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Abstract 
Novel effective drugs or therapeutic vaccines have been already developed to eradicate viral infections. Some non-viral 
carriers have been used for effective drug delivery to a target cell or tissue. Among them, cell penetrating peptides (CPPs) 
attracted a special interest to enhance drug delivery into the cells with low toxicity. They were also applied to transfer peptide/
protein-based and nucleic acids-based therapeutic vaccines against viral infections. CPPs-conjugated drugs or vaccines were 
investigated in several viral infections including poliovirus, Ebola, coronavirus, herpes simplex virus, human immunodefi-
ciency virus, hepatitis B virus, hepatitis C virus, Japanese encephalitis virus, and influenza A virus. Some studies showed 
that the uptake of CPPs or CPPs-conjugated drugs can be performed through both non-endocytic and endocytic pathways. 
Despite high potential of CPPs for cargo delivery, there are some serious drawbacks such as non-tissue-specificity, instabil-
ity, and suboptimal pharmacokinetics features that limit their clinical applications. At present, some solutions are utilized to 
improve the CPPs properties such as conjugation of CPPs with targeting moieties, the use of fusogenic lipids, generation of 
the proton sponge effect, etc. Up to now, no CPP or composition containing CPPs has been approved by the Food and Drug 
Administration (FDA) due to the lack of sufficient in vivo studies on stability, immunological assays, toxicity, and endosomal 
escape of CPPs. In this review, we briefly describe the properties, uptake mechanisms, advantages and disadvantages, and 
improvement of intracellular delivery, and bioavailability of cell penetrating peptides. Moreover, we focus on their applica-
tion as an effective drug carrier to combat viral infections.
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Introduction

Cell penetrating peptides (CPPs) with 5–30 amino acids 
can deliver a variety of biomolecules into the cells [1] 
such as small molecules, small interfering RNA, proteins, 
peptide-nucleic acid (PNA), imaging agents, and vaccines 
[2–4]. Human immunodeficiency virus transactivating 
regulatory protein (HIV TAT) was reported as the first 
CPP with the membrane translocating property [5–7]. 
After that, other CPPs with different properties in charge, 
polarity, and structure were reported to deliver bioactive 
molecules as classified in the CPPsite 2.0 database (https://​
webs.​iiitd.​edu.​in/​ragha​va/​cppsi​te/​index.​html). CPPs are 
capable of delivering therapeutic substances (drugs or 
vaccines) into cellular compartments using the covalent 
or non-covalent linkage [8–11].

In recent years, different viral infections with high vari-
ability have been represented as major threats to the global 
health. Some of them led to a significant public health 
burden and huge economic loss [12–14]. Viruses can latch 
onto host cells as seen in several outbreaks including cur-
rent coronavirus (COVID-19) pandemic caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [15]. Antiviral drugs including small molecules 
that may interfere with viral replication, mRNA-, DNA-, 
or RNA interference (RNAi)-based vaccines that is said 
to be the potential vaccines to fight against viruses, and 
using antibodies that could act as both therapeutic and 
prophylactic have the capacity to prevent or treat viral 
infections [15, 16]. The diagnosis of viral infections can 
be performed by viral culture, antigen detection, serologi-
cal tests, and viral nucleic acid detection. The molecu-
lar technology performed by polymerase chain reaction 
(PCR) is widely used in the detection and identification of 
pathogenic viruses [17, 18]. Recently, innovative methods 
such as biosensing technology (e.g., graphene/zinc oxide 
nanocomposite-based electrochemical genosensors) ena-
ble the researchers to detect nucleic acids in a faster and 
inexpensive way [19]. In spite of advances in the devel-
opment of therapeutic strategies, it is recommended to 
optimize the delivery system rather than investing time 
and resources into developing new antiviral therapeutic 
agents. As known, most of the therapeutic targets of anti-
viral agents (drug or vaccine) are located inside the cells, 
thus development of a potent and safe intracellular deliv-
ery vehicle (such as CPPs) is necessary for increasing their 
effects in vivo [9]. For example, the incorporation of CPPs 
in subunit or nucleic acid-based vaccines could improve 
antigen uptake by antigen-presenting cells (APCs). Fur-
thermore, CPPs could be harnessed to develop new thera-
peutics and considered as a safe alternative or additive to 
classical adjuvant formulations. Indeed, they can improve 

the properties of current antiviral drugs and vaccines [20, 
21]. In this review, we briefly describe the properties of 
CPPs, their mechanisms, and their variety of applications 
in drug delivery with a focus on the management of viral 
infections.

Classification of CPPs

Cell penetrating peptides were classified based on their 
type of origin, chemical charge (cationic, amphipathic, and 
hydrophobic groups related to their uptake mechanism), 
physicochemical properties (e.g., charge, hydrophobicity, 
and distribution of the residues in the peptide sequence), 
and the extent of modifications and design efforts (Fig. 1). 
Cationic CPPs are the largest group of cell penetrating pep-
tides containing basic amino acids that are responsible for 
their cellular uptake and suppression of helical folding for-
mation [e.g., polyarginine, TAT, and DNA- and RNA- and 
heparan-binding proteins of viruses, protamines, histones, 
and nuclear localization signal (NLS)] [22–25]. Some stud-
ies showed that oligoarginine peptides (the optimal length: 
8–10 residues) penetrate into cells remarkably better than 
oligolysine peptides with the same length and charge 
[26, 27]. Increasing the length of oligoarginine peptides 
decreased their potency of delivery due to the cell toxicity 
and irreversible interaction with plasma membrane [28]. In 
addition, more than 40% of CPPs are amphipathic peptides 
with negative overall charge [29]. These CPPs were divided 
into primary (mainly chimeric or synthetic peptides derived 
from natural proteins such as tumor-suppressor p14ARF 
protein or prion proteins) [30–32], and secondary (e.g., 
MAP or M918) [33] groups based on the peptide sequence, 
length, and association with lipids. In general, transition to 
a β-sheet structure led to forming the amphipathic structure 
and cell penetration [34]. The lowest number of CPPs con-
tains hydrophobic CPPs with only apolar residues derived 
from signal peptide sequences (e.g., transportan, stapled 
peptides, prenylated peptides, pepducins, SG3, Pep-7, and 
fibroblast-growth factor) [35–41]. On the other hand, CPPs 
can be classified based on the linkage with therapeutic agent 
into covalently (as fused to a recombinant protein cargo or 
conjugated by a linker to the cargo including TAT, penetra-
tin, polyarginine, VP22, Buforin I, transportan, and SynB 
peptides) [42, 43] or non-covalently (as stable complexes 
with peptide/protein and oligonucleotide cargos through 
non-covalent electrostatic and hydrophobic interactions 
including Pep-1 and MPG peptides)-bonded forms [44, 45]. 
Table 1 provides a summary of main CPPs and their charac-
teristics. Additionally, the classification of CPPs as protein-
derived CPPs (e.g., viral proteins, mammalian DNA/RNA-
binding proteins, and transcription factors), chimeric CPPs, 
and synthetic CPPs is very useful to design more efficient 

https://webs.iiitd.edu.in/raghava/cppsite/index.html
https://webs.iiitd.edu.in/raghava/cppsite/index.html
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CPPs being able to increase the cellular uptake, and delivery 
of the related cargos. In recent years, chemical modification 
of CPPs was used to enhance cargo delivery [46–56].

Applications of CPPs

The intracellular delivery of therapeutic agents (e.g., nucleic 
acids or proteins) is difficult due to their large size and 
hydrophilic nature. Several physical (e.g., electroporation 
or microinjection), viral (e.g., lentiviral vectors), and non-
viral/ chemical (e.g., polymers and liposomes) approaches 
were applied to enhance their cellular uptake [77]. However, 
some drawbacks such as low efficiency and immunogenicity, 
high toxicity, and poor specificity limited their use for deliv-
ery of different cargos [78]. In recent years, CPPs have been 
used to promote the delivery of drugs into cells due to their 
high efficiency in crossing cell membranes without the aid of 
any specific receptor, and low toxicity [79]. Moreover, CPPs 
have been applied in many fields of medicinal applications 
including imaging and biosensing applications, enzyme 
replacement therapy, anti-inflammation therapy using anti-
sense peptide nucleic acids (PNAs), cancer therapy, and vac-
cine development [80]. Among these applications, antiviral 
drug delivery using CPPs attracted a special interest as fol-
lows. In general, current antiviral therapy mainly relies on 
small molecules to inhibit multiple targets involved in the 
viruses’ life cycle. The main limitation of currently used 
antiviral drugs is inefficient delivery into the infected cells in 
vivo due to their pharmacokinetics and pharmacodynamics 

properties which limit their applications [81]. Therefore, 
CPPs were proposed as an effective delivery system for dif-
ferent types of biotherapeutics such as peptides/proteins and 
nucleic acids in antiviral therapy [82].

Delivery of Therapeutic Small Molecule Drugs

Small molecule drugs inhibit the activity of cellular or viral 
proteins involved in different stages of the virus life cycles 
[83]. Although most of small molecule drugs can pass 
the cell membrane, in some cases, bioavailability of these 
molecules is limited by their high degree of hydrophilicity 
which diminishes the ability of crossing the cell membrane 
[84]. Thus, conjugation of CPPs with these small molecule 
drugs could enhance their cellular uptake [e.g., delivery of 
small molecules through the blood–brain barrier (BBB)], 
and improve their pharmacokinetics and pharmacodynam-
ics profile (e.g., the increased solubility and bioavailability 
of small molecule drugs in body fluids) [85]. For instance, 
porphyrin antiviral drug conjugated with CPPs can cross 
the BBB, and inhibit brain-resident HIV virus causing HIV-
associated neurocognitive disorders (HAND) in vitro [86].

Delivery of Peptide/Protein‑Based Therapeutics

A large number of peptide/protein-based therapeutics (e.g., 
enzymes and antibodies) were clinically used to treat vari-
ous viral diseases. However, some physiochemical prop-
erties of peptides/proteins such as size and hydrophilicity 
could limit their intracellular accumulation. Thus, CPPs 

Fig. 1   A schematic diagram illustrating the types of CPPs and their 
cargos: CPPs can be classified based on chemical charge, linkage 
with cargo, and also their origin. Different kinds of antiviral cargos 

including vaccines, small molecules, and peptide/ protein and nucleic 
acid therapeutics can conjugate with CPPs via covalent or non-cova-
lent binding
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Table 1   Main CPPs and their characteristics

Type Name Amino acid sequence Origin Structure Reference

Cationic peptides HIV-TAT​
(aa: 47–57)

YGRKKRRQRRR​ HIV-1 transcriptional 
activator protein

Random [6, 7]

Penetratin RQIKIWFQNRRMKWKK DNA binding protein 
(Homeoprotein) of 
Drosophila anten-
napedia

Random/ β-sheet [34]

Oligoarginines 
(R9-R12)

RRR​RRR​RRR/RRR​RRR​RRR​RRR​ Synthetic Random [27]

S413-PV ALWKTLLKKVLKAPKKKRKVC Chimeric peptide 
with AMP der-
maseptin S4 and 
NLS

α-helix [24]

VP22 DAAT​ATR​GRSAASRPTERPRA-
PARSASRPRRPVE

HSV-1 protein α-helix/
β-sheet/Random

[49]

Amphipathic pep-
tides

Transportan
(Primary)

GWTLNSAGYLLGKINLKALAAL-
AKKIL-amide

Galanin-Lys-mas-
toparan protein

α-helix [35]

TP10
(Primary)

AGYLLGKINLKALAALAKKIL-
amide

Synthetic α-helix [57]

Pep-1
(Primary)

Ac-KETWWETWWTEWSQPKK-
KRKV-NH-CH2-CH2-SH

Chimeric of SV40 
NLS and HIV-1 
reverse tran-
scriptase

α-helix [51]

MAP (Secondary) KLALKLALKALKAALKLA Synthetic Random/ α-helix [58]
MPGα
(Primary)

Ac-GALFLAFLAAALSLMGL-
WSQPKKKRKV-NH-CH2-CH2-SH

Chimeric of HIV gp 
41 and NLS from 
SV40

Random/ β-sheet [59]

MPGβ
(Primary)

Ac-GALFLGFLGAAGSTMGAW-
SQPKKKRKV-NH-CH2-CH2-SH

Chimeric of HIV gp 
41 and NLS from 
SV40

Random/ β-sheet [59]

MPG8
(Primary)

βAFLGWLGAWGTMGWSPKKRK-
NH-CH2-CH2-SH

Chimeric of HIV gp 
41 and NLS from 
SV40

Random/β-sheet [59]

Buforin II
(secondary)

TRSSRAGLQWPVGRVHRLLRK Histon H2A-derived 
AMP from the 
stomach of the 
Korean common 
toad Bufo bufo 
gargarizans

Random/ α-helix [60]

CADY
(Secondary)

Ac-GLWRALWRLLRSLWRLL-
WKA-NH-CH2-CH2-SH

PPTG1 peptide α-helix [52]

SynB1
(Secondary)

RGGRLSYSRRRFSTSTGR​ Protegrin – [61]

ARF (1–22)
(Primary)

MVRRFLVTLRIRRACGPPRVRV N-terminal part of 
p14ARF

– [30]

PepFect6
(Secondary)

Stearyl-AGYLLGK(ε-TMQ)INLKA-
LAALAKKIL

Synthetic α-helix [62]

PepFect14
(Secondary)

Stearyl-AGYLLGKLLOOLAAAAL-
OOLL-amide

Synthetic α-helix [62]

PepFect15
(Secondary)

Stearyl-AGYLLGK(K3QN4)LLOOL-
AAAALOOLL-amide

Synthetic α-helix [62]

NickFect NF61
(Secondary)

Stearyl-AGYLLGOINLKALAAL-
AKKIL-amide

Synthetic α-helix [62]
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Table 1   (continued)

Type Name Amino acid sequence Origin Structure Reference

VT5
(Secondary)

DPKGDPKGVTVTVTVTVTGKG-
DPKPD

Synthetic β-sheet [63]

KALA
(Secondary)

WEAKLAKALAKALAHL-
AKALAKALKACEA

Synthetic α-helix [64]

KLA
(Secondary)

Acetyl-KLALKLALKALKAAL-
KLA-amide

Synthetic α-helix [64]

pVEC
(Primary)

LLIILRRRIRKQAHAHSK-amide Murine vascular 
endothelial cad-
herin protein

β-sheet [47]

Hydrophobic pep-
tides

Kaposi FGF AAVALLPAVLLALLAP Signal peptide of 
Kaposi’s fibroblast 
growth factor

β-sheet [65]

C105Y CSIPPEVKFNKPFVYLI C terminal tail of 
α-anti-trypsin

α-helix [66]

SG3 RLSGMNEVLSFRWL Synthetic – [39]
Grb2 (SH2 domain) AAVLLPVLLAAP Signal sequence of 

SH2 domain
β-sheet /α-helix [67]

BIP VPMLKE Synthetic – [68]
Pep-7 SDLWEMMMVSLACQY Synthetic α-helix [40]

Antimicrobial pep-
tides

Protegrin-1 (Cationic 
arginine-rich)

RGGRLCYC​RRR​FCVCVGR AMP from cathelici-
din family

β-sheet /α-helix [69]

Lactoferrin
(Cationic)

VSQPEATKCFQWQRN-
MRKVRGPPVSCIKRDSPIQI

AMP from human 
milk protein

α-helix [70]

LL-37
(Amphipathic)

LLGDFFRKSKEKIG-
KEFKRIVQRIKDFLRN-
LVPRTESC

AMP from human 
cathelicidin

α-helix [71]

Bac 7
(Amphipathic 

proline-rich)

RRIRPRPPRLPRPRPRPLPFPRPG Bactenecin family 
of antimicrobial 
peptides

– [72]

PR39
(Proline/arginine-

rich)

RRRPRPPYLPRPRPPPFFPPRLP-
PRIPPGFPPRFPPRFP

AMP from cathelin 
family

– [73]

N-terminal prion 
peptides

Bovine Prpr (1–30)
(Primary amphip-

athic)

MVKSKIGSWILVLFVAMWSD-
VGLCKKRPKP

N-terminal of unpro-
cessed bovine prion 
protein

– [31]

Bovine Prpr (1–24)
(Primary amphip-

athic)

MVKSKIGSWILVLFVAMWSD-
VGLC

N-terminal of unpro-
cessed bovine prion 
protein

– [31]

Poly-α-amino acids SAP
(Proline-rich)

(VRLPPP)3 N-terminal of γ-zein Polyproline II helix [74]

pH-sensitive CPPs pHLIP
(Secondary amphip-

athic)

AEQNPIYWA​RYA​DWLFTTPLLL-
LELALLVDADEGT

Synthetic Unstructured at 
pH = 7.4 but folds 
as a transmembrane 
helix at pH = 6

[75]

GALA
(Secondary amphip-

athic)

WEAALAEALAEALAEHLAEAL-
AEALEALAA

Synthetic α-helix [76]

AMP an antimicrobial peptide; ARF ADP-ribosylation factor; Bovine Prpr bovine prion protein; gp41 glycoprotein; HIV human immunodeficiency 
virus; HSV herpes simplex virus; MAP model amphipathic peptide; NLS nuclear localization signals; PPTG1 lysine-rich cell membrane destabiliz-
ing peptide bound to plasmid DNA; SAP sweet arrow peptide; SV40 simian virus 40; TAT​ Trans-activator of transcription; TP10 Transportan 10
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were extensively utilized as shuttles for intracellular deliv-
ery of a variety of peptides/proteins Incorporation of CPPs 
(e.g., penetratin, SynB, and TAT) in cytotoxic T lympho-
cytes (CTL)-inducing therapeutic vaccines is one of their 
interesting applications for delivery of peptide/protein-based 
therapeutics [87–89]. Moreover, several antiviral peptides 
(i.e., natural proteins-derived peptides or synthetic peptides) 
have emerged as ideal therapeutic agents against viral infec-
tions in clinical trials. Many of these peptides could exert 
their antiviral activity by interfering with various steps of 
virus life cycles. Enfuvirtide is the only approved peptide 
drug for HIV-1 treatment. Conjugation of antiviral peptide 
drugs with CPPs was highly suggested to overcome their 
poor cell permeability [90]. Table 2 shows successful deliv-
ery of CPP-conjugated peptides/proteins against related viral 
infections.

On the other hand, remarkable target specificity and low 
immunogenicity of antibodies make them as a promising 
therapeutic agent. More than 80 therapeutic antibodies were 
approved by the Food and Drug Administration (FDA) and 
hundreds more are in various phases of clinical trials. Thus, 
therapeutic antibodies have become one of the predominant 
and fastest-growing classes of new drugs developed in recent 
years [91]. However, large molecules including antibodies 
are notoriously hard to be delivered. TAT cell penetrating 
peptide showed the significant translocation potency for 
delivery of antibodies into the cells (e.g., delivery of mono-
clonal antibodies (mAb) for radioimmunotherapy and radio-
immunodetection). Moreover, CPPs were used as shuttles for 
delivery of single-chain variable fragments (ScFv) which are 
the engineered proteins generated by fusion of the variable 
heavy (VH) and light (VL) domains of an antibody. The 
delivered antibody could maintain its functional conforma-
tion to interact with the target in the cell [92]. Some studies 
have demonstrated effective internalization, and significant 
antiviral activity of antibody fragments fused to CPPs. For 
instance, one study showed that mAb targeting HIV capsid 
protein p24, fused to ĸFGF-MTS CPP (KAAVALLPAVL-
LALLP) efficiently internalized into the cells, and inhibited 
the HIV-1 replication in cell culture [93]. Another study 
indicated that the TAT-fused antibody targeting intracellu-
lar HBV X protein (HBx) effectively internalized into the 
cells, and reduced intracellular HBx in vitro and in vivo [94]. 
Table 2 represents successful delivery of antibodies by CPPs 
against related viral infections.

Delivery of Nucleic Acids and Oligonucleotides 
in Gene Therapy

Gene therapy is efficient delivery of genetic material into 
the cell, tissue or whole organ without causing pathogenic 

effects [95]. However, poor permeability of the plasma 
membrane of eukaryotic cells to DNA led to low concen-
tration of DNA and other oligonucleotides at their targets. 
To overcome this issue, polylysine and polyarginine pep-
tide carriers with the membrane-destabilizing properties 
could bind to DNA through electrostatic interaction (i.e., 
non-covalently bonded form), and facilitate gene transfer 
into cells [96]. For example, cationic polymers such as poly-
ethylenimine (25 kDa PEI) were utilized for gene delivery 
due to the formation of nanometer-sized particles with the 
negatively charged plasmid DNA. The linkage of PEI to TAT 
CPP through a hetero-bifunctional polyethylenglycol (PEG) 
spacer (i.e., the TAT-PEG-PEI conjugate) could significantly 
increase the efficiency of gene delivery in lung, and reduce 
in vivo toxicity [97].

On the other hand, the therapeutic potential of small 
interfering RNA (siRNA) and microRNA (miRNA) against 
various types of viruses (e.g., HIV, HCV, HBV, influenza, 
Ebola, HSV, and poliovirus) was reported through sequence-
specific suppression of gene expression (e.g., transcription 
or translation) [98]. Cell penetrating peptides could easily 
be conjugated covalently and non-covalently with siRNAs 
for their effective delivery into the cells. However, non-cova-
lent strategies were more effective than covalent strategies 
for siRNA delivery. For example, MPG peptide could sig-
nificantly improve the efficiency of siRNA delivery and its 
safety in the target cells [99, 100]. Additionally, MPG-based 
particles enter the cell independently of the endosomal path-
way, and can efficiently deliver siRNAs in a fully biological 
active form into a variety of cell lines and in vivo [101].

Due to overcoming some problems of siRNAs and miR-
NAs (e.g., poor pharmacokinetics and sensitivity to enzy-
matic degradation), a series of antisense oligonucleotides 
(AOs) with improved properties (i.e., high stability, high 
affinity, and low toxicity) has been developed for antisense 
therapy. Peptide nucleic acids (PNAs) and phosphorodiam-
idate morpholino oligomers (PMO) are such AOs widely 
used for therapeutic applications. For instance, the CPP-
PMO conjugates (PPMOs) were shown to reduce viral 
replication, and increase the survival rate of infected mice. 
These in vitro and in vivo therapeutic experiments were 
performed against various types of viruses (e.g., poliovi-
rus, Ebola, SARS, HSV, HIV, HBV, HCV, measles, Japa-
nese encephalitis virus, and influenza A virus) [102–110]. 
Some studies showed that the efficacy of PNA and PMO 
conjugated to CPPs was only significant in the presence of 
endosomolytic agents (e.g., chloroquine and calcium ions) 
[111, 112]. However, most of the endosomolytic agents are 
too toxic for in vivo applications limiting the use of CPP-
PNA or CPP-PMO [113, 114]. Table 2 includes successful 
delivery of oligonucleotide-based antiviral therapeutics.
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Table 2   Potential of CPPs for delivery of antiviral therapeutic agents

Ad5 adenovirus serotype 5; Casp3 caspase 3 (a crucial mediator of apoptosis); CMV cytomegalovirus; HbcAg Hepatitis B core antigen; ICP27 
and ICP0, two nonstructural immediate-early genes essential for HSV-1 replication; JEV Japanese encephalitis virus; NBS nucleocapsid bind-
ing subunits; NS4B non-structural protein 4B (an essential protein for the HCV infectious cycle); NS5A non-structural protein 5A (an essential 
protein for the HCV RNA replication); PNA peptide nucleic acids; PMO phosphorodiamidate morpholino oligomers; PRF programmed riboso-
mal frameshifting; RBS retromer-binding site; (RXR)4XB R = Arginine: X = 6-aminohexanoic acid: B = β-alanine; UTR​ untranslated region; VSV 
vesicular stomatitis viruses; X-RNA a highly conserved 98 nucleotide sequence in RNA-dependent RNA polymerase (RdRp) of HCV

CPP Cargo Virus Activity Reference

TAT​ I24 HSV, SV40, CMV, Ad5, Vaccinia Suppressed viral infection in vitro via 
inhibition of viral entry and gene 
expression

[118]

R7 NBS HBV Suppressed viral infection in vitro via 
blocking of nucleocapsid assembly

[120]

HPV-16 L2 RBS HPV Suppressed viral infection in vitro and 
in vivo via inhibiting virus trafficking 
during virus entry

[121]

TAT​ Casp3 HIV-1 Induced apoptosis in HIV-1 infected 
cells

[122]

TAT​ P53 HBV Suppressed HBV transcription and 
expression in vitro and in vivo

[123]

TAT​ P27SJ HIV-1 Suppressed transcription and replication 
of HIV-1 in vitro

[124]

R9, TAT​ Mx2 VSV,Mucosal influenza Inhibited viral replication [125]
R9, TAT​ AZP HPV-18 Suppressed HPV18 replication [126]
ĸfgf-mts IgG antibody targeting capsid protein 

p24 antigen
HIV Inhibited virus replication in vitro [93]

TAT​ ScFv antibody targeting HIV-1 Tat 
protein

HIV Inhibited virus transcription in vitro [127]

TAT​ mAb targeting HBcAg HBV Inhibited virus replication in vitro [128]
TAT​ mAb targeting HBx protein HBV Suppressed viral transcription, replica-

tion, and protein production both in 
vitro and in vivo

[94]

R9 ScFv antibody targeting NS5A HCV Inhibited virus replication in vitro [129]
Penetratin NS4B HCV Inhibited virus replication in vitro [130]
Penetratin ScFv antibody targeting M1 matrix 

protein
influenza Interfered with the replication of the 

virus in vitro and in vivo
[131]

R9 ScFv antibody targeting VP40 Ebola Inhibited virus assembly [132]
TAT​ siRNA targeting tat and rev genes HIV-1 Inhibited virus replication in vitro [133]
T9 siRNA targeting NP gene Influenza Inhibited replication of the virus in vitro 

and in vivo
[134]

TAT​ siRNA targeting 5’-UTR​ HCV Suppressed virus infection in vitro [135]
TAT​ PNA targeting direct repeat sequence of 

HBV RNA
HBV Inhibited virus replication in vitro and 

in vivo
[136]

TAT​ PNA targeting X-RNA sequence HCV Inhibited virus replication in vitro [107]
R9 PNA targeting HIV-1 TAR sequence HIV-1 Inhibited HIV-1 TAT-dependent trans-

activation
[137]

TAT​ PNA targeting-1PRF SARS-CoV Suppressed SARS-CoV replication [138]
(RXR)4XB PNA targeting MeV mRNA of virus 

nucleocapsid
Measles Suppressed virus infection in vitro [108]

TAT​ PMO targeting 3’- and 5’- UTR of 
mRNA and genome cyclization motifs

JEV Suppressed virus proliferation [109]

(RXR)4XB PMO targeting ICP27 or ICP0 mRNA HSV-1 Inhibited HSV-1 ocular infection in vivo [105]
R9F2 PMO targeting translation start site of 

VP35 gene
Ebola Suppressed virus infection in vitro and 

in vivo
[139]

P7 PMO targeting critical regions in viral 
genome RNA

Influenza A Suppressed various subtypes of influ-
enza A in vitro

[140]
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CPPs with Antiviral and Antimicrobial 
Properties

Antimicrobial peptides (AMPs) are promising antimicro-
bial agents that influence cellular membrane of microor-
ganisms. Some of CPPs have antibacterial properties. Anti-
bacterial CPPs can penetrate to cytoplasm, bind to nucleic 
acids, inhibit protein synthesis, and finally cause bacterial 
cell death [115]. For example, PEP27-2 (MWKWFHN-
VLSWGWLLADKRPARDYNRK-NH2) is a potent antimi-
crobial CPP which reduced skin abscess formation during 
Staphylococcus aureus infection in mouse when used as 
combined with antibiotics. Indeed, PEP27-2 inhibited cel-
lular processes by interrupting DNA metabolism in bacte-
rial cells [116]. Moreover, some of CPPs possess antiviral 
properties. For instance, interaction of TAT peptide with 
CXCR4 co-receptor inhibited the replication efficiency 
of the virus strains such as HIV-1 and HSV, and showed 
the antiviral activity [117]. The advantage of these CPPs 
with antiviral activity is their synergistic antiviral effects, 
and their role as a delivery vehicle for other antiviral 
agents. Indeed, the net positive charge of these peptides 
could interact with the negatively charged components of 
viruses, and prevent viral infection at the attachment or 
entry step [106]. For example, TAT-I24 (GRKKRRQR-
RRPPQCLAFYACFC) demonstrated inhibitory activity 
against DNA viruses. This peptide could suppress the early 
step of viral replication cycle at the level of viral entry, and 
gene expression. The mechanism of action is the direct 
binding of the peptide to the viral envelope and/or affect-
ing the membrane structures [118]. Another study showed 
that the anti-HIV-1 virucidal activity of Transportan-PNA 
conjugate was efficient to block HIV-1 infection or inac-
tivate virus in the plasma before attachment and entry the 
cells [119].

Mechanism of CPP Internalization

Although the exact mechanism of CPP internalization with 
or without cargo has not been completely revealed, their 
uptake pathways have been classified as non-endocytic (i.e., 
the energy-independent direct delivery of cargo to cyto-
plasm) and endocytic (i.e., the energy-dependent delivery 
of cargo to lysosomes) pathways (Fig. 2). Most CPPs utilize 
two or more uptake mechanisms depending on the type of 
CPP, cell line, cargo, concentration, temperature and time 
of incubation. For example, TAT peptide was internalized 
through three endocytic pathways such as macropinocyto-
sis, clathrin- and caveolae/lipid raft-mediated endocytosis 
based on cargo type. TAT peptide conjugated with protein 
was internalized through lipid raft-medicated endocytosis, 

while TAT peptide embedded with fluorophore used clath-
rin-dependent endocytosis mechanism [141].

The non-endocytic pathway or direct translocation 
includes the interaction of positively charged CPPs with 
negatively charged components of phospholipid bilayer 
[142]. Direct translocation was divided into inverted micelle 
formation (e.g., penetratin) [48, 143], pore formation mecha-
nisms through barrel-stave or toroidal models (e.g., Pep-1) 
[144, 145], and the carpet model (e.g., TAT, and dermasep-
tin as an antimicrobial and amphipathic peptide) [146]. In 
contrast, endocytic pathway was classified into four domi-
nant pathways including macropinocytosis (a lipid raft-
dependent and receptor-independent endocytic pathway; 
e.g., CPPs-attached growth factors) [147], clathrin-mediated 
(a receptor-dependent and dynamin-required process; e.g., 
arginine-rich CPPs) [148] or caveolae-mediated endocyto-
sis (a lipid raft endocytosis associated with caveolin and 
cavin-1 interaction; e.g., proline-rich CPPs, transportan and 
transportan-10) [149, 150], and phagocytosis (e.g., the CPP 
cargo tagged by opsonins such as IgG and complement com-
ponents enabling CPPs to be recognized by immune cells 
such as macrophages and dendritic cells) [151].

CPPs with endocytic uptake pathways should escape from 
endosomes. For example, positively charged CPPs (e.g., 
TAT) could interact with negatively charged phospholip-
ids in the endosomal membrane leading to a pore/leakage, 
and finally the release of CPPs [152]. Moreover, the forma-
tion of ionic pairs between CPPs and negatively charged 
membrane lipids occurred in oligo-arginine peptides. Three 
strategies are available for improving the endosomal release 
of CPPs including: a) the use of fusogenic lipids (e.g., diole-
oylphosphatidyl-ethanolamine (DOPE)) [153], conjugation 
of the carrier with viral fusion sequence (e.g., HA2 peptide 
as a pH-sensitive fusogenic peptide derived from influenza 
virus) [154], and increasing the osmotic pressure within 
endosomes through the proton sponge effect (e.g., histidine 
residues) [153].

Advances in Enhancing the CPP Potency

CPPs showed high potential for delivery of a wide range of 
molecules, but they have some drawbacks including non-
specific internalization, fast elimination from the body, and 
intracellular/vesicular entrapment. However, our knowledge 
regarding the mechanism and structure–activity relationship 
of internalization is growing. The most common feature 
among CPPs is the presence of positive charges such as argi-
nine and lysine. In addition, hydrophobicity plays a major 
role in the translocation process [56]. The studies showed 
that the replacement of arginine residues of polyarginine 
peptides (e.g., TAT, penetratin, transportan, MPG, Pep-1, 
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and pVEC) with lysine residues showed a weaker affinity to 
the cell surface, and remarkably reduced intracellular trans-
location. Thus, the presence of arginine in the peptide chain 
is a desirable modification [25, 155–157].

On the other hand, a specific class of CPPs was based 
on polyproline secondary structure (e.g., SAP and PR39 as 
an AMP). Indeed, proline residue has a secondary amine 
chain that does not participate in intra- or inter-molecular 
hydrogen bonding. Thus, the internalization of polypro-
line peptides is due to the amphipathicity of the second-
ary structure rather than of the primary sequence [73, 149]. 
Additionally, Tryptophan is a very important amino acid 
in CPP structure being able to transport cargo across cell 
membranes (e.g., CADY and Pep-1). In fact, the number 
of tryptophan residues, their position in the helix, and the 
size of the hydrophobic face formed by them are important 
for the cell internalization [158, 159]. For example, increas-
ing the number of tryptophan up to three amino acids could 

enhance cellular uptake. Above this number, the intracellular 
translocation activity was decreased due to low solubility of 
the peptide [160]. Tryptophan substitution can also enhance 
the antimicrobial activity of CPPs. For example, PEP27-2, 
an analog of PEP27 with Trp substitution, showed stronger 
antimicrobial activity against a variety of bacteria [116]. 
Furthermore, polyhistidine in CPP structure (e.g., LAH4) 
facilitated direct membrane translocation of peptides into 
cells. Indeed, substitution of amino acids with histidine 
residues could provide endosomal disruption by the proton 
sponge effect in the acidic endosomal compartments provok-
ing the endosomal escape [161]. For example, protonated 
histidines enhanced the delivery of nucleic acids to their 
targets through osmotic swelling with lysis of endosomes, 
unpacking of the carrier complex, and the release of nucleic 
acids [162, 163]. Other properties of histidine include its 
ability to stabilize nanoparticles through hydrogen bonding 
and aromatic interactions [162].

Fig. 2   Schematic illustration of uptake mechanisms of CPPs, and 
some major examples: The CPP uptake mechanism can be directed 
by non-endocytic (direct penetration) and endocytic pathways. As the 
cell membrane is impermeable to hydrophilic substances, the deliv-

ery into cells can be facilitated by linking the cargos to CPPs. Most 
CPPs utilize two or more uptake mechanisms depending on the type 
of CPP, cell line, cargo, concentration, temperature, and time of incu-
bation
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Generally, different modifications on CPPs could increase 
their internalization and/or change the mechanism of pen-
etration such as amino acid substitute [157, 160, 161], and 
functional group modification [2, 164]. Amino acid substi-
tution of CPPs is one of the ways of achieving variability 
of the physicochemical parameters (e.g., hydrophobicity or 
cationic nature) especially changes in dissolution properties 
[157]. Modification of functional groups (e.g., the altera-
tion of CPPs, α-helicity through hydrocarbon stapling) is 
another approach for increasing the CPP efficiency [2]. For 
example, modification of MAP CPP with citraconic anhy-
dride blocked forming acid-labile amide linkage to mask 
the cationic charge, decreased the non-specific binding and 
uptake, and thus significantly improved the targeted drug 
delivery [164].

Also, there is a need for improvement in rational design 
of CPPs to tackle the possibility of in vivo toxicity. Syn-
thetic tools have paved the way to explore new approaches 
to improve the cell penetration of CPPs and CPP-therapeutic 
conjugates. For example, cyclization and stapling increases 
the metabolic stability and internalization efficiency due 
to increased structural and conformational rigidity. Thus, 
multivalency of covalent dimers (primary structure), sta-
bilized helices (secondary and tertiary structure) and even 
quaternary structure can help to improve the internalization 
[165]. However, the lack of methodologies for systemic 
rational design and optimization of new CPPs is one of the 
key impediments. Fortunately, molecular dynamics (MD) 
simulation (a simulation-guided rational design approach) 
is now able to predict structure-based rational fine-tuning 
of functional properties. Although the next challenge of 
designing suitable CPPs is to find proper engineering tech-
niques to control the morphology to improve selectivity and 
specificity [165]. Thus, chemistry and rational design could 
contribute to the CPP field.

Current Status and Challenges of CPPs 
in Viral Infections

CPPs have been used to increase drug delivery efficiency 
[166]. However, it is required to determine the pharmacoki-
netic properties of CPPs through assessing toxicity, tissue 
distribution, cell selectivity, solubility and stability, immu-
nogenicity and endosomal degradation [167]. On the other 
hand, the mechanism of CPP internalization is non-specific 
binding to bilayer phospholipids on the cell membrane, 
which severely limits the clinical application of CPPs. There 
are several solutions for enhancing the CPP’s specificity, 
and decreasing possible adverse effects of therapeutics such 
as: a) the design of cell and tissue-specific CPPs. For exam-
ple, two tumor targeting peptides including RGD (Arg-Gly-
Asp) and NGR (Asn-Gly-Arg) can be used for improving 

specificity in virus-related tumors [168], b) conjugating/ 
coupling of the CPP with various cell-specific targeting 
ligands (e.g., folic acid, specific antibodies, and transferrin) 
through covalent and non-covalent bonds [169–172], and c) 
masking the cell-penetrating effect with a stimulus-sensitive 
cleavable linker (e.g., pH-sensitive, enzyme-sensitive, tem-
perature-sensitive, and magnetism-sensitive or light sensi-
tive cleavable linkers). These linkers can be cleaved, and 
the CPP restores its normal activity. However, the activation 
process is generally irreversible and often occurs at off-target 
sites instead of on-target sites [172].

To date, no CPP-conjugated drugs have been approved 
by FDA; although several clinical trials on cancer have 
been evaluating them, one of the issues is the lack of suf-
ficient in vivo studies on stability [149]. The rapid blood 
clearance of therapeutic agents may be a drawback as the 
enzymic degradation is happening before reaching the 
therapeutic site. Moreover, the assessment of immunologi-
cal and pharmacokinetic studies of CPPs need validation 
in animal models [21]. The polypeptide CPPs may increase 
the risk of undesired immune response [173]. Also, the 
off-target absorption of the therapeutics by any normal 
tissues and cells can cause cellular toxicity. Thus, the exact 
dosing of each CPP should be measured in animal mod-
els before officially getting applied to the patients [174]. 
On the other hand, the endosomal degradation is another 
drawback and CPPs should be designed to have effective 
endosomal escape to speed up the release of the carriers 
[175]. Molecular imaging of intracellular and intranuclear 
targets can be helpful for understanding the CPP internali-
zation mechanism and intracellular trafficking [176]. To 
our best of knowledge, there is no ongoing clinical trial to 
investigate the delivery system of CPPs in viral infections.

Conclusion and Future Prospects

CPPs have the potential to transport numerous types of 
therapeutic agents into a variety of cells. Several biophysi-
cal factors including charge, amphipathicity, shape, com-
plexity, and compactness of the structures play an impor-
tant role in entry of CPP/cargo into the cells. Extensive in 
vitro and in vivo studies have shown the successful deliv-
ery of nucleic acid- and peptide/protein-based drugs and 
vaccines. To date, no CPP or composition containing CPPs 
has been approved by the FDA due to the lack of sufficient 
in vivo studies on stability, immunological assays, toxicity, 
and endosomal escape of CPPs; but several ongoing clini-
cal trials in different phases are evaluating them (mainly 
for drug delivery in tumor cells). Despite the many advan-
tages, some serious drawbacks such as non-target tissue-
specificity, instability and suboptimal pharmacokinetics 
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features limit their clinical applications. However, three 
distinct delivery strategies are proposed to enhance the 
CPP’s specificity including designing cell/ tissue-specific 
CPPs, conjugation of CPPs with targeting moieties, and 
modulation of CPP uptake by a stimulus-sensitive signal. 
Also, the endosomal entrapment issue of CPPs can be 
solved by the use of fusogenic lipids via destabilizing the 
endosome membrane, and the use of histidine by creating 
the proton sponge effect and generating lysosome osmotic 
swelling. In general, the success of the CPP-based strat-
egy for clinical use depends on their efficiency, safety, 
and also ultimate cost. Large-scale applications and new 
methodologies are being implemented to increase the yield 
and reduce cost. With increasing our knowledge of vari-
ous aspects of CPPs, along with the development of new 
efficient CPPs overcoming some limitations, CPPs are 
expected to become an important part of pharmaceutical 
agents, especially in antiviral therapies.
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