24/18 1zldA 0.85 0.90474
p2g4_PZD32416.1 1.0 × 10−4 51 74/56 24/18 1zldA 0.85 0.90474
p2g5_PZD46046.1 1.0 × 10−4 51 74/56 24/18 1zldA 0.92 0.89835
p2g6_PWO08528.1 1.0 × 10−4 51 74/56 24/18 1zldA 0.85 0.90474
p2g7_PZD04407.1 1.0 × 10−4 51 74/56 24/18 1zldA 0.94 0.89685
p2g8_PWO20795.1 1.0 × 10−4 51 74/56 24/18 1zldA 0.92 0.89835
p2g9_EDU49735.1 1.0 × 10−4 51 74/56 24/18 1zldA 0.85 0.90474
p2gb_RAQ98980.1 1.6 × 10−4 52 71/53 21/16 1zldA 0.89 0.91064
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Fig. 2   Top five models predicted by RaptorX for different ToxA-like 
effector candidates sorted according to decreasing RaptorX score 
(A–E). Each model (shown in blue) was superimposed onto its cor-
responding ToxA reference structure (PDB ID 1ZLD) (F), shown 

in gold. The corresponding Cα–RMSD and TM-score values are 
reported. The remaining ToxA-like effector candidate models are 
reported in Fig. S5 in SI
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The TM-score of all ToxA-like effector candidates was 
above 0.5, with candidate p2fq_EUC36307.1 having the 
best TM-score of 0.93061 (Fig. 2) and p2g2_PZC93680.1 
having the lowest TM-score of 0.67124, revealing the high 
accuracy of the predictions made by RaptorX for these 
effector candidates.

Figure 2 reveals that the ToxA-like effector candidate 
p2fk_EMD96331.1 had the highest RaptorX score of 63, 
and its superimposition with the ToxA reference template 
structure (PDB structure 1zld) resulted in a Cα–RMSD of 
0.39 Å and TM-score of 0.9509, indicating its high struc-
tural similarity to the ToxA structure. The superimposition 
of the effector candidates with the template structure show 
that all β-strands overlap well, including the short α-helix at 
the N-terminus. An N-terminal tail region, 17 to 47 amino 
acid residues long, was observed as an extended sequence 
region that does not overlap with the template structure, 
which lacks this extension; however, it should be noted that 
the sequence of the template structure (PDB structure 1zld) 
has an N-terminal tail 19 residues long that was not visible 
in the electron density due to the conformational flexibility 
of this region. This region forms a long-disordered loop and 
does not have any match to any domain in the public data-
bases. Similar N-terminal extensions with different lengths 
were observed in all candidate models (Fig. S5 in SI).

MAX‑Like Effector Candidates

RaptorX generated five models for each MAX-like effector 
candidate, each using a different reference template struc-
ture (Table S3 in SI). These templates were selected and 
ranked based on their RaptorX scores, as explained in the 
“Methods” section. A total of 19 out of 55 candidates had a 
match to a member of the MAX structural family (Table 3). 
As for the remaining 36 candidates, six of them had at least 
one MAX template structure listed amongst the top five tem-
plates used in the modelling (highlighted in bold in Table S3 
in SI). Since they were not ranked as the top template, the 
RaptorX scores of those templates were below 50, with 25 
being the highest and 17 the lowest, indicating that they were 
not the best template to be applied in the modelling of MAX 
effector candidate structures.

The predicted models for the effector candidates each 
used a structure from the MAX structural family as the best 
template (PDB ID shown in brackets): ToxB (2mm2A), 
AvrPia (2mywA), AvrPikD (5a6wC), and Avr1C039 
(2myvA and 5zngC). The highest RaptorX score for a 
MAX-like candidate model was 56, with 16 being the low-
est. A total of four models had a RaptorX score above 50 
(shown in bold in Table 3): M.BR29.EuGene_00106461, 
M.BR29.EuGene_00126081, M.TH16.EuGene_00040131 
and M.TH16.EuGene_00135161 (Fig. 3). The Cα–RMSD 

Table 3   RaptorX predictions for the top-ranked models of each MAX-like effector candidate that had a match to a template in the MAX struc-
tural family, sorted by alphabetical order

The table reports the p-value, RaptorX score, uGDT/GDT, and uSeqID/SeqID, as well as the structure used as the reference template (PDB ID). 
Pairwise structural differences between each model and reference template are estimated by Cα–RMSD and TM-score. Effector candidates with 
RaptorX scores above 50 are shown in bold

MAX-like effector candidates p-value RaptorX score uGDT/GDT uSeqID/SeqID Template PDB ID RMSD (Å) TM-score

M.BR29.EuGene_00081821 1.20E−02 25 40/36 9/8 2mm2A 0.72 0.92004
M.BR29.EuGene_00085071 7.20E−04 28 41/71 20/34 2mm2A 0.9 0.81525
M.BR29.EuGene_00088411 2.30E−03 26 37/49 10/13 2mm2A 0.47 0.97549
M.BR29.EuGene_00106461 3.70E−05 56 58/90 29/45 2mywA 0.31 0.80389
M.BR29.EuGene_00107481 1.60E−02 16 24/30 8/10 5a6wC 0.87 0.68531
M.BR29.EuGene_00119491 1.00E−02 21 34/44 19/25 2myvA 1.63 0.73718
M.BR29.EuGene_00119511 4.30E−04 28 41/51 18/23 2myvA 1.13 0.74793
M.BR29.EuGene_00121691 8.70E−03 23 30/49 11/18 5zngC 0.56 0.93489
M.BR29.EuGene_00125811 1.20E−02 17 26/26 12/12 2myvA 0.5 0.82891
M.BR29.EuGene_00126081 5.90E−06 54 50/74 21/31 2mm2A 0.37 0.95371
M.TH16.EuGene_00040131 5.00E−05 54 53/79 29/43 2mywA 0.24 0.81836
M.TH16.EuGene_00045871 5.30E−03 22 27/44 7/11 5zngC 0.47 0.95616
M.TH16.EuGene_00099371 5.00E−03 21 24/35 8/12 2myvA 2.5 0.5092
M.TH16.EuGene_00106621 2.90E−03 26 47/74 19/30 2mm2A 0.73 0.85801
M.TH16.EuGene_00124981 1.60E−03 18 25/35 14/19 5a6wC 0.63 0.73633
M.TH16.EuGene_00127871 6.00E−03 18 34/38 20/23 2myvA 0.8 0.7976
M.TH16.EuGene_00134971 5.20E−03 21 25/42 11/18 5zngC 0.63 0.91542
M.TH16.EuGene_00135161 9.10E−06 53 50/74 20/29 2mm2A 0.36 0.95411
MGG_17132 1.00E−02 22 38/57 12/18 2mm2A 0.9 0.86823
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of these models ranged from 0.24 to 0.37 Å, whilst TM-
scores ranged from 0.80389 to 0.95411, both indicating a 
high degree of similarity between the models and their MAX 
effector reference templates.

The remaining 15 models that used MAX effectors as 
templates had a RaptorX score below 50 (in the range of 
16–28). Model M.BR29.EuGene_00107481 with the lowest 
RaptorX score of 16 was predicted to have all six β-strands, 
resembling MAX effector (Fig. S6 in SI). There were no 
missing strands in this model such as is the case of the ToxA-
like effector candidate with the lowest RaptorX score of 41. 
Nonetheless, the model of M.BR29.EuGene_00107481 does 
appear to reflect the structure of MAX template, which is 
supported by a relatively lower TM-score of 0.68531. Over-
all, the TM-score for all nineteen MAX effector candidates 
that used MAX structures as templates were above 0.5, with 
candidate M.BR29.EuGene_00088411 having the best TM-
score of 0.97549 and M.TH16.EuGene_00099371 having 
the lowest TM-score of 0.5092.

Figure 3 reveals that the model for the MAX-like effector 
candidate M.BR29.EuGene_00106461 had the highest Rap-
torX score of 56 and its superimposition with MAX structure 
effector AvrPia (PDB structure 2myw) had a Cα–RMSD of 
0.31 Å and TM-score of 0.80389, indicating good structural 
similarity with the MAX template structure. The superim-
position of the model with the template structure shows that 
all β-strands overlap well. Most of the MAX candidates had 
an additional loop at the N-terminal region, ranging from 5 
to 10 amino acids long, observable in each of the displayed 
candidate models (Fig. 3). This region does not have any 
match to any domain in the public database. The remaining 
36 predicted models of MAX-like effector candidates can be 
found in Fig. S6 in SI.

Phenotypically Validated Virulence Proteins from PHI‑Base

Only three out of 87 candidates could be modelled using 
structural templates that belong to two known fungal effector 

Fig. 3   Top models predicted by RaptorX for MAX-like effector can-
didates using structures of the MAX structural family as template, 
sorted according to decreasing RaptorX score (A–D). The predicted 
models (shown in purple) were superimposed onto their correspond-

ing MAX family reference template structure (shown in gold). The 
corresponding RaptorX score, Cα–RMSD, TM-score and template 
PDB ID are reported

Table 4   RaptorX predictions for the top-ranked models of phenotypically validated fungal effector candidates that used a template from known 
effector structural families, sorted by alphabetical order

The table reports the p-value, RaptorX score, uGDT/GDT and uSeqID/SeqID, as well as the structure used as the reference template (PDB ID). 
Pairwise structural differences between each model and reference template are estimated by Cα–RMSD and TM-score

Effector name Template PDB ID p-value RaptorX score uGDT/GDT uSeqID/SeqID RMSD (Å) TM-score

AvrA13 6fmbA 1.80E−07 74 64/64 13/13 0.47 0.95356
AvrPm2 6fmbA 4.00E−08 82 69/70 40/41 0.15 0.99823
SPD7 5zngC 3.50E−03 33 21/23 10/11 1.70 0.86893
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structural families: RALPH (PDB structure 6fmbA) and 
MAX (PDB structure 5zngC) (Table 4; Fig. 4).

AvrA13 and AvrPm2 were modelled using a template 
structure from the RALPH family: CSEP0064/BEC1054 
(PDB structure 6fmbA), with a Cα–RMSD of 0.282 Å and 
0.165 Å, respectively. AvrA13 has six β-strands and an 
α-helix, whilst AvrPm2 has five β-strands and an α-helix. 
SPD7 was modelled using a template structure from 
the MAX effector family (PDB structure 5zngC), with 
Cα–RMSD of 0.535 Å. SPD7 has a β-sandwich fold similar 
to MAX, but is missing one β-strand, which might explain 
why it had a RaptorX score below 50. Both AvrA13 and 
AvrPm2 are known to belong to the RALPH family based on 
their sequence alone, with the RALPH effector family being 
conserved amongst cereal mildews [39], such that the mod-
elling of their structures did not in fact add any advantage 
for the categorisation of these effector candidates. AvrA13 
is secreted by Blumeria graminis f. sp. hordei, a powdery 
mildew pathogen of barley. With well-conserved RNAse 
domains, the sequences of the RALPH family are more 

conserved compared to the ToxA-like and MAX effector 
families. AvrPm2 is an RNase-like avirulence effector that 
is a wheat/rye powdery mildew fungus. There are currently 
no experimentally determined structures of AvrA13 and 
AvrPm2, although predicted 3D models have been previ-
ously published for both effectors [40, 41]. The model for 
AvrA13 predicted by Bauer et al. [40] exhibits a similar 
fold to that observed in our model, except that the lengths 
of the third and fourth β-strands are shorter in our predicted 
model, thus generating a longer loop region. Our model is 
closer to the reference structure BEC1054 except for the 
missing α-helix between β-strands 3 and 4 (Fig. S7A in SI). 
In the case of the AvrPm2 models, comparisons were made 
with predictions reported by Bauer et al. and Manser et al. 
[40, 41]. The third β-strand is missing in the model pre-
dicted by Bauer et al., with our model being closer to that 
predicted by Manser et al., with similar loop regions except 
that there is an additional 310-helix between β-strands 3 and 
4, showing that their predicted structure is closer to the ref-
erence BEC1054 (Fig. S7B and Fig. S7C in SI). In the case 

Fig. 4   Predicted models (in 
rainbow) of phenotypically vali-
dated fungal effectors derived 
using a template from a known 
fungal effector structural family: 
RALPH (A and B) (PDB ID 
6fmbA) and MAX (C) (PDB 
ID 5zngC). The Cα–RMSD 
of the superimposition of the 
RaptorX model with the refer-
ence template structure (in grey) 
is reported.
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of SPD7, this is an effector suppressor of plant cell death 
secreted by M. oryzae, for which there are currently no avail-
able experimental or predicted 3D structures [42]. Conse-
quently, our model is the first reported predicted structure of 
SPD7, which had indeed not been previously categorised as 
belonging to the MAX-like effector protein family.

Modelling of Fungal Effector Candidates Based 
on Templates Belonging to Non‑effector Proteins

This section describes the prediction of the structure of 
effector candidates that required the use of a reference 
template other than structures from known fungal effector 
families. These template protein structures were found to 
correspond to non-phytopathogenic fungi, or completely dif-
ferent organisms (plant, animal or even human). This section 
describes mostly the prediction of phenotypically validated 
effector candidates, since ToxA-like candidates did not have 
any matches with template structures from effectors other 
than from the ToxA structural family.

In the modelling of MAX-like effector candidates, 36 out 
of 55 effector candidates had a structural match to proteins 
other than from the MAX structural family. The list of the 
modelled candidates is reported in Table S3 in SI. These 36 
MAX-like effector candidates utilised proteins with various 
functions as template structure. However, RaptorX scores for 
these candidates were all below 50, with 31 being the high-
est for candidate M.BR29.EuGene_00095641 and 16 being 
the lowest for both candidates M.BR29.EuGene_00091681 
and MGG_15207. This is due to the approach used in deter-
mining the sequences of MAX-like effector candidates, 
which is elaborated on in the “Discussion” section. In addi-
tion, amongst the list of the top five templates used in the 
modelling of MAX-like effector candidates, the use of MAX 
templates was found for six of the predicted models (high-
lighted in bold in Table S3 in SI). These templates were 
not the top-ranked template. However, since RaptorX scores 
were all below 50, the modelled structures are less reliable, 
which would require validation or the use of an alternative 
approach for non-template-based modelling.

A total of 61 out of the 66 phenotypically validated effec-
tor candidates were modelled with protein templates other 
than from structures belonging to known fungal effector 
families. Overall, the best RaptorX score for these effector 
candidates was 337 and the lowest was 3. Out of the 61 pre-
dicted models, 20 have a RaptorX score above 50, whilst the 
remaining models have a RaptorX score below 50 (Table 5).

The results for this section have been categorised based 
on the template structures used in template-based modelling: 
(a) single template, (b) conserved sequences, (c) synthetic 
constructs, (d) match with any protein in the PDB and (e) 
no match to any templates (i.e. candidates for non-template-
based modelling).

Single Template

When a single template is used, the modelling of effec-
tor candidates utilises only one template structure dur-
ing threading instead of a multi-template modelling 
approach or multi-template threading (MTT), which is 
used by default in RaptorX. In MTT, RaptorX applies 
five templates during the threading step for the model-
ling of protein structures. In this case, five effector can-
didates were modelled using a single template: Avr-Pita, 
Cgfl1, MoCDIP2, Msp1 and Zt6, with the corresponding 
templates being PDB structures 1eb6A, 4k90A, 4y7sA, 
3m3gA and 1fusA, respectively (highlighted by an aster-
isk in Table 5). Theoretically, the use of a single tem-
plate will result in a high-confidence template compared 
to having five top templates to assist the modelling. This 
depends on the scores obtained after template alignment 
and the scoring step in RaptorX, and it also indicates 
that template selection prior to modelling has converged 
(see the Discussion). This is followed by the use of these 
templates during structure modelling [23]. The RaptorX 
scores for these effector candidates are all above 50, with 
the highest RaptorX score being 337, and the lowest being 
97. Due to the increase in the accuracy of template selec-
tion, the resulting models can be regarded as having high 
confidence in terms of accuracy.

Conserved Sequences

When there are effector candidates that are known to belong 
to conserved sequence families, their identification or cat-
egorisation can be determined by sequence alone. Template-
based modelling predictions for these effector candidates 
would be expected to match specific known effector struc-
tures as reference templates if they are available, but not in 
this case. The effector candidates belonging to conserved 
sequence families are Avr-Pita, Cgfl, MoCDIP4 and Msp1 
(indicated by the effector name in italics in Table 5). The list 
of effector candidates in this category overlaps with the use 
of a single template. Avr-Pita and Cgfl have RaptorX scores 
of 246 and 337, respectively. They matched templates 1eb6A 
and 4k90A, respectively, and both of these templates are 
enzymes that are known to be highly conserved.

Modelling of Avr-Pita used the structure of deuterolysin 
(PDB structure 1eb6A) from Aspergillus oryzae. Deuteroly-
sin is an enzyme that catalyses the preferential cleavage of 
bonds with hydrophobic residues of substrate residue P1. It 
is a microbial, zinc-containing metalloprotease that exhibits 
some similarity to thermolysin [43]. Pfam classified it as 
a deuterolysin metalloprotease m35 family domain, whilst 
CATH indicated that it is a collagenase domain, and SCOP2 
indicated that it is a fungal zinc peptidase domain.
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Table 5   RaptorX predictions for phenotypically validated effector candidates, sorted by alphabetical order

Effector name 

Template 

PDB ID p-value 

RaptorX 

score 

uGDT/ 

GDT 

uSeqID/ 

SeqID 

Ave1 4jcwA 2.40E-07 83 82/71 21/18 

Avr2 6atyA 5.00E-03 36 17/29 8/14 

Avr4e modl1 0.00E+00 7 57/56 0/0 

Avr5 5ji4A 5.90E-03 29 15/17 8/9 

Avr9 6k4fU 3.00E-02 10 21/53 9/23 

Avra1 modl1 0.00E+00 6 52/56 0/0 

AvrL2-A 2goxB 6.20E-03 49 24/21 6/5 

AvrLm1 4uu4A 3.70E-03 56 20/31 8/13 

AvrLm11 modl1 0.00E+00 6 43/57 0/0 

AvrLm6 modl1 0.00E+00 6 75/60 0/0 

AvrM14 3u53A 1.20E-06 105 96/65 28/19 

AvrPi9 modl1 0.00E+00 5 41/56 0/0 

AvrPib 3p8dA 2.50E-03 45 17/33 06/12.00 

AVR-Pii 5yegA 2.10E-03 39 13/25 7/14.0 

Avr-Pita 1eb6A* 1.10E-15 246 131/63 44/21 

AvrSr50 2ghsA 2.20E-03 42 23/21 3/3 

Bas1 3vjfA 1.00E-02 4 14/85 3/18.0 

Bas107 modl1 0.00E+00 5 67/59 0/0 

Bas162 modl1 0.00E+00 7 54/53 0/0 
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Table 5   (continued)

Bas2 1q3jA 5.60E-03 44 14/17 7/8.0 

Bas3 1ti5A 4.30E-04 59 25/27 12/13 

Bas4 4gvbB 4.90E-03 52 19/23 14/17 

Cgfl 4k90A* 1.30E-14 337 360/92 282/72 

Ecp1 1bnbA 1.40E-02 35 15/19 5/6 

Ecp2 6pzkA 3.30E-03 57 19/21 3/3 

Ecp4 modl1 0.00E+00 6 56/56 0/0 

Ecp5 1vr7A 8.30E-03 37 18/18 9/9 

eff1-1 modl1 0.00E+00 5 102/64 0/0 

Iug9 3gedA 1.70E-02 26 14/25 6/10.0 

lug6 2yilA 1.40E-02 35 15/28 5/9.0 

MC69 6i5OA 8.05E-03 13 25/66 4/11.0 

MiSSP7 1r7oA 1.20E-01 15 22/47 4/9.0 

MoCDIP1 3gq7A 2.70E-12 226 171/51 47/14 

MoCDIP2 4y7sA* 7.70E-05 97 52/78 15/23 

MoCDIP3 modl1 0.00E+00 6 54/58 0/0 

MoCDIP4 4b5qA 1.40E-12 148 172/80 85/40 

MoHEG13 3dzuA 2.10E-02 31 14/28 3/6.0 

Msp1 3m3gA* 5.00E-10 114 106/89 81/68 

NIP2 3tljA 3.80E-03 52 21/22 9/10.0 

NIP3 modl1 0.00E+00 9 50/51 0/0 

Pep1 modl1 0.00E+00 7 58/59 0/0 

PGTG_08638 5cwhA 7.00E-04 124 35/16 21/10 

PpEC23 modl1 0.00E+00 7 152/56 0/0 
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Table 5   (continued)

Pec6 2mn1A 2.20E-02 30 16/24 7/11 

Pst2 modl1 0.00E+00 6 56/60 0/0 

PstSCR1 modl1 0.00E+00 4 61/66 0/0 

Pwl1 modl1 0.00E+00 6 70/56 0/0 

RTP1 5v6iA 6.10E-05 77 52/40 16/12 

See1 modl1 0.00E+00 6 77/56 0/0 

Six1 modl1 0.00E+00 8 158/60 0/0 

Six2 modl1 0.00E+00 8 115/54 0/0 

Six4 modl1 0.00E+00 6 134/59 0/0 

Six5 modl1 0.00E+00 3 74/73 0/0 

Six6 2e3xA 4.80E-03 51 9/17 4/8 

Six7 modl1 0.00E+00 7 114/56 0/0 

Six8 1es2A 6.00E-03 61 21/35 3/5 

SPD10 modl1 0.00E+00 5 35/56 0/0 

SPD2 3evsC 9.80E-03 12 22/50 13/6.0 

SPD4 2kt2A 1.10E-02 41 18/35 17/9.0 

SPD9 5vjjA 2.40E-02 6 19/56 24/8.0 

Tin2 1s8nA 1.40E-03 65 31/17 15/8.0 

Tox1 modl1 0.00E+00 6 60/60 0/0 

Tox3 1cidA 3.00E-03 31 17/20 9/11.0 

UhAvr1 6fcxA 6.50E-03 40 22/26 7/8.0 

VdSCP7 5cwfA 9.20E-03 61 22/23 10/10.0 

Zt6 1fusA* 1.90E-09 102 98/82 66/55 

The table reports the p-value, RaptorX score, uGDT/GDT, uSeqID/SeqID and the reference structure used as template (PDB ID). The reference 
name with asterisk (*) indicates the use of a single (high-confidence) template during modelling. Effector names in italics are categorised as 
conserved sequences. Reference names in italics were modelled using a synthetic construct as reference template structures. Effectors with rows 
highlighted in grey have no match to any template structure in the public database



798	 Molecular Biotechnology (2024) 66:784–813

1 3

Cgfl is a fungalysin metalloprotease secreted by Colle-
totrichum graminicola that causes maize anthracnose [44]. 
Fungalysin catalyses the hydrolysis of extracellular matrix 
proteins, elastin and collagen, and also acts as a virulence 
factor. Currently, there are no experimental structures of 
these effector candidates, but a 3D model structure of Cgfl 
using Phyre2 has been published [44]. Since Cgfl is highly 
conserved, their predicted model is similar to ours in terms 
of the basic fold.

Synthetic Constructs

The modelling of a number of effector candidates used syn-
thetic constructs obtained from the PDB. Effector candi-
dates PGTG_08638 and VdSCP7 were thus modelled using 
PDB structures 5cwhA and 5cwfA as templates, respectively 
(indicated by reference templates in italics in Table 5). Both 
templates are de novo designed helical repeat proteins 
DHR14 and DHR8, respectively [45].

Match with Any Proteins in the PDB

This corresponds to predictions of effector candidates that do 
not fall into any of the previous categories. Overall, 20 effec-
tor candidates were modelled with RaptorX scores above 
50 (Table 5). The predicted models used various template 
structures from the PDB. None have a match with the same 
template, reflecting the wide diversity in the sequence of 
the effector candidates. Only models with a RaptorX score 
of above 50 are shown in Fig. 5, whilst the remaining can 
be found in Fig. S8 in SI. The templates used to model the 
effector candidates are described in more detail in Table 6 
and Table S6 in SI.

Modelling of the Ave1 effector used the crystal structure 
of expansin from Clavibacter michiganensis as template. 
Expansins typically have roles in promoting the loosening 
of cell membranes. The protein in this structure is found in 
a complex with cellopentaose at the N-terminal amino acid 
range 116–202 and contains four disulfide bridges. Based 
on Pfam analysis, the structure of Ave1 overlaps with the 
two domains of expansin: in the lytic transglycolase domain 
(in the range 2–99) and the C-terminal expansin domain (in 
the range 110–183). At the same time, the amino acid range 
1–104 correlates with the rare lipoprotein A (RlpA)-like 
domain according to CATH. Ave1 is predicted to have a fold 
superfamily of a six-stranded double-psi β barrel (DPBB) 
located in a conserved region [46].

Modelling of the AvrLm1 effector used as template the 
crystal structure of LptH, which is a component of Pseu-
domonas aeruginosa transport device [47]. AvrLm1 over-
laps with half of the protein structure of LptH (64 out of 175 
residues). Both Pfam and CATH indicate the presence of a 
LptA/LptD N-terminal domain lipopolysaccharide transport 

protein in the amino acid ranges 34–146 and 26–170, respec-
tively, for each database.

Modelling of the AvrM14 effector used as template 
the crystal structure of human asymmetrical diadenosine 
tetraphosphate hydrolase (Ap4A), which exhibited high 
structural similarity when superimposed, with a Cα–RMSD 
of 0.647 Å. Pfam analysis shows that Ap4A consists of a 
NUDIX hydrolase domain in the amino acid range 12–137, 
and pyrophosphohydrolase in the range 4–147. These find-
ings are similar to those with CATH and SCOP2b. Ap4A 
hydrolase is an enzyme found in all living cells and which 
cleaves the phosphate chain at the fourth phosphate from the 
bound adenosine moiety. It has a αβα-sandwich architecture, 
which is common in the NUDIX fold. Ap4A has been pro-
posed to be an intracellular signal molecule that regulates 
gene expression at transcriptional level and which may play 
a role in invasion in bacteria [48].

Apoplastic cell death-inducing proteins (CDIPs) have 
been identified in fungi and oomycetes [49], and there are 
five well-characterised CDIPs, MoCDIP1 to MoCDIP5, that 
each cause blast disease in rice [50] but appear to be func-
tionally unrelated. Modelling of the MoCDIP1 effector used 
as template the crystal structure of the bacteriophage Phi29 
gene product 12, N-terminal fragment, which is involved in 
the autocatalytic assembly mechanism of a bacteriophage 
tail spike. Pfam analysis shows that MoCDIP1 belongs to 
the pectate lyase superfamily protein (in the amino acid 
range 22–251). CATH indicates that it is a single stranded 
right-handed β-helix, pectin lyase-like enzyme. This family 
of proteins possesses a β-helical structure like pectate lyase, 
and this family is closely related to glycosyl hydrolase family 
28. Pectate lyases are enzymes involved in plant cell wall 
degradation and are produced by plant pathogens and plant-
associated organisms. The predicted model for MoCDIP1 
has a nearly complete fit to the first domain of bacteriophage 
Phi29 gene product 12 at the N-terminus.

Unlike MoCDIP1, MoCDIP2 belongs to a family of com-
mon fungal extracellular membrane (CFEM)-containing pro-
teins involving in host-fungi interactions [51]. MoCDIP2 has 
a large number of homologues in the sequence genomes of 
M. oryzae and other organisms. Modelling of the MoCDIP2 
effector used the crystal structure of CFEM protein Csa2 
from Candida albicans as its template, a secreted protein 
promoting haem uptake (haemophore) that scavenges iron 
to deprive the host [52].

Modelling of the MoCDIP4 effector used as template the 
structure of lytic polysaccharide monooxygenase GH61D 
from Phanerochaete chrysosporium. MoCDIP4 is a cell 
death-inducing effector [53]. Pfam analysis indicates that 
it corresponds to auxiliary activity family 9, AA9 (formerly 
GH61) domain, and CATH indicates an enzyme accession 
EC1.14.99.54, which corresponds to lytic polysaccharide 
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monooxygenase. AA9 is a copper-dependent oxidative 
enzyme.

Modelling of Msp1 used as template the structure of 
Sm1, an elicitor of plant defence responses from Tricho-
derma virens. Pfam analysis indicates that Sm1 consists of 
a cerato platanin (CP) domain, whilst CATH indicates that 
it is a RlpA-like domain. The CP family of proteins includes 
the phytotoxin CP produced by Ceratocystis platani, which 

causes canker stain. CP occurs in the cell wall of fungi and 
is involved in host–pathogen interactions, inducing both cell 
death and phytoalexin production and the N-terminal region 
resembles cerato-ulmin, a hydrophobin [54].

Modelling of the RTP1 effector used as template the 
structure of glycan binding protein Y3 from the mushroom 
Coprinus comatus, resulting in high structural similarity 
when superimposed, with a Cα–RMSD of 0.292 Å. Y3 is 

Fig. 5   Predicted models of 
phenotypically validated effec-
tors derived using templates 
matching any proteins in the 
PDB and exhibiting RaptorX 
scores above 50. The Cα–
RMSD of the superimposition 
of the RaptorX model with the 
reference template structure (in 
grey) is reported
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a 130-amino acid long cytotoxic protein that possesses a 
unique mode of glycan binding and specificity, as well as 
anti-leukemic activity [55].

Tin2 in Ustilago maydis stabilises the maize protein 
kinase TTK1, which regulates anthocyanin biosynthesis 
[56], resulting in the reduction of host lignification to sup-
port fungal spread during infection. Modelling of the Tin2 
effector used as template the crystal structure of Rv1626 
from Mycobacterium tuberculosis, with high structural 

similarity between Tin2 and Rv1626. Both Pfam and CATH 
analyses indicate that the modelled Tin2 has a response 
regulator receiver domain in the amino acid ranges 16–126 
and 11–142, respectively. A response regulator domain is 
involved in bacterial two-component systems, and it consists 
of an unique helix-turn-helix motif that can be observed in 
the predicted model (Fig. 5R), and which is required for 
DNA binding [57]. SCOP identified a CheY-like domain, 
which is also a member of response regulator family [58].

Fig. 5   (continued)
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Fig. 5   (continued)
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Biotrophy-associated secreted 3, Bas3 is an effector 
secreted by M. oryzae that accumulates in the biotrophic 
interfacial complex (BIC) and which might be involved in 
cell-to-cell movement of invasive hypha [59]. Modelling 
of the Bas3 effector used as template the structure of plant 
defensin Vigna radiata (mung bean). To our knowledge, 
there are no studies that relate Bas3 with plant defensins 

or toxins except a HMM–HMM-based sequence clustering 
study where effector Bas3 and its clustered homologues 
were putatively functionally annotated as similar to scor-
pion knottin toxins [3].

Other predicted models include effector candidates that 
are categorised as enzymes that contribute to virulence 

Table 6   Description of the top-ranked templates used in RaptorX modelling of phenotypically validated effector candidates with RaptorX score 
above 50

Effector name Template name (PDB ID) Classification/function/location Species Fold

Ave1 Expansin (4jcwA) Sugar binding protein Clavibacter michiganensis Beta
AvrLm1 LptA homologous periplasmic 

component of lipopolysac-
charide transport device 
(4uu4A)

Lipopolysaccharide binding/
transport protein, periplasmic 
space

Pseudomonas aeruginosa Beta-jellyroll

AvrM14 Human Ap4A hydrolase 
(3u53A)

Hydrolase, GTP binding, ATP 
biosynthetic process

Homo sapiens Nudix hydrolase family

Avr-Pita Deuterolysin (1eb6A) Metallopeptidase activity, 
proteolysis

Aspergillus oryzae Fungal zinc peptidase

Bas3 Plant defensin 1 (1ti5A) Plant protein, insecticidal 
activity

Vigna radiata Knottin like

Bas4 Virally encoded antifungal 
protein, KP6 heterodimer 
(4gvbB)

Hydrolase Ustilago maydis virus P6 Killer toxin

Cgfl Extracellular metalloproteinase 
(4k90A)

Zinc ion binding, fungal pepti-
dase, extracellular space

Aspergillus fumigatus Cystatin-like

Ecp2 Respiratory syncytial virus pol-
ymerase L protein (6pzkA)

RNA-directed 5-3 RNA poly-
merase activity, transcription/ 
host cell cytoplasm

Human respiratory syncytial 
virus A2

Helical bundle

MoCDIP1 Bacteriophage Phi29 gene 
product 12 N-terminal frag-
ment (3gq7A)

Viral protein Bacillus virus phi29 Beta-strands

MoCDIP2 CFEM protein Csa2 (4y7sA) Haem binding, extracellular 
membrane protein

Candida albicans Helical basket fold

MoCDIP4 Lytic polysaccharide monooxy-
genase GH61D (4b5qA)

Metal ion binding/extracellular 
region

Phanerochaete chrysoporium Mainly beta, distorted 
sandwich

Msp1 Sm1, elicitor of plant defence 
responses (3m3gA)

Metal ion binding/extracellular 
region

Trichoderma virens Gv29-8 Beta barrel

NIP2 tRNA:m2 G6 methyltransferase 
Trm14/TrmN (3tljA)

Methyltransferase activity, 
methylation/cytoplasm

Pyrocossus furiosus DSM 3638 Rossmann fold

PGTG_08638 De novo designed heli-
cal repeat protein DHR14 
(5cwhA)

Synthetic construct Synthetic construct Tandem helical repeats

RTP1 Glycan binding protein Y3 
(5v6iA)

Sugar binding protein Coprinus comatus αββ Sandwich

Six6 Viper venom metalloproteinase 
(2e3xA)

Metal ion binding/extracellular 
region

Daboia ruselli Hook spanner wrench-like

Six8 DD-transpeptidase/penicillin 
binding protein (1es2A)

Peptidase activity, proteolysis/
extracellular region

Streptomyces sp. K15 3-Layer αββ sandwich

Tin2 Putative transcriptional antiter-
minator, Rv1626 (1s8nA)

RNA binding, phosphorelay 
signal transduction system/
plasma membrane

Mycobacterium tuberculosis Helical bundle

VdSCP7 De novo designed helical 
repeat protein DHR8 (5cwfA)

Synthetic construct Synthetic construct Armadillo like helical

Zt6 Ribonuclease f1 (1fusA) Ribonuclease T1 activity Fusarium vertisillioides Alpha beta roll
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and which includes candidates Bas4, Ecp2, Six6, Six8 and 
Zt6.

No Match to Any Templates (i.e. Candidates 
for Non‑template‑Based Modelling)

A total of 24 out of the 66 experimentally validated effec-
tor candidates could not be modelled using template-based 
modelling and are thus candidates for non-template-based 
modelling (rows highlighted in grey in Table 5). Sequences 
with no match to any of the known effector structural fami-
lies and to any protein structure in the PDB database have 
been used in ab initio modelling in a separate study [60]. 
These phenotypically verified effectors are Avr4e, Avra1, 
AvrLm11, AvrLm6, AvrPi9, Bas107, Bas162, Ecp4, eff1-
1, MoCDIP3, NIP3, Pep1, PpEC23, Pst2, PstSCR1, Pwl1, 
See1, Six1, Six2, Six4, Six5, Six7, SPD10 and Tox1.

Comparison with Other Template‑Based Modelling 
Programs

The models predicted by RaptorX were compared with those 
predicted by other commonly used template-based model-
ling programs, in this case SWISS-MODEL and Phyre2. In 
the modelling of ToxA-like sequences, RaptorX was able 
to model all sequences (Fig. 6A; Table S5 in SI) using the 
ToxA effector (PDB structure 1zld) as the template struc-
ture. The best TM-score was 0.95141 for p2fl_ENH98532.1 
and the lowest was 0.66836 for p0de_mRNA10272. These 
values correlate with their respective Cα–RMSD values of 
0.39 and 0.84 Å.

In the modelling of ToxA-like sequences using SWISS-
MODEL, four different templates were used, with the ToxA 
effector template (PDB structure 1zle) used in most cases, 
followed by SAP-1 (PDB structure 1bc8), which is a member 
of the Ets transcription factor, synaptotagmin-like protein 
(PDB structure 3bc1) and type 9 secretion system component 
(PDB structure 6h3j). TM-scores ranged from the highest 
value of 0.91668 for p2fl_ENH98532.1 to the lowest value 
of 0.16959 for p09v_mRNA10419. These values correlate 
with their respective Cα–RMSD values of 1.34 and 2.55 Å. 
Similar to RaptorX modelling, the model with the top TM-
score for SWISS-MODEL is also p2fl_ENH98532.1, with 
a shared TM-score of 0.95141 with p2fk_EMD96331.1. 
The reason for a very low TM-score using SWISS-MODEL 
modelling is likely to be the use of a non-ToxA-like effector 
template for some of the models. In the case of models that 
use ToxA effector template, SWISS-MODEL selected PDB 
structure 1zle instead of 1zld, with the only difference being 
the crystal forms [61]. PDB structure 1zld has a better reso-
lution of 1.65 Å compared to a resolution of 1.90 Å for struc-
ture 1zle; however, the residue and atom count is higher in 
structure 1zle, which might be the reason why it was selected 

as the top template by SWISS-MODEL. In the case of 
Phyre2 modelling, 13 different templates were used, with the 
ToxA effector template (PDB structure 1zld) being applied 
in the modelling of three of the candidate models, with two 
of them (p2fl_ENH98532.1 and p2fk_EMD96331.1) shar-
ing the best TM-score of 0.91087. The lowest TM-score 
was 0.04336 and is also the lowest TM-score value amongst 
the three protein modelling programs compared. Cα–RMSD 
ranged from 0.23 to 5.11 Å.

When comparing the three protein modelling approaches, 
RaptorX had the highest usage of the ToxA effector struc-
ture (PDB structure 1zld) as template for the majority of 
the ToxA-like effector candidate models (Table S5A in SI): 
34/34 for RaptorX, 31/34 for SWISS-MODEL and 3/34 for 
Phyre2. This relates to the efficiency of the programs dur-
ing template ranking and selection (see Discussion). The 
TM-score of the top models for these three programs was 
different even though a similar ToxA effector template (PDB 
structure 1zld/e) was used. A slightly decreasing trend in 
the best TM-score values was observed, with a TM-score 
of 0.95141 for RaptorX, followed by 0.91668 for SWISS-
MODEL and 0.91087 for Phyre2, showing that the Rap-
torX top model has the closest resemblance to the ToxA 
effector template compared to SWISS-MODEL and Phyre2 
(Fig. 6A). The lowest TM-score values also followed a 
descending trend for RaptorX, SWISS-MODEL and Phyre2, 
with 0.66836, 0.16959 and 0.04336, respectively. This shows 
that RaptorX can model better a significant structural fold 
with a TM-score above 0.5 compared to SWISS-MODEL 
and Phyre2. This relates to the use of a different types of 
template in both SWISS-MODEL and Phyre2 modelling, 
as discussed later.

In the modelling of MAX-like sequences, RaptorX used 
38 different types of templates with ToxB (PDB structure 
2mm2) being the more common one (7 out of 55), fol-
lowed by template Avr1CO39 (PDB structures 2myv and 
5zng) (Table S5B in SI). TM-scores ranged from the high-
est value of 0.97549 for M.BR29.EuGene_00088411 to the 
lowest value of 0.04478 for p0de_mRNA10272. This cor-
relates with their respective Cα–RMSD values of 0.47 and 
4.99 Å. Similar to RaptorX, modelling of MAX effector 
sequences using SWISS-MODEL utilised a variety of 43 
template structures. As with RaptorX, the more common 
template used by SWISS-MODEL was ToxB (PDB struc-
tures 2mm0/2), which was applied in the modelling of 6 out 
of 55 of the candidates. TM-scores ranged from the highest 
value of 0.99958 for M.TH16.EuGene_00135161 to the low-
est value of 0.03779 for MGG_16058. This again correlates 
with their respective Cα–RMSD values of 0.06 and 2.39 Å.

Similar to RaptorX modelling of ToxA-like sequences, 
the model with the top TM-score was not the one with 
the top TM-score when using SWISS-MODEL (M.BR29.
EuGene_00088411). The top models had a TM-score of 
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Fig. 6   Comparison of template-based models with the top TM-score 
for ToxA-like (A), MAX-like (B) and phenotypically validated (C) 
candidates, modelled using RaptorX (maroon), SWISS-MODEL 

(green) and Phyre2 (blue) superimposed with their respective tem-
plates (gold) and the corresponding Cα–RMSD and TM-score values 
are included



805Molecular Biotechnology (2024) 66:784–813	

1 3

0.97549 in the case of RaptorX and 0.75221 in the case 
of SWISS-MODEL, even though the same ToxB effector 
template structure was used. In Phyre2 modelling, 47 tem-
plate structures were used, with Avr1CO39 (PDB structure 
2myv) being the template structure used in the majority 
of cases. The highest TM-score was 0.95386 for M.TH16.
EuGene_00040131 and the lowest was 0.03266 for M.TH16.
EuGene_00099371. The Cα–RMSD values ranged from 
0.47 to 1.59 Å.

When comparing the three modelling methods, RaptorX 
exhibited the highest usage of MAX effector structures as 
template for the majority of the structurally unconfirmed 
effector models: 19/55 for RaptorX, 17/55 for SWISS-
MODEL and 11/55 for Phyre2. This again relates to the 
efficiency of the programs during template ranking and 
selection, similarly to the modelling of ToxA-like effector 
sequences. However, in the predicted MAX effector mod-
els, there was no decreasing trend such as that described 
above for ToxA-like models when a similar MAX tem-
plate was used for modelling. For example, in the case of 
M.BR29.EuGene_00085071, the ToxB structure (PDB 
structure 2mm2/0) was used as template, with resulting 
TM-scores of 0.81525, 0.83773 and 0.83949 with Rap-
torX, SWISS-MODEL and Phyre2, respectively. A simi-
lar situation was observed with other effector candidates 
(Fig. S6 in SI): M.BR29.EuGene_00106461, M.BR29.
EuGene_00119491, M.BR29.EuGene_00119511, M.TH16.
EuGene_00040131, M.TH16.EuGene_00106621 and 
M.TH16.EuGene_00135161. In these cases, Phyre2 models 
provided the best TM-score values, probably due to the use 
of a more updated PDB database during template selection.

When modelling experimentally validated effectors, mod-
els that were involved in benchmarking were omitted from 
this analysis. In the case of modelling using RaptorX, TM-
scores ranged from the highest value of 0.99994 for Cgfl to 
the lowest value of 0.07516 for MoHEG13. These correlates 
with their respective Cα–RMSD values of 0.06 and 0.72 Å. 
In the case of modelling using SWISS-MODEL, the TM-
scores ranged from the highest value of 0.99962 for Cgfl to 
the lowest value of 0.01960 for PstSCR1, correlating with 
their corresponding Cα–RMSD values of 0.06 and 2.85 Å. 
In the case of modelling using Phyre2, the highest TM-
score was 0.99980 for Cgfl and the lowest was 0.01459 for 
AvrA13, with the latter being the lowest TM-score obtained 
amongst the three modelling programs. Cα–RMSD values 
ranged from 0.10 to 0.13 Å.

In the case of RaptorX, 24 effector candidates could not 
be processed with template-based modelling due to the lack 
of suitable experimental structures that could be used as 
templates (Tables S4, S5C in SI). A similar situation was 
observed for eight effector candidates when using SWISS-
MODEL and with one candidate using Phyre2. Pst2 was 
the only effector candidate for which no suitable structural 

template could be identified in any of the modelling pro-
grams. Whilst modelling with Phyre2 resulted in the lowest 
number of candidates that had no suitable template, it also 
provided the highest number of effector models (18) with 
TM-score values below 0.0, indicating its low stringency in 
template selection and scoring compared to RaptorX (two 
models) and SWISS-MODEL (five models). Sequences with 
no appropriate structural template would thus be suitable for 
non-template-based (ab initio) modelling.

Discussion

Separate topics related to the above-described template-
based modelling studies are discussed below: (1) impor-
tant factors affecting template-based modelling of fungal 
effectors, (2) benchmarking of template-based modelling 
of fungal effector proteins, (3) methods for sequence-based 
prediction of effector candidate sequences, (4) modelling of 
phenotypically validated fungal effector proteins, and (5) 
comparison of predictions made by template-based model-
ling programs.

Important Aspects Involved in Template‑Based 
Modelling of Fungal Effector Proteins

Our findings suggest that there are a number of factors that 
may affect the quality of the predicted structural models of 
fungal effector candidates that can be accounted for: the use 
of scoring metrics to assess structural similarity, the choice 
of template and the quality of the target–template alignment, 
the number of templates used to model a single structure 
and the presence of multiple domains in the target sequence.

Let us first focus on the use of specific scoring metric 
for the assessment of structural similarity between pre-
dicted models and the reference template structure. In this 
approach, TM-score is clearly preferable to Cα–RMSD 
because the latter does not give an accurate assessment of 
the structural similarity between the modelled and template 
structures. The TM-score used in this study is based on TM-
align, which is sequence-independent as it first identifies an 
optimal alignment [33]. A good example of this can be seen 
in the phenotypically validated effector candidates, where 
the best model of MoHEG13 has a TM-score of 0.07516, 
indicating poor agreement in fold structure and, yet, the 
Cα–RMSD is 0.72 Å, suggesting high similarity with the 
reference template (Fig. S8M in SI). In this example, there 
is clearly no visible protein fold in the model and thus no 
significant match to the template structure, except for a loop 
region that aligns well to a small portion of the reference 
structure. This suggests that TM-score is a more reliable 
metric compared to Cα–RMSD when comparing fungal 
effector candidate models with their respective reference 
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template structures, especially in cases where the length of 
the predicted model and template structure is different.

The second aspect to consider is the choice of template 
used in template-based modelling, which relies on the 
ranking generated by the quality or assessment of the tar-
get–template alignment. In the case of RaptorX, the likeli-
hood of finding a good template is based on the use of a 
novel non-linear context-specific alignment potential and 
probabilistic consistency algorithm [22], since inaccuracies 
in template selection have a high impact on further model 
interpretations. The choice of template used correlates with 
the quality of the target–template alignment, which in turn 
affects template ranking. Template-based modelling thus 
also depends strongly on the quality of the target–template 
alignment. For example, in the modelling of MAX effec-
tor candidates, the candidate with the best RaptorX score, 
M.BR29.EuGene_00106461, has a score of 56 using AvrPia 
(PDB structure 2myw) as template. Four other templates 
were listed and ranked alongside the top-ranked, namely 
AvrPia (PDB structure 2n37), RadA intein (PDB structure 
2lqm), YXIM BACsu (PDB structure 2o14) and a protein of 
unknown function (PDB structure 1yll). Amongst these five 
templates, the top two are MAX structures, AvrPia (PDB 
structures 2myw and 2n37), and PDB structure 2myw was 
chosen since it resulted in a higher RaptorX score of 56 
compared to 43 for PDB structure 2n37. Other quality met-
rics were similar, with uGDT/GDT being 58/90 and uSe-
qID/SeqID being 29/45. An important difference, however, 
was observed in the p-value, being 3.07 × 10−5 with PDB 
structure 2myw and 4.60 × 10−4 with PDB structure 2n37, 
which is reflected in the sequence alignment (Fig. S9 in SI). 
Furthermore, differences in the latter indeed led to the pre-
dicted model being different when PDB structure 2n37 was 
used as template, with the protein model having a β-strand 
missing and incomplete β-strands (Fig. S9B in SI), reflect-
ing that RaptorX weighs the alignment differently depend-
ing on the alignment score of the specific target–template 
used. This is crucial since fungal effector proteins tend to 
lack sequence conservation and identifying remote template 
sequences is important, especially in cases where there are 
no homologues with available experimental 3D structures. 
A profile entropy scoring method is applied in RaptorX to 
determine the best modelling mode, and this depends on 
the sequence profile, such that non-existence of a close tem-
plate results in a low entropy score, and more weight will 
be given to structural rather than sequence information [22] 
in the modelling of the effector candidates. Target–template 
alignment depends on the optimal alignment used in thread-
ing, which involves the transfer of atomic coordinates from 
the template structure to the target sequence, as well as by 
the use of a non-linear alignment scoring function used for 
template ranking in RaptorX [22].

The third aspect that merits consideration is whether a 
single or multiple templates are used in the modelling of a 
single structure. By default, RaptorX uses multiple (up to 
five) templates to model a single structure [23]. Multiple 
template modelling is applied only if the model generated by 
multiple templates is better than the model generated from 
a single template, which applies to the majority of cases. 
However, we observed that there were several instances 
where only a single template was ranked and used for mod-
elling of the phenotypically validated candidates, such as 
the first domain of effector MoCDIP2, indicating that the 
sampling of template selection prior to modelling had con-
verged. This is also confirmed in the initial benchmarking 
studies, where the majority of the models were derived from 
a single template structure, as expected (Table 1; Table S4 in 
SI). The exceptions were Avr1CO39 (PDB structures 2myv 
and 5zng), AvrL567A (PDB structures 2opc and 2qvt) and 
AvrPia (PDB structures 5jhj and 2n37), where two different 
templates with similar structure were ranked for each model 
during benchmarking. Increased accuracy was observed with 
the use of a single template compared to multiple templates, 
since a reduction in accuracy can occur if one less accurate 
template is ranked amongst the top five templates. Depend-
ing on the target sequence, the use of multiple templates may 
provide better target coverage and better individual pairwise 
target–template alignments that can improve the final mod-
els. Multiple template threading is probably not beneficial 
in the case of limited sequence profiles, but may increase 
accuracy for models for which non-effector structures are 
used as templates (depending on the scores).

The fourth aspect to consider is the presence of multi-
ple domains/domain parsing in the modelled structures 
(marked with an asterisk in Table S4 in SI), such as in the 
following seven effector candidates: AvrLm1, Ecp2, effl-1, 
MoCIDP2, MoCIDP4, Six6 and Six8. For all of these can-
didates, dual domains were observed within a single model, 
except for Six8, which has three domains. These domains 
were modelled independently of the overall structure based 
on the Pfam database, with an E-value of < 0.001 as cut-off 
to indicate an independent domain [22].

Benchmarking of Template‑Based Modelling 
of Fungal Effector Proteins

The first part of this template-based modelling study was 
conducted using sequences for which experimentally deter-
mined 3D structures are available (Table 1). Benchmarking 
was conducted to assess the reliability of the template-based 
modelling approach for predicting the structure of fungal 
effector proteins, as well as to validate the use of TM-score, 
Cα–RMSD and RaptorX score metrics. All effector tem-
plates were successfully modelled, including cases that 
we have categorised as difficult, such as effectors AvrPik 
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and Avr1CO39, in non-template-based (de novo/ab initio) 
modelling of fungal effector proteins due to the presence 
of long-disordered loops [60]. Our findings using template-
based modelling thus demonstrate its reliability compared 
to non-template-based approaches. Availability of a suitable 
template for structure modelling can indeed overcome the 
limitations of modelling protein regions that contain highly 
flexible loops or disordered regions. However, in the case of 
fungal effector proteins, the number of available experimen-
tal effector template structures remains limited, preventing 
the full application of template-based modelling to predict 
the structure of fungal effector protein candidates.

Methods for Sequence‑Based Identification 
of Effector Candidate Sequences

This study also provides validation of the accuracy and reli-
ability of sequence-based bioinformatics approaches for pre-
dicted template matching prior to template-based modelling, 
such as in the case of ToxA-like and MAX-like effector can-
didates. Input candidate sequences had been pre-determined 
to belong to certain effector families even though, in general, 
template-based modelling could be applied to uncharacter-
ised sequence candidates. The accuracy of template-based 
modelling relies on the input protein sequence, which in turn 
depends on the accuracy of the sequence-based bioinformat-
ics approach applied for the prediction of those effector can-
didate sequences. This involves determining how close the 
predicted sequences are to a specific template that belongs 
to known effector families.

Bioinformatics sequence-based prediction of fungal 
effectors may utilise ‘remote homology’ (profile-based) 
approaches instead of conventional sequence homology 
searches due to the low sequence similarity of fungal effec-
tors with other proteins [3, 11]. Based on the top template 
ranked in the template-based modelling of each effector 
candidate, we observed that sequence-based approaches 
used for predicting effector sequences were more accurate 
for ToxA-like candidates than MAX-like candidates, since 
the same structural template for ToxA (PDB structure 1zld) 
was used as the top template for all ToxA-like candidates. In 
the identification of ToxA-like candidates, a remote homol-
ogy clustering approach (termed RemEff) using MMSeqs2, 
HMM-HMM searches and HHBlits had been applied in 
a previous study [3]. In addition, ToxA-like effector can-
didates are an easy target for template-based modelling 
because of the robust and efficient sequence-based bioin-
formatics approach implemented to predict these sequences. 
This is demonstrated by the success in modelling each can-
didate with high structural similarity to the experimentally 
determined ToxA effector (PDB structure 1zld).

In the case of the modelling of MAX-like effectors, the 
sequences of candidates that are homologues of AvrPia, 
Avr1CO39 and AvrPizt had been identified in a previous 
study using PSI-BLAST iterations in the genomes of M. ory-
zae and Magnaporthe grisea isolates [11]. This sequence-
based prediction of MAX-like effector candidates led to 
half of the listed candidates having MAX templates used 
for structural modelling. The remaining candidates had tem-
plates that matched to non-MAX effectors (Table S3 in SI), 
creating uncertainty as to whether they are true MAX-like 
effector candidates. The structure-based modelling approach 
using RaptorX indicated that not all PSI-BLAST-predicted 
candidates were MAX-like effectors, due to the absence 
of suitable matching MAX-like templates. However, it is 
important to also consider the limitations of the template-
based modelling approach, such that either downstream 
(determination of 3D structure) or upstream (effector activ-
ity) experimental validation is required. This also points 
to the challenge in predicting the structure of a sequence 
that does not have similarity with other protein sequences, 
including within MAX effector family.

The overall match of effector candidates to correspond-
ing fungal effector family structural templates was found to 
be ~ 35% for MAX and ~ 64% for Tox-like. The identification 
of ToxA-like effector candidates using the RemEff [3] clus-
tering method appears to be more advantageous and effi-
cient compared to the profile-based iteration approach which 
was applied for the prediction of MAX effector candidates. 
Differences in the outputs of the two approaches depend 
somewhat on the availability of homologous sequences for 
creating sequence profiles at the time, the different selec-
tion and evolutionary histories of these two structural fami-
lies, and the fact that the two studies are several years apart. 
Nevertheless, the application of sequence-based bioinfor-
matics approaches for effector candidate prediction prior to 
template-based modelling is an important part in the design 
of a more accurate pipeline for the identification of fungal 
effectors.

Comparison of Predictions Made by Template‑Based 
Modelling Programs

The modelling predictions made using RaptorX (a thread-
ing-based program) were compared with those of other pub-
licly available template-based modelling programs, in this 
case SWISS-MODEL (a comparative modelling program) 
and Phyre2 (a fold recognition program) to try to determine 
which approach is the best for predicting the structure of 
fungal effector candidates. Most template-based modelling 
programs search for evolutionary-related template protein 
structures to identify close and remotely related templates. 
Secondary and disordered structure prediction are also 
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included in all programs, which could improve modelling 
predictions since most fungal effector proteins are known 
to possess regions with long-disordered loops [62]. The 
main difference in the above programs is their modelling 
approach, the use of different scoring metrics for the ranking 
of the top templates prior to modelling, and the strategy for 
target–template alignment.

Due to low sequence identity (< 30%) of effector can-
didates, such as is the case of ToxA-like and MAX effec-
tor candidates, threading would be expected to be the best 
protein modelling approach [63]. By contrast, comparative 
modelling would be expected to provide more accurate mod-
els for effector candidates with more conserved sequence 
families (> 30% sequence identity), such as RALPH and 
chitin-based. This relates to the underlying methods in 
these approaches, where more weight is placed on struc-
tural information in a threading-based approach to assist 
modelling, such as is the case of RaptorX [32], compared 
to comparative modelling, which relies more on sequence 
information. The following comparison likely reflects how 
these programs have been designed to work.

A different strategy in target–template alignment was 
observed in the modelling of the ToxA-like candidate 
p2fl_ENH98532.1 using ToxA (PDB structure 1zld) as tem-
plate. All programs predicted a model with the best TM-
score compared to other ToxA-like candidates. However, 
their TM-scores were not exactly the same, and the final 
model generated differed in the residue length even though 
the starting target sequence was of the same length of 143 
amino acids. Depending on the algorithm for target–tem-
plate alignment in each program, different alignment cover-
age was generated: RaptorX had 100% coverage, meaning 
that all residues were being counted in the alignment with 
the target sequence, whilst SWISS-MODEL had 80% cover-
age and Phyre2 had 68% coverage (Fig. S10 in SI). These 
differences in alignment coverage affected the length of the 
final structural model generated, as shown in Fig. 6A. In this 
case, it is clear that RaptorX is the preferred method since 
no residues were omitted from the final models regardless 
of the absence of favourable secondary structures in certain 
regions, or the absence of regions that may consist of disor-
dered loops, especially at the N- or C-termini of the starting 
sequence. It is important to retain these regions in the final 
model for further studies, since they might have a functional 
role and adopt a given secondary structure (e.g. helix) during 
binding with other macromolecules or the internalisation of 
fungal effector proteins into host cells. Missing residues at 
the N/C-termini were also observed in other effector candi-
dates modelled using SWISS-MODEL and Phyre2, which 
relates to the target–template alignment approached used in 
these two programs. By contrast, in RaptorX regions that 
do not align to any template region are subjected to domain 
analysis and, if there were no matches to any template, these 

regions are modelled as disordered depending on the type of 
residues. Consequently, obtaining a precise model of a disor-
dered region requires a more complex modelling algorithm 
that is usually not applied in template-based modelling.

There is also an obvious trend in the predicted top TM-
scores for ToxA-like effector candidate models. TM-scores 
reflect how close the models are to the reference template 
and, in the majority of cases, RaptorX models had the high-
est TM-scores, followed by SWISS-MODEL and Phyre2. 
The lowest TM-scores amongst the three programs also 
show that RaptorX models exhibit the highest ‘lowest’ 
TM-score compared to SWISS-MODEL and Phyre2. This 
reveals that the worst models produced by RaptorX are still 
acceptable compared to those produced by SWISS-MODEL 
and Phyre2. Another interesting observation relates to the 
number of phenotypically validated effector candidates that 
could not be modelled due to the lack of an available tem-
plate. RaptorX had the highest number of candidates with 
24, compared to SWISS-MODEL with 8 and Phyre2 with 
only 1. However, even though Phyre2 was able to model 
nearly all candidates, it produced the highest number of 
models with TM-scores below 0.0, making these models 
unusable for further analysis. This relates to the stringency 
of the choice of template used in RaptorX, which again 
depends on the quality of the template alignment and the 
scoring metric. If a template can be found for a candidate, 
a target–template alignment will be created, but the scor-
ing generated from the alignment might not satisfy the cut-
off in RaptorX, which is stricter than the other programs. 
This results in a higher level of reliability in the choice of 
template and overall quality of the model of fungal effector 
candidates predicted by RaptorX.

Overall, RaptorX was found to be the most success-
ful program at predicting the structure of fungal effector 
candidates, followed by Phyre2 and SWISS-MODEL. The 
success of RaptorX might be attributed to the accuracy of 
the template selection step, which uses customised weights 
and a non-linear scoring function for template ranking, an 
approach not used by the other programs used in this study. 
Phyre2 is a fold recognition-based program that takes advan-
tage of the finite number of protein folds in nature, exploit-
ing secondary structure information in modelling; however, 
it is limited in its search space because not all folds will 
have an exact match when combined together. SWISS-
MODEL benefits from the speed of its sequence alignment 
step prior to modelling; however, the quality of the resulting 
target–template alignment decreased to below 40% sequence 
identity, such as in the case of most fungal effectors, which 
affected the final predicted models.

We can conclude that the choice of method used in tem-
plate-based modelling of fungal effector protein candidates 
is important for obtaining a model that is reliable for cat-
egorisation into certain effector structural families based on 
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the underlying choice of template. This also shows that the 
application of template-based modelling to the structure of 
different effector structural families depends on the avail-
ability of templates for that specific effector family.

Modelling of Phenotypically Validated Fungal 
Effector Candidates

Datasets of fungal effector proteins with experimentally ver-
ified virulence phenotypes were collected from the literature, 
with most of these lacking sequence homology, and having 
previously been applied as a positive training dataset for 
machine-learning-based effector prediction methods [28]. 
Since the input sequences are a mixture of different effector 
families (assumed based on lack of sequence homology), 
we tested whether template-based modelling could be used 
to validate and categorise a small proportion of them into 
known effector families, similar to the case of the ToxA-
like and MAX structural families. In this study, three of the 
predicted models of these phenotypically validated effec-
tors matched the RALPH (Avra13 and AvrPm2) and MAX 
(SPD7) effector families. The majority of predicted effector 
models had matches to other proteins in public databases, 
with a minority not having any matches to any templates 
(but making them suitable for non-template-based (ab ini-
tio) modelling [60]). RaptorX succeeded in predicting the 
structure of about half of all candidates.

Intriguingly, several structural models were derived from 
non-fungal effector templates, which suggested a common 
theme of cytotoxic and membrane-interacting functions that 
may have been broadly conserved across distant kingdoms 
of life. These models hint at the possibility of broadly con-
served folds or structures not yet characterised within effec-
tor structural families, possibly suggesting similar functional 
roles in fungal effectors based on their structural similar-
ity with proteins in the PDB. For example, the predicted 
structure of Bas3 matched to the cytotoxic plant defensin 
1 (PDB structure 1ti5), which has a knottin-like fold and is 
known to have insecticidal activity [59]. Six6 also matched 
a cytotoxic viper venom/metalloprotease (PDB structure 
2e3xA). Similarly the predicted structures of some effec-
tors matched to structures with known membrane-degrading 
or modifying functions, including Ave1, which matched to 
the membrane-loosening expansin protein (PDB structure 
4jcwA), and AvrLm1, which matched the lipopolysaccha-
ride-binding/transport protein LptA (PDB structure 4uu4A). 
Several effectors also matched to structures with proteolytic 
functions, activities which are often associated with fungal 
effectors (Table 6; Table S6 in SI).

On the basis of the matching structural templates used 
during modelling, some of the models of phenotypically 
validated effector candidates were not observed to have the 
typical properties of fungal effector proteins, i.e. being small 

secreted proteins with less than 200 amino acids and high 
in cysteine content [4, 15]. Although not mutually exclu-
sive with effectors, some predicted structures were anno-
tated with other functions not typically linked with mem-
brane disruption or cytotoxicity. These may still play crucial 
roles in the infection process but are less well understood, 
but their predicted structures could be used for the study of 
interacting proteins using molecular docking simulations or 
experimental methods to further support this. In this study, 
several effectors were shown to have matches with struc-
tural templates with uncertain virulence roles, such as was 
the case for candidates that have more than 200 residues: 
PGTG_08638, MoCDIP1, MoCDIP4 and Cgfl. The pre-
dicted structure of PGTG_08638 was derived on the basis of 
a synthetic construct template consisting of an α-helical fold 
(PDB structure 5cwh). The predicted structure of MoCDIP1 
used as template the structure of a viral protein containing 
β-plated sheets (PDB structure 3gq7). The predicted struc-
ture of MoCDIP4 used as template an extracellular metal ion 
binding protein consisting of a β-strand sandwich fold (PDB 
structure 4b5q). The predicted structure of Cgfl used as tem-
plate the structure of a zinc ion binding fungal peptidase 
containing an α-helical fold (PDB structure 4k90) (Fig. 5).

Conclusions

Template-based structural modelling was applied to pre-
dict the structures of fungal effectors belonging to the 
well-defined ToxA-like and MAX effector families. This 
approach was extended to predict novel functional predic-
tions based on structural homologies between other pheno-
typically validated effectors.

The threading-based program RaptorX was found to per-
form better in the modelling of the structure of fungal effec-
tors compared to comparative modelling approaches, such 
as those in SWISS-MODEL and Phyre2. This appears to be 
due to the intrinsic limitations of comparative modelling 
methods when dealing with the low sequence identity that 
effectors exhibit with other proteins. Target–template align-
ment quality was found to be the most important aspect in 
obtaining an accurate predicted model.

Knowledge generated by this study can be applied to 
future effector identification. Template-based modelling 
has indeed the potential to be incorporated into the pipeline 
of fungal effector protein discovery. This work identified 
the best parameters required for the generation of an effec-
tor identification pipeline using template-based modelling, 
which is aided by the fact that the constituent modules in 
RaptorX may be customised in an application focused on 
fungal effector protein candidates. This approach, however, 
may not be as high throughput as sequence-based approaches 
due to the nature of the physicochemical properties of 
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protein structures; however, it could be a downstream add-
on to a sequence-based bioinformatics approach, filtering 
‘true’ effectors from candidate sequences that might include 
false positives.

Template-based modelling is an approach that should be 
considered before applying ab initio modelling because it is 
in general more reliable in spite of its limitations. The chal-
lenges that might arise during the application of template-
based modelling include the use of template structures that 
are not related to effectors and/or have non-relevant func-
tions in phytopathogenic fungi, as well as the limitations 
of template-based methods, which can become unreliable 
when there are no homologues with experimentally solved 
structures. The latter certainly applies to the case of fungal 
effector proteins, which can result in an absence of models 
being generated and, consequently, necessitating a different 
approach, such as ab initio modelling.

Since the sequences of effector protein candidates were 
obtained from the literature and public databases, this study 
contributes to the validation of candidate effector families 
defined by effector sequences and also provides more infor-
mation regarding the structural folds that may be present in 
these validated effectors. This may allow the discovery of 
new fungal effector protein structural families or folds. In 
this study, several effector candidates were found to have a 
match with template/reference structures outside of known 
fungal effector families, and based on this study, all 33 
ToxA-like candidates are considered ‘true’ ToxA-like effec-
tors (structural-based), whilst 19 of the MAX-like candi-
dates are structurally homologous MAX effectors. Amongst 
the experimentally validated effector candidates, effectors 
AvrA13 and AvrPm2 were found to belong to the charac-
terised RALPH effector family and effector SPD7 to the 
MAX effector family. The remaining phenotypically vali-
dated effector candidates matched with templates of other 
non-effector-like proteins, some of the effectors modelled 
were found to exhibit folds that have not yet been identified 
amongst effector structural families. Compelling examples 
included effector Bas3 which has a knottin/defensin-like fold 
similar to plant defensin 1, cytotoxic peptides with integral 
roles in the plant immune response. Additionally, the Six6 
effector was structurally homologous to viper venom metal-
loproteinase, a cytotoxic peptide from the animal kingdom. 
These and other examples of known fungal effectors with 
cross-kingdom structural homology observed in this study 
may represent the first reports of ancestrally conserved struc-
tural folds with common roles in cytotoxicity, cell membrane 
disruption and proteolysis.
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