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Abstract
Demand of flowers is increasing with time worldwide. Floriculture has become one of the most important commercial trades 
in agriculture. Although traditional breeding methods like hybridization and mutation breeding have contributed significantly 
to the development of important flower varieties, flower production and quality of flowers can be significantly improved 
by employing modern breeding approaches. Novel traits of significance have interest to consumers and producers, such as 
fragrance, new floral color, change in floral architecture and morphology, vase life, aroma, and resistance to biotic and abi-
otic stresses, have been introduced by genetic manipulation. The clustered regularly interspaced short palindromic repeats 
(CRISPR)/CRISPR-associated protein (Cas) system has recently emerged as a powerful genome-editing tool for accurately 
changing DNA sequences at specific locations. It provides excellent means of genetically improving floricultural crops. 
CRISPR/Cas system has been utilized in gene editing in horticultural cops. There are few reports on the utilization of the 
CRISPR/Cas9 system in flowers. The current review summarizes the research work done by employing the CRISPR/Cas9 
system in floricultural crops including improvement in flowering traits such as color modification, prolonging the shelf life 
of flowers, flower initiation, and development, changes in color of ornamental foliage by genome editing. CRISPR/Cas9 gene 
editing could be useful in developing novel cultivars with higher fragrance and enhanced essential oil and many other useful 
traits. The present review also highlights the basic mechanism and key components involved in the CRISPR/Cas9 system.
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Abbreviations
CpYGF	� Chiridius Poppei Yellowish-green fluorescent 

protein
PDS	� Phytoene desaturase
NR	� Nitrate reductase
C3H	� Coumarate 3-hydroxylase
CH4	� Cinnamate 4-hydroxylase
4CL	� 4-Coumarate: coenzyme A ligase
CCR​	� Cinnamoyl coenzyme A reductase
IRX	� Irregular xylem 5
TfRAD	� Torenia Fournieri RADIALSIS-like
CAPS	� Cleaved amplified polymorphic sequence
DBP	� DNA-binding proteins
DFR	� Dihydroflavonol-4-reductase
EPH1	� EPHEMERAL1
T7E1	� T7 endonuclease 1
SSK1	� S-locus F-box-interacting SKP1- like 1
CCD4	� Carotenoid cleavage dioxygenase 4
F3H	� Flavanone 3’ –hydroxylase
ACO	� 1-Aminocyclopropane-1-carboxylate oxidase
DPL	� Deep purple
NGS	� Next generation sequencing
PCR	� Polymerase chain reaction
Gt5GT	� Anthocyanin 5-O-glycosyltransferase
Gt3’GT	� Anthocyanin 3’-O-glycosyltransferase
Gt5/3’AT	� Anthocyanin 5/3’-aromatic acyltransferase
GST	� Glutathione S-transferases

Introduction

In ornamentals, various breeding strategies have been used 
in the past to produce new cultivars. Selection, hybridization, 
and mutation breeding are all traditional breeding procedures 
that have been employed since time to produce a variety of 
colors and forms, crop architecture in the case of foliage 
plants, and resistance to biotic and abiotic stresses. However, 
in ornamental plants, traditional methods have several limi-
tations, including the fact that they are time-consuming and 
that majority of the ornamentals are heterozygous, resulting 
in polyploidy, and complex genetic components transmission 
[1, 2]. As a result, new approaches for improving decorative 
plant production are the need of time. Genome sequencing 
technology has had a substantial impact on the improve-
ment of flowering crops in recent decades. More than 69 
ornamental plants (whole-genome/ draft genome) have been 
sequenced yet [3]. The nuclear genome of cultivated hybrid 
rose [4], wild rose [5], scarlet sage [6], petunia [7], sunflower 
[8], orchids [9], and other ornamentals has been sequenced. 
Transcriptome data are available for chrysanthemums [10, 
11], osmanthus [12], petunia [13], hydrangea [14], lavender 
[15], and carnation [16]. The chloroplast genome sequence 
is also available for a few ornamental plants [17]. Genome 

sequence information on important decorative plant species 
would be immensely beneficial in ornamental plant breeding 
and research following the debut of next-generation sequenc-
ing (NGS) technologies in 2005. Genetic transformation is 
an essential requirement for the development and improve-
ment of flowering crops when distinguished with mutation 
breeding, which delivers a “subtractive” one-point improve-
ment in flowers [18]. Ever since the very first transformation 
in ornamentals described in 1987, genetic transformation 
is acknowledged as an important method to develop desir-
able cultivars [19, 20].

CRISPR/Cas9 is an approach for genetic modification 
with immense capability and simpler implementation that 
has accelerated crop improvement research. CRISPR/Cas9 
genome-editing technology has been employed in agricul-
ture as well as horticultural crops and found to be effective 
in crop improvement [20–23]. CRISPR/Cas-based system 
has progressed to allow for a wide range of applications. 
These include CRISPR interference (CRISPRi) and CRISPR 
activator (CRISPRa) gene regulators, as well as develop-
ment as a base editor, prime editor, and epigenetic editor. It 
can also be utilized for imaging and chromatin and RNA 
targeting. Its application has revolutionized a wide range of 
biological domains, including biomedical and agricultural 
research. CRISPR has also been created as a diagnostic tool 
to aid in the detection and screening of both human and 
plant diseases, and it was even used during the coronavirus 
(COVID-19) pandemic [24].

CRISPR/Cas9 Genome Editing

Significant improvement has been made in the development 
of effective approaches for targeted editing of the plant 
genomes, over the last three decades [25, 26]. Before the 
introduction of the CRISPR/Cas9 technology in 2013, plant 
genome engineering relied on sequence-specific nucleases 
such as zinc finger nucleases (ZENs) and transcription acti-
vator-like effectors nucleases (TALENs) [27]. There are two 
types of genome-editing tools that used double-strand break 
(DSB) nucleases. MNs (meganucleases), ZFNs, and TAL-
ENs come under the first group, that use protein–DNA inter-
actions to enable sequence-specific DNA binding [28, 29], 
and the second group is further divided into two sub-groups: 
(a) RNA-guided system (CRISPR/Cas9 and targetrons) [30, 
31] and (b) DNA-based-guided systems [structure-guided 
endonuclease (SGNs), peptide nucleic acids (PNAs), and 
triplex-forming oligonucleotides (TFOs)] [32–34].

The presence of pre-configured CRISPR/Cas9 ribo-
nucleoproteins (RNPs) enables DNA-free genome edit-
ing in plants, without the need for codon optimization or 
highly specialized regulators for expression in host cells. 
An efficient protoplast transformation by manipulating 
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the molar ratio of Cas9 and sgRNAs was optimized for 
grape and apple. The targeted mutagenesis insertion and 
deletion rate was analyzed with the help of targeted deep 
sequencing. Direct delivery of CRISPR/Cas9 RNPs to the 
protoplast system enables targeted gene editing and paves 
the way to the generation of DNA-free genome edited in 
plants [35]. Moreover, Cas9 RNPs break the target DNAs 
shortly after transfection and are thus quickly destroyed 
in cells, significantly lowering the number of undesired 
alterations at off-target sites [36, 37]. Preassembled 
CRISPR/Cas9 ribonucleoproteins can also help circum-
vent GMO regulations over their release as cultivars since 
there is no transgene integration [38, 39].

Off-target effects, which are usually caused by unan-
ticipated cleavage at genomic locations that are similar 
to the target sequences, are one of the key concerns about 
gRNA design [40]. There are few online off-target pre-
diction tools such as Burrows-Wheeler Alignment Tool 
(BWA), Bowtie [41], CCTop [42], and Cas-OFFinder [43] 
that can be used to predict probable off-target sites [44].

To date,  the major utilization of the CRISPR/Cas9 
technology in plants has been to create gene knock-
outs. It has also been successfully employed to create 
gene knockouts in ornamental plants to induce genetic 
alterations in Petunia inflate [45], Petunia hybrid [27, 37, 
46, 47], Chrysanthemum morifolium [48], Dendrobium 
officinale [49], Torenia [39], Ipomoea nil [50–52], Lilium 
longiflorum and Lilium pumilum [53], and Phalaenopsis 
equestris [54]. These reports suggest that CRISPR/Cas9-
induced mutagenesis is effective in ornamental plants. 
The alteration produced is precise [55, 56] and could be 
passed on to succeeding generations by employing the 
classic Mendelian segregation [57]. Further in-depth 
information about CRISPR technology, reports by many 
research groups [34, 44, 58–60] and may be referred for 
future research on the subject.

Among several transformed and genetically modi-
fied (GM) ornamental plants, few regulatory approvals 
have been made [61]. Certainly, the regulatory approval 
process has a direct effect on the economics of product 
development. Only three ornamental species are recorded 
in the International Service for the Acquisition of Agri-
biotech Applications (ISAAA) database as permitted 

biotech/GM crops: carnation, petunia, and rose. To date, 
only carnation and rose are allowed in the market of a 
few nations, conditional to their GMO regulations [61, 
62]. Only two GM carnation cultivars are now allowed to 
be sold as cut flowers in Europe [63]. Many GM crops, 
both edible and in-edible, are still under research or in 
limited field trials and are ready for commercialization, 
despite considerable opposition from some farmers and 
NGOs being concerned about their safety and effects on 
biodiversity.

The Fundamental Mechanism of the CRISPR/
Cas9 System

Prokaryotes show adaptation and heritable immunity is one 
of the most exciting findings in microbiology in recent dec-
ades [64]. In archaea and bacteria, the CRISPR/Cas9 system 
has been identified as a component of the immune system 
that guards the host against invading phages including plas-
mid DNA [65]. Tandem repetitions of viral genomic seg-
ments were discovered in bacterial cells to be consistently 
interspaced with non-repetitive sequences, a phenomenon 
known as CRISPR [66]. The sequence of 29-nucleotides, 
separated by several 32-nucleotide spacer sequences, was 
discovered first in the E. coli genome [67]. Similar sequences 
were discovered in various bacteria and archaea [21, 68].

By acquiring phage-derived spacer sequences that 
protect against re-infection, the CRISPR array acts as a 
repository for previous infections [65]. The Cas9 proteins 
are encoded by a cluster of genes near the CRISPR array, 
which controls the three steps of the process: adaptation, 
CRISPR RNA (crRNA) synthesis, and interference. To 
offer a memory of infection, bacteria may transfer portions 
of external DNA into their own genomes during adapta-
tion. When the CRISPR array is translated into two short 
RNAs, crRNA and trans-activating CRISPR RNA (“tracr-
RNA”), memory is retained [21, 64] (Fig. 1).

Following infection, the interference machinery recog-
nizes a particular region in the target nucleic acids by com-
plementary base pairing, causing Cas9 enzyme-catalyzed 
target cleavage [69]. CRISPR/Cas9 system is designed 
to protect prokaryotes from viruses by undermining the 

Fig. 1   The CRISPR array serves as memory storage for previously 
acquired infections. The Cas proteins are encoded by a cluster of 
genes situated near to the CRISPR array, which controls the three 

phases of immunity. Non-repetitive sequences were discovered to be 
frequently interspersed between tandem repeats
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selfish, often hostile instructions encoded by invading 
mobile genomic elements (MGEs). The type II system, 
which has originated from Streptococcus pyogenes, con-
trols the cleavage of DNA at specific site which makes it 
a good option for genetic modification [70–72]. Several 
reports have detailed the biology of the CRISPR/Cas9 sys-
tem, [64, 69, 73, 74].

To create a single molecule, tracrRNA and crRNA can 
be linked artificially, forming a single-guide RNA (sgRNA) 
that is complementary to a particular segment of a target 
sequence (about 20 nucleotides) at a location where a proto-
spacer adjacent motif (PAM) is present [68]. The PAM is 
a short sequence motif found close to the protospacer on 
the invading DNA. Cas9 is led by sgRNA and utilizes the 
PAM sequence to identify the target region and distin-
guishes between self and non-self nucleotide sequences. 
The CRISPR locus is protected against self-cleavage by 
the absence of the PAM sequence in the host genome. In 
addition, sgRNA includes a "scaffold" sequence required 
for Cas9 engagement. The sgRNA guides Cas9 and uses the 
PAM sequence to identify the target location [21, 75].

The CRISPR/Cas9 defense pathway is divided into three 
steps (Fig. 2). At the time of adaptation cycle, the Cas1–Cas2 
complex, which is made up of dual Cas1 dimers and a single 

Cas2 dimer, a protospacer from intruding viral DNA which 
is inserted as a new spacer into the host’s CRISPR array.

The CRISPR array is subsequently transcribed into a long 
pre-crRNA, which is then processed into mature crRNAs 
by Cas9 proteins or, in certain cases, cellular RNases, each 
of which contains a transcribed spacer and a portion of the 
repeat sequence, thereafter the crRNAs form ribonucleo-
protein complexes. During the interference phase, mature 
crRNAs drive Cas9 nucleases to the relevant foreign DNA 
by using complementary base pairing to identify the invad-
ing DNA. The invading genome is destroyed when the target 
sequence is cleaved. Multi-Cas9 protein complex acts as an 
interference mechanism in class 1 systems, class 2 systems, 
on the other hand uses one Cas9 protein to cleave the target 
[64]. Endonuclease cleaves DNA in a specific region of the 
cell, causing homology-directed repair (HDR), non-homol-
ogous end joining (NHEJ) or microhomology-mediated end 
joining (MEEJ) [57, 76]. HDR is a genetic modification that 
enables the results precision editing of repair templates [77]. 
MMEJ is an error-prone repair approach that combines inser-
tions and deletions with micro homologous sequence place-
ment inside damaged ends prior to joining [78]. Because 
NHEJ lacks a DNA repair template, it is also prone to errors, 
which frequently results in inactivation mutations [79, 80]. 
NHEJ is the most prevalent kind of DSB repair, which is 

Fig. 2   The three stages of the 
CRISPR-Cass9 defense system 
are as follows: Cas complex gets 
the protospacer from invading 
viral DNA during the adapta-
tion stage and incorporates it 
as a new spacer into the host’s 
CRISPR array. The CRISPR 
array is subsequently translated 
into a lengthy pre-crRNA, 
Cas9 proteins then convert into 
mature crRNAs. With the aid 
of Cas9 proteins, these crRNAs 
generate RNP complexes. 
During the interference stage, 
Cas nucleases are directed by 
mature crRNAs, to the relevant 
foreign DNA using complemen-
tary base pairing to detect the 
invading DNA. The invading 
genome is eliminated when the 
target sequence is cleaved
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defined by the fusion of the broken ends, might be resulting 
in one or more random nucleotides insertions or deletions 
(indels), leading to partial repair and mutations [81]. NHEJ 
is primarily responsible for DSB repair in somatic cells [27, 
82]. When DSBs are repaired, NHEJ typically results in gene 
deletion or protein function impairment. Chemically stabi-
lized double-stranded oligo-deoxy-nucleotides (dsODNs) 
donors with 5-phosphorylated ends can likewise be used to 
drive targeted insertion via NHEJ [83, 84]. The target has a 
low mutation frequency owing to the difficulty in adjusting 
the artificial DNA repair template [21, 85, 86].

Approaches to Applying CRISPR/Cas9 
System in Plants

Major Web‑Based Resources

One of the most fundamental elements is to guide pre-
cise changes in the genomic sequences in the desired way, 
which is highly dependent on sgRNA-directed identification 
of targeted DNA sequences. CRISPR-PLANT, CRISPR-
P, and CRISPR-GE are online sgRNA design resources 
for plants. These tools usually provide empirical CRISPR/
Cas vectors and methods that are highly valuable for wet lab 
investigations. By gathering sgRNA data from large-scale 
CRISPR/Cas research, several web-accessible databases 
have been developed. These platforms not only provide use-
ful resources for sgRNA selection, but also highlight the 
major parameters that influence sgRNA efficacy and speci-
ficity, allowing for further sgRNA design optimization [44].

Transformation Method

The majority of CRISPR/Cas9 studies have used Agrobac-
terium-mediated transformation to introduce exogenous 
DNA into ornamental plants. A key advantage of Agrobacte-
rium-mediated transformation is its higher incidence of sin-
gle transgene insertion. Moreover, several of the most often 
employed A. tumefaciens strains in plant transformation 
(e.g., AGL1, C58C1, GV3101, LBA4404, and EHA105) show 
enhanced resistant tissue tolerance or greater adaptability to 
the preferred plant species, which can boost transformation 
efficiency. The hypervirulent strains EHA105, AGL1, and 
LBA4404 are likely to be the outcome of increased vir gene 
induction. These strains are employed to transform recalci-
trant or monocot plants, whereas milder strains are utilized 
to transform non-recalcitrant dicotyledonous plants [87]. In 
plants that are sensitive to Agrobacterium-mediated leaf-disk 
transformation, sequential transformation is an alternative 
for Cas9-mediated genome alteration. Because the signifi-
cantly larger size of Cas9 expression cassette (usually greater 
than 5 kb), manipulation in destination vectors is difficult. To 

overcome this problem, sequential transformation method of 
introducing Cas9 and sgRNA expression cassettes sequen-
tially into plants makes CRISPR/Cas9-mediated genetic 
changes smoother. The efficiency of CRISPR/Cas9-medi-
ated targeted genome mutagenesis is unaffected by genome 
size [27]. Although recent CRISPR/Cas9 toolkits, based 
on Golden Gate ligation or Gibson Assembly, have made 
it easier to assemble numerous sgRNA expression cassettes 
[88, 89], sequential transformation retains some advantages, 
including improved transformation capabilities.

The transmission of CRISPR/Cas9 nucleases through 
Agrobacterium tumefaciens allows for the continuous expres-
sion of CRISPR complexes, leading to a variety of chimera 
genotypes in tissues or organisms. In petunia, Yu et al. [37] 
used a Cas9 RNP-mediated transformation technique and 
discovered no chimeric genotypes in every regenerated plant 
based on next-generation sequencing data, as reported previ-
ously by Woo et al. [38]. Cas9 RNPs cleave the target DNAs 
as they are transected and then decay quickly in protoplasts, 
resulting in genotypes that are homozygous or heterozygous 
instead of being chimeric. When using the CRISPR/Cas9 
system to target a particular gene, orthologous or paralogous 
genes that are found frequently in plant speciation must be 
examined. A full change in flower color was achieved in 
petunia by simultaneously targeting both loci of F3H (A and 
B) with CRISPR/Cas9 RNPs [37].

Due to the high percentage of chimeras and low effi-
ciency of transformation, only a few Lilium transforma-
tions have been reported. For the first time, Yan et al. [53] 
used L. pumilum embryogenic callus as a target material 
for Agrobacterium-mediated transformation. Each embryo-
genic cell of the callus can develop into a somatic embryo; 
it could diminish or eliminate chimeras if used as explants 
for Agrobacterium-mediated transformation. Although the 
transformation cycle is quite long, cell proliferation and 
transformation efficiency are high when embryogenic cal-
lus is employed as a recipient, and chimeras are rare. On the 
other hand, despite the disadvantages of low transformation 
efficiency and a high number of chimeras, using vegetative 
tissue scales as a transformation recipient is a reasonably 
easy operation that takes far less time [53].

Plant protoplasts offer a flexible system for DNA-free 
genome editing. Protoplasts are plant cells without cell 
walls that provide a useful transient system for evaluating 
the efficacy of gene-editing reagents before moving forward 
with a more labor-intensive transformation process [90, 91]. 
PEG-mediated transfection and electro-transfection are two 
popular ways of delivering plasmid DNA, in vitro tran-
scripts, or RNPs into protoplasts for CRISPR cassette tran-
sient expression. Once successful protoplast isolation, trans-
fection, and regeneration have been established in a plant 
species, it could be used as a high-throughput platform for 
gene editing [92].The usage of the protoplast technology can 
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be advantageous because a high level of transgenic expres-
sion could be achieved [76, 93]. The protoplast transient 
expression system has been demonstrated to be an effec-
tive tool for CRISPR/Cas9 genetic modification in plants. A 
robust mechanism aids Cas9 transfection in Petunia hybrida. 
Cas9 and gRNA complex-mediated genetic manipulation 
through plasmid vector elicited target alteration frequencies 
of 21 and 13% in rice and maize protoplast systems, respec-
tively, after 72 and 48 h post-transfection [76, 94]. Within 
24 h of transfection, almost comparable mutation frequen-
cies (20%) were generated in the petunia protoplast system, 
demonstrating that the direct delivery of RNPs is more 
successful than the vector-based approach. In animal cell 
lines, direct administration of recombinant Cas9 proteins 
resulted in genetic variation ranging from 16 to 72% [36]. 
Differences in mutation rates between plant and animal sys-
tems could be attributed to experimental differences. Direct 
administration of recombinant Cas9 protein caused specific 
mutations in Arabidopsis, rice, and tobacco protoplasts with 
17 to 23% efficiency, which was comparable with previous 
findings of Subburaj et al. [46] in petunia protoplasts [38]. 
One of the significant advantages of employing direct Cas9 
protein administrations is the ability to induce mutations 
quickly and precisely [36, 38].

The introduction of CRISPR/Cas9 components via floral 
dip method is both cost-effective and simple. This is the 
most widely used approach for genome editing in Arabi-
dopsis. Due to limited flower and seed production, floral-
dip-mediated administration of CRISPR/Cas9 components 
is confined to a few plants such as Arabidopsis, flax, and 
tomato [95]. The key benefit of this delivery method was that 
it did not necessitate the use of a plant tissue culture facility.

Co-delivery of developmental regulators (DRs) with 
CRISPR reagents via Agrobacterium can expedite and 
improve gene-editing efficiency in plants. Developmental 
regulators are genes involved in dictating meristem identity 
in plants. Ectopic expression of DRs in plants has resulted 
in somatic embryogenesis [96]. This phenomenon was lev-
eraged to induce de novo meristems in somatic tissues by 
injecting Agrobacterium cultures co-delivering DRs and 
gene-editing cassettes directly into soil-grown plants [92].

Heritable changes have traditionally been achieved 
through persistent expression of CRISPR cassettes and 
regeneration of transgenic progenies. Tobacco rattle virus 
(TRV) [97], Barley stripe mosaic virus (BMSV) [24], and 
Sonchus yellow net rhabdovirus (SYNV) [98] are autono-
mously replicating viral vectors delivered into plants via 
Agrobacterium that provide an alternative for heritable gene-
editing in plants.

Nanotechnology has made significant advances during 
the last decade especially in relation to plant genetic engi-
neering. Recent reports have highlighted the importance 
of nanomaterials such as carbon dots, carbon nanotubes 

(CNTs), and mesoporous silicon nanoparticles (MSNs) to 
deliver biomolecules such as DNA, RNA, RNPs, and pro-
teins [99]. In plants, nanoparticle-mediated administration 
of DNA and proteins into nuclear and chloroplast genomes 
has been achieved [100, 101].

Biolistics, also known as particle bombardment, is a 
popular method for plant transformation especially in plants 
that are not amenable to Agrobacterium infection. However, 
random incorporation of DNA at multiple genomic loci and 
labor-intensive production of explants such as calli or imma-
ture embryos are two major limitations of biolistic delivery. 
In cereal crops, however, bombarding RNPs instead of plas-
mid DNA was effectively demonstrated to produce marker-
free gene-edited plants [102–104].

Pollen transformations by Agrobacterium and biolistic 
method bypasses tissue culture regeneration step but fre-
quently results in pollen with poor viability [105, 106]. Fur-
thermore, pollen-tube conversions can lead to chimerism 
[107]. While pollen magnetoreception has made progress 
in addressing these issues [106], it is still limited to dicots 
[108]. Nanoparticles as delivery engines for plant genome 
editing are also promising [109], further progress is needed 
to make plant gene editing easier [92].

CRISPR/Cas9 Specificity

Watanabe et al. [50] observed that roughly 75% (24/32) 
of transgenic plants were biallelic mutants (mutations that 
occur on both alleles of a single gene) at the locus of interest 
in one generation, thus the CRISPR/Cas9 system has been 
found to be an extremely effective and useful tool for next-
generation breeding. Moreover, the efficacy of editing is 
dependent on sgRNA [56, 57], and researchers are working 
to improve sgRNA design to boost its activity [110]. Using 
an optimization tool, the editing efficacy in Ipomoea nil can 
be boosted further [50, 111, 112]. One-third of stable trans-
genic plants suggest that CRISPR/Cas9 system mutation 
frequency in Ipomoea nil is significantly higher compared 
to higher plants [113]. Hoshino et al. [114] presented a high-
quality genome sequencing of Ipomoea nil that enables the 
creation of sgRNA intended to prevent targeted mutagenesis. 
The application of CRISPR/Cas9 technology on Ipomea nil 
could provide a useful model for learning some of the key 
features including flower color, shape, and floral lifespan.

Kui et al. [49] demonstrated that the CRISPR/Cas9 sys-
tem is capable of precisely inserting mutations into targets. 
However, compared with the efficacy of different targets in 
each candidate gene, they discovered differed mutation rates 
of these target sites and some targets to be completely immu-
table. One reason could be a difference in the greater chro-
matin structure of certain target regions. Some target loca-
tions on the chromosomes may be tightly folded, whereas 
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others may be more loosely folded, resulting in a variable 
Cas9 protein and sgRNA complex accessibility. An appro-
priate expression system to drive Cas9 and sgRNA is neces-
sary for the initial utilization of genome editing in plants. A 
higher mutation frequency may result from the use of more 
effective target locations. The effectiveness of genome edit-
ing appeared to vary among callus clones; it is likely that the 
higher amount of Cas9 expression tends to boost mutation 
efficiency, as seen in rice calli [48, 115].

The ability to perform targeted deletions between two 
Cas9 cut sites is a key feature of CRISPR/Cas9 technology. 
The capability of the system was originally tested using tran-
sient systems [116, 117]. The efficiency of fragment dele-
tion was also shown to be adversely linked with the distance 
between two paired gRNA/Cas9 cut sites employing tran-
sient systems [118]. Other parameters that include cell type 
and cell division phase, length of deletion, the efficiency 
of various sgRNAs, orientation and base structure of two 
paired sgRNAs, and target locations and context may con-
tribute to effective deletion [57]. After identifying genome-
edited transgenic plants, T-DNA containing Cas9 can be 
separated through selfing or crossing, and the progeny plants 
that are Cas9-free can be analyzed [45].

Mutation Detection

PCR/restriction enzyme assay, TaqMan qPCR test, T7 Endo-
nuclease I, and high-resolution melting (HRM) analysis are 
available to evaluate the effect of genetic mutation [119]. 
As compared to the above approaches, sequencing analysis 
is preferred for evidence-based genome editing. The novel 
genetic engineering methods are much more accurate than 
the basic tools of genetic engineering developed earlier.

Applications of CRISPR/Cas9 System 
in Floriculture

Flower color is among the most essential characteristics of 
commercial flower production and it is mostly produced 
from betalains, carotenoids, and flavonoids [63, 120]. Flower 
pigmentation had first been suppressed by inserting anti-
sense chalcone synthase (CHS) or dihydroflavonol-4-re-
ductase (DFR) genes into transgenic lines, which produced 
flower alterations in 0–89% of transgenic lines; however, the 
extent of color lightening differed between lines [121]. Flo-
ral color suppression was next achieved using RNAi-targeted 
CHS or ANS (anthocyanidin synthase) genes, revealing that 
RNAi was a more effective (more than 50%) strategy for 
producing a stable white flower color phenotype in torenia 
[122, 123]. RNAi has also been used to block F3H gens in 
torenia plants, resulting in white blooms [39, 124].

Nowadays, desired flower colors have been generated 
through the application of genetic modification techniques, 
Fig. 3. In this context, Watanabe et al. [51] used CRISPR 
Cas9-mediated mutagenesis to modify color in higher 
plants by modifying the carotenoid cleavage dioxygenase 
(CCD) gene in Ipomea nil and obtained pale yellow pet-
als mutant (55.5%) plants. In a previous study, Watanabe 
et al. [50] targeted dihydroflavonol-4-reductase-B (DFR-B) 
gene, which encodes an anthocyanin biosynthetic enzyme, 
and observed changes in stem color throughout the initial 
phase of plant tissue culture. Because of biallelic changes in 
the Cas9 cleavage site in DFR-B, 75% of transgenic plants 
developed anthocyanin-free white flowers, with single base 
insertion or deletion of more than two bases. Nishihara et al. 
[39] used the CRISPR/Cas9 system to detect color changes 
in the Torenia fournieri from blue to white (approximately 
80%) due to genetic variation of flavone 3-hydrolase (F3H), 
which encodes the critical enzyme for flavonoid biosynthe-
sis. Su et al. [125] also explored T. fournieri, and observed 
that the abnormal expression of TfCYC2 (CYCLOIDEA) or 
TfRAD1 (RADIALIS) disturbed the asymmetric corolla pig-
mentation pattern, resulting in severely dorsal flowers, which 
ensures that the CYC-RAD module controls petal shape and 
corolla pigmentation. When TfCYC​2 was down regulated 
or TfRAD1 was knocked out, dorsal petal identity was lost. 
The CRISPR/Cas9 technique was utilized to modify the 
phytoene desaturase (PDS) gene, which is a key enzyme 
in the production of carotenoids and necessary for chloro-
phyll biosynthesis. Zhang et al. [27] altered petunias using 
a CRISPR/Cas9 construct that targeted PDS and obtained 
a 55–87% albino phenotype. Also in Lilium pumilum (DC 
Fisch) and Lilium lonfiflorum (White heaven), the LpPDS 
gene was knocked out, and the mutants were observed to be 
completely albino, albino green, and pale yellow. The overall 
mutation rates for Fisch and White heaven cultivars were 
69.57% and 63.64%, respectively [53]. Tasaki et al. [126] 
targeted genes in the Japanese gentian including antho-
cyanin 5/3'-aromatic acyltransferase (Gt5/3’AT), antho-
cyanin 5-O-glycosyltransferase (Gt5GT), and anthocyanin 
3'-O-glycosyltransferase (Gt3GT) and concluded that for the 
production of blue flowers, glycosylation, following acyla-
tion of the 3'-hydroxy B-ring group in delphinidin aglycone 
is required. Tasaki et al. [127] also further described a type 
of glutathione S-transferases (GST) indicating that GST1 is 
a gene that is involved in anthocyanin movement in gentian 
flowers and is required for gentiodelphin accumulation.

Yu et al. [37] used Cas9-ribonucleoprotein delivery to 
create a petunia mutant line with mutations across both F3H 
genes, resulting in a pale purple-pink flower color. Only the 
f3ha-f3hb mutant plants had visible changes, pale purplish-
pink flower color, while the rest, including plants with a 
single-copy gene knockout, had purple-violet flowers that 
resembled wild-type petunia. Chib et al. [128] established 
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a CRISPR/Cas9-based system for future research advance-
ments in saffron (Crocus sativus L.). Zhang et al. [129] 
presented evidence for redefining DPL’s role (DPL: THE 
R2R3-MYB transcription factor, which is connected to 
anthocyanin, has been linked to the regulation of corolla 
tube venation) in Petunia plants. The disappearance of the 
vein-associated anthocyanin pattern above the abaxial sur-
face of the flower bud was produced by the CRISPR/Cas9-
mediated mutation at DPL, but not corolla tube venation, 
suggesting that DPL had no influence over corolla tube vena-
tion development. Nitarska et al. [130] utilized the CRISPR/
Cas9 system to knock out flavonoid 3’-hydroxylase (F3'H) 
from red blooming poinsettias (Euphorbia pulcherrima) cul-
tivar ‘Christmas Eve,’ expecting plants with orange bracts 
and strong pelargonidin accumulation. The enzyme F3'H is 
required for the synthesis of cyanidin-type anthocyanins, 
which give poinsettia bracts their red color. Despite the fact 
that F3'H was not totally inactivated, transgenic plants' bract 
color changed from vivid red to brilliant reddish-orange, and 
cyanidin levels reduced considerably as compared to wild 
type. The F3’H encodes a significant enzyme in the flavo-
noid/anthocyanin synthesis pathway and has been mentioned 
as a potential target in floral color engineering.

Flower longevity is among the most important char-
acteristics of attractive flowering plants. The majority 

of the flowering plants show a decrease in floral lifetime 
due to increased ethylene production [131]. Previously, 
Liu et al. [132] used virus-induced silencing to silence 
suspected ethylene signaling components EIL1 and EIL2 
in petunia. They also observed that the EIL genes are 
functionally redundant and that down regulating the two 
genes affects floral bloom lifespan. However, EIL gene 
silencing resulted in no phenotypic changes in transgenic 
plants other than increased flower longevity, demonstrat-
ing that EIL genes have a specific function [132, 133]. 
Flower lifetime can be increased by reducing ethylene 
production, which can be reduced by targeting a criti-
cal enzyme in the ethylene metabolism [1-aminocyclo-
propane-1-carboxylate oxidase (ACO)] [134, 135]. Xu 
et al. [47] targeted 1-aminocyclopropane-1-1carboxylase 
(PhACO) genes (PhACO1, PhACO3, and PhACO4) and 
observed that PhACO1-edited mutant lines produced sig-
nificantly less ethylene and had significantly longer flower 
lifespan. In another study, Xu et al. [136] modified the 
PhACO3 and PhACO4 genes in petunia cv. Mirage Rose 
through CRISPR/Cas9 editing showed a reduction in 
ethylene and extended flower longevity. EPHEMERAL1 
(EPH1) is a NAC transcription factor and is thought to 
be a key regulator of Japanese Morning Glory (Ipomoea 
nil) petal senescence. Petal senescence was delayed after 

Fig. 3   CRISPR/Cas9 genome editing application for ornamental plants improvement is depicted schematically
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targeted mutagenesis of the EPH1 gene [52]. Ethylene is 
also thought to be an essential seed germination regula-
tor. Naing et al. [137] observed that three distinct petunia 
mutants (phaco1, phaco3, and phaco4) revealed consid-
erably lower germination percentage, along with delayed 
germination time and seedling growth when compared to 
wild-type plants. To reduce the negative impacts of eth-
ylene suppression on seed germination and plant growth, 
it is critical to reevaluate when modifying the ethylene 
production route to maintain postharvest flower quality.

The initiation and growth of flowers are important 
stages in the life cycle of an ornamental plant. CRISPR/
Cas9 system-based genome editing can improve various 
floral traits for profit [61]. Orchids are the members of the 
Orchidaceae family, the second largest family of flower-
ing plants, and have significant commercial importance 
on a global scale [138]. However, very little genome 
sequencing data on orchid species are available such as 
Dendrobium catenatum [9], Dendrobium officinale [139], 
Gastrodiaelata [140], Phalaenopsis aphrodite [141], and 
Phalaenopsis equestris [142]. Kui et al. [49] targeted five 
genes in the orchid family's lignocellulose biosynthesis 
pathway (9C3H, 4CL, C4H, CCR, and IRX) and revealed 
that the CRISPR/Cas9 system may cause mutation at a 
rate of 10–100% for each target. Tong et al. [54] success-
fully produced several MADS-box mutants (97.9%) in the 
orchid Phalaenopsis equestris; however Semiarti et al. 
[143] observed low transformation efficiency (0.96%) in 
Phalaenopsis anabilis targeting, but genome editing using 
the CRISPR/Cas9 system is complex and challenging due 
to the huge size of the genome and higher genomic ploidy 
levels, as well as a higher amount of repetitive sequences. 
There is only one study in which the CRISPR/Cas9 tech-
nology was applied  to Chrysanthemum [48]. CRISPR/
Cas9 system targeted Chiridius poppei yellowish-green 
fluorescent protein gene (CpYGFP) and induced mutation 
efficiency of 0–28.9%. In the Petunia hybrida protoplast 
system, Subburaj et al. [46] demonstrated site-directed 
mutagenesis via direct administration of pure Cas9 protein 
preassembled with guide RNA to efficiently create muta-
tions in nitrate reductase (NR) genes. The use of CRISPR/
Cas9 to create frameshift indel mutations in PiSSK1 
(S = locus F-box-interacting SKP-like 1) gene in Petunia 
inflata demonstrates the gene's involvement in self-incom-
patibility and supports the notion that SLF-containing SCF 
complexes are essential for compatible pollination [45].

The CRISPR/Cas9 system has evolved into a versa-
tile and cutting-edge tool that allows scientists to manu-
facture any desirable alterations in plants voluntarily, 
allowing plant mutants to be created. Unlike traditional 
genetic approaches that require extensive breeding cycles, 
CRISPR alters a desired feature in a site-specific manner 
in a few generations [37]. To the best of our knowledge, 

this report includes all of the CRISPR/Cas9 research on 
ornamental plants that have been reported to date, Table 1.

Conclusion

CRISPR/Cas9 technology has been accepted to be effec-
tive in genome editing to achieve desirable characteristics 
in flowering crops. Genome editing in a targeted manner 
of genes that regulate desirable traits like flowering pro-
motion, both by raising the number of flowers and alter-
ing flowering time and longevity, color spectrum, aromas, 
and creation of innovation in flower structure can help to 
develop desirable genotypes that can fulfill the void of 
modern demands and also, be fruitful for the investors or 
producers. It can be concluded that editing specific genes 
is an excellent way to enhance the characteristics of exist-
ing floriculture plants and allows us to make the most of 
the usage of ornamental plants for global competitiveness.

However, there are a few key drawbacks to this cut-
ting-edge technology that must be addressed. Plant tis-
sue culture-based gene transformation is critical for 
CRISPR/Cas9 based genome editing in plants. Agrobac-
terium-mediated gene transformation is currently the 
most efficient technique to obtain genome editing events, 
although it is confined to a small number of plant species. 
Hence, establishing a new transformation process that does 
not require plant regeneration is critical. Although plant 
tissue culture-based approaches can produce genome-
edited plants, various difficulties, such as induced muta-
tions or somaclonal changes during plant tissue culture, 
as well as the lengthy process, have hampered CRISPR/
Cas9 technology's applicability. Thus, finding a delivery 
approach that is not dependent on tissue culture could pro-
gress the CRISPR/Cas9 genome editing.

The most common method of administering gene-edit-
ing reagents is through Agrobacterium, which has a narrow 
host range, and some plant species are resistant to trans-
formation by Agrobacterium. The use of A. rhizogenes, 
which can substantially minimize the time between reagent 
administration and mutation evaluation, as well as expand 
the spectrum of species changed are two further ways to 
circumvent the regeneration process [92, 144, 145].

Off-target effects are a major concern with CRISPR/Cas9 
genome editing as it may have an impact on precise breed-
ing by changing other essential agricultural features. When 
Cas/sgRNA genes are incorporated into the genome, they 
become permanently produced in the cells, potentially caus-
ing off-target effects. Off-target effects may be reduced if the 
Cas9/sgRNA genes are not introduced into the plant genome 
and only reside in the target cells for a short duration [24]. 
Off-target effects can also be reduced by designing high-
fidelity sgRNA and using the correct Cas9 enzymes and 
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genome editing tools. According to Zhang and Zhang [146], 
combining the proofreading enzyme with the Cas9 enzyme 
will repair any error induced by an off-target event.

Future Perspective

Many ornamental plants are highly heterozygous, have 
huge genome size, polyploidy, higher chromosome num-
ber, long lifespan, self-sterility, or incapacity to produce 
seeds which indicate a major obstacle to using conven-
tional breeding methods. Nowadays, the floriculture indus-
try needs additional and more cultivars with superior char-
acteristics such as flowering promotion, both by increasing 
the number of flowers and changing flowering time, floral 
longevity, color spectrum, aromas, and creation of innova-
tion in flower structure.

CRISPR/Cas9 technology, which first appeared in early 
2013, has been more popular in the field of genome editing 
due to its simplicity of use, economic, and wide appli-
cability. We would like to mention here that there is no 
report available on increasing essential oil traits with the 
fragrance that is used in the cosmetic industry. Rose con-
tains a fragrant and essential oil, and the nuclear genome 
of the hybrid rose plant [4] and wild rose [5] has been 
sequenced. This information can be exploited further. 
Advances in functional studies on key genes involved in 
the scent of flowers and essential oils may depend on the 
development of mutation technology with CRISPR/Cas9 
that can lead to more efficient results, so CRISPR/Cas9-
based genome editing study must be carried out to fill the 
gap of scent and essential oil-based flower crops. Deep 
knowledge about the tools of the CRISPR/Cas9 system, 
particularly strategies that enable the development of non-
transgenic ornamentals using advanced delivery systems, 
will contribute to the emergence of better qualitative traits, 
and bring about creative ideas for competitive and sus-
tainable flower production around the world. Therefore, 
non-transgenic gene-editing technologies could provide us 
with new varieties with augmented traits and could fulfill 
the void of modern demands, and also, be fruitful for the 
investors or producers.
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