Skip to main content

Advertisement

Log in

MiR-30a-3p Suppresses the Growth and Development of Lung Adenocarcinoma Cells Through Modulating GOLM1/JAK-STAT Signaling

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A considerable amount of people succumbs to lung adenocarcinoma (LUAD) due to its high incidence and mortality. This study attempted to reveal the impacts of GOLM1 on LUAD. This work analyzed GOLM1 expression in LUAD and normal tissue and studied its prognostic value utilizing data from The Cancer Genome Atlas. RNA and protein levels were, respectively, determined utilizing qRT-PCR and western blot. Cell-aggressive behaviors were assessed employing Cell Counting Kit-8, scratch healing, and Transwell assays. The targetting relationship between GOLM1 and miR-30a-3p was assayed by dual-luciferase method. GOLM1 up-regulation in LUAD was found in TCGA and it was also a negative factor for survival in patients. GOLM1 overexpression promoted cell progression in LUAD. Down-regulated miR-30a-3p in LUAD was an upstream regulatory miRNA of GOLM1 in terms of molecular mechanism. Further, rescue assays illustrated that miR-30a-3p overexpression attenuated the GOLM1 facilitating impacts on LUAD progression. Finally, we proved that miR-30a-3p/GOLM1 regulated progression of LUAD cells via JAK-STAT pathway. Collectively, the inhibitory impacts of miR-30a-3p on LUAD growth may be mediated by GOLM1/JAK-STAT, which may contribute to the diagnosis of LUAD therapy and the development of therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article. The data and materials in the current study are available from the corresponding author on reasonable request.

References

  1. Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F., & Wong, K. K. (2014). Non-small-cell lung cancers: A heterogeneous set of diseases. Nature reviews. Cancer, 14, 535–546. https://doi.org/10.1038/nrc3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao, X., et al. (2018). LncRNA HOXA11-AS drives cisplatin resistance of human LUAD cells via modulating miR-454-3p/Stat3. Cancer Science, 109, 3068–3079. https://doi.org/10.1111/cas.13764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, R., et al. (2020). independent validation of early-stage non-small cell lung cancer prognostic scores incorporating epigenetic and transcriptional biomarkers with gene-gene interactions and main effects. Chest, 158, 808–819. https://doi.org/10.1016/j.chest.2020.01.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, R., Lou, Y., Zhang, W., Dong, Q., & Han, B. (2014). Vitamin D inhibition of lung adenocarcinoma cell proliferation in vitro. Tumour Biology, 35, 10953–10958. https://doi.org/10.1007/s13277-014-1994-x

    Article  CAS  PubMed  Google Scholar 

  5. Qi, L., et al. (2016). An individualised signature for predicting response with concordant survival benefit for lung adenocarcinoma patients receiving platinum-based chemotherapy. British journal of cancer, 115, 1513–1519. https://doi.org/10.1038/bjc.2016.370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qixing, M., et al. (2017). The expression levels of CYP3A4 and CYP3A5 serve as potential prognostic biomarkers in lung adenocarcinoma. Tumour Biology, 39, 1010428317698340. https://doi.org/10.1177/1010428317698340

    Article  CAS  PubMed  Google Scholar 

  7. Kladney, R. D., et al. (2000). GP73, a novel Golgi-localized protein upregulated by viral infection. Gene, 249, 53–65. https://doi.org/10.1016/s0378-1119(00)00136-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wei, S., Dunn, T. A., Isaacs, W. B., De Marzo, A. M., & Luo, J. (2008). GOLPH2 and MYO6: Putative prostate cancer markers localized to the Golgi apparatus. Prostate, 68, 1387–1395. https://doi.org/10.1002/pros.20806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan, J., Zhou, B., Li, H., Guo, L., & Ye, Q. (2020). Recent advances of GOLM1 in hepatocellular carcinoma. Hepat Oncol. https://doi.org/10.2217/hep-2020-0006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cheng, L., Brzozowska-Wardecka, B., Lisowska, H., Wojcik, A., & Lundholm, L. (2019). Impact of ATM and DNA-PK inhibition on gene expression and individual response of human lymphocytes to mixed beams of alpha particles and X-rays. Cancers (Basel). https://doi.org/10.3390/cancers11122013

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, W. Y., Xu, Y. Y., & Zhang, X. Y. (2019). Targeting GOLM1 by microRNA-200a in melanoma suppresses cell proliferation, invasion and migration via regulating PI3K/Akt signaling pathway and epithelial-mesenchymal transition. European Review for Medical and Pharmacological Sciences, 23, 6997–7007. https://doi.org/10.26355/eurrev_201908_18740

    Article  PubMed  Google Scholar 

  12. Liewen, H., et al. (2019). Therapeutic targeting of golgi phosphoprotein 2 (GOLPH2) with armed antibodies: A preclinical study of anti-GOLPH2 antibody drug conjugates in lung and colorectal cancer models of Patient Derived Xenografts (PDX). Targeted Oncology, 14, 577–590. https://doi.org/10.1007/s11523-019-00667-z

    Article  PubMed  Google Scholar 

  13. Chen, M. H., et al. (2013). Expression of GOLM1 correlates with prognosis in human hepatocellular carcinoma. Annals of surgical oncology, 20(Suppl 3), S616-624. https://doi.org/10.1245/s10434-013-3101-8

    Article  PubMed  Google Scholar 

  14. Zhang, R., et al. (2019). Golgi membrane protein 1 (GOLM1) promotes growth and metastasis of breast cancer cells via regulating matrix metalloproteinase-13 (MMP13). Medical Science Monitor, 25, 847–855. https://doi.org/10.12659/msm.911667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ye, Q. H., et al. (2016). GOLM1 modulates EGFR/RTK cell-surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell, 30, 444–458. https://doi.org/10.1016/j.ccell.2016.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song, Q., et al. (2021). The functional landscape of Golgi membrane protein 1 (GOLM1) phosphoproteome reveal GOLM1 regulating P53 that promotes malignancy. Cell death discovery, 7, 42. https://doi.org/10.1038/s41420-021-00422-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, X., Chen, L., & Zhang, T. (2018). Increased GOLM1 expression independently predicts unfavorable overall survival and recurrence-free survival in lung adenocarcinoma. Cancer Control, 25, 1073274818778001. https://doi.org/10.1177/1073274818778001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Di Leva, G., Garofalo, M., & Croce, C. M. (2014). MicroRNAs in cancer. Annual Review of Pathology, 9, 287–314. https://doi.org/10.1146/annurev-pathol-012513-104715

    Article  CAS  PubMed  Google Scholar 

  19. Sun, Z., et al. (2018). Effect of exosomal miRNA on cancer biology and clinical applications. Molecular Cancer, 17, 147. https://doi.org/10.1186/s12943-018-0897-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang, L. H., Zhang, H. D., & Tang, J. H. (2018). MiR-30a: A novel biomarker and potential therapeutic target for cancer. J Oncol, 2018, 5167829. https://doi.org/10.1155/2018/5167829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miao, Y., et al. (2019). miR-30a inhibits breast cancer progression through the Wnt/beta-catenin pathway. International Journal of Clinical and Experimental Pathology, 12, 241–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Luan, N., Wang, Y., & Liu, X. (2018). Absent expression of miR-30a promotes the growth of lung cancer cells by targeting MEF2D. Oncology Letters, 16, 1173–1179. https://doi.org/10.3892/ol.2018.8719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sui, J., et al. (2017). Comprehensive analysis of aberrantly expressed microRNA profiles reveals potential biomarkers of human lung adenocarcinoma progression. Oncology Reports, 38, 2453–2463. https://doi.org/10.3892/or.2017.5880

    Article  CAS  PubMed  Google Scholar 

  24. Yang, L., Luo, P., Song, Q., & Fei, X. (2018). DNMT1/miR-200a/GOLM1 signaling pathway regulates lung adenocarcinoma cells proliferation. Biomedicine & Pharmacotherapy, 99, 839–847. https://doi.org/10.1016/j.biopha.2018.01.161

    Article  CAS  Google Scholar 

  25. Yan, G., et al. (2018). GOLM1 promotes prostate cancer progression through activating PI3K-AKT-mTOR signaling. Prostate, 78, 166–177. https://doi.org/10.1002/pros.23461

    Article  CAS  PubMed  Google Scholar 

  26. Wang, B., et al. (2021). ETV4 mediated lncRNA C2CD4D-AS1 overexpression contributes to the malignant phenotype of lung adenocarcinoma cells via miR-3681–3p/NEK2 axis. Cell Cycle, 20, 2607–2618. https://doi.org/10.1080/15384101.2021.2005273

    Article  CAS  PubMed  Google Scholar 

  27. Donner, I., et al. (2018). Germline mutations in young non-smoking women with lung adenocarcinoma. Lung Cancer, 122, 76–82. https://doi.org/10.1016/j.lungcan.2018.05.027

    Article  PubMed  Google Scholar 

  28. Feng, H., Zhang, Z., Qing, X., French, S. W., & Liu, D. (2019). miR-186-5p promotes cell growth, migration and invasion of lung adenocarcinoma by targeting PTEN. Experimental and Molecular Pathology, 108, 105–113. https://doi.org/10.1016/j.yexmp.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  29. Jing, P., et al. (2020). miR-24-3p/KLF8 signaling axis contributes to LUAD metastasis by regulating EMT. Journal of Immunology Research, 2020, 4036047. https://doi.org/10.1155/2020/4036047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, L., Huang, P., Li, Q., Wang, D., & Xu, C. X. (2019). miR-134-5p promotes stage I lung adenocarcinoma metastasis and chemoresistance by targeting DAB2. Molecular Therapy Nucleic Acids, 18, 627–637. https://doi.org/10.1016/j.omtn.2019.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, R., et al. (2017). PDGFA/PDGFRalpha-regulated GOLM1 promotes human glioma progression through activation of AKT. Journal of Experimental & Clinical Cancer Research, 36, 193. https://doi.org/10.1186/s13046-017-0665-3

    Article  CAS  Google Scholar 

  32. Chen, Q., et al. (2020). miR-30a-3p inhibits the proliferation of liver cancer cells by targeting DNMT3a through the PI3K/AKT signaling pathway. Oncology Letters, 19, 606–614. https://doi.org/10.3892/ol.2019.11179

    Article  CAS  PubMed  Google Scholar 

  33. Wang, W., et al. (2014). MicroRNA-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. European Journal of Surgical Oncology, 40, 1586–1594. https://doi.org/10.1016/j.ejso.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  34. Qi, B., et al. (2017). Down-regulation of miR-30a-3p/5p promotes esophageal squamous cell carcinoma cell proliferation by activating the Wnt signaling pathway. World Journal of Gastroenterology, 23, 7965–7977. https://doi.org/10.3748/wjg.v23.i45.7965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, J. W., et al. (2020). MiR-30a-5p promotes cholangiocarcinoma cell proliferation through targeting SOCS3. Journal of Cancer, 11, 3604–3614. https://doi.org/10.7150/jca.41437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, L., Chen, L., Wu, T., Qian, H., & Yang, S. (2019). MicroRNA-30a-3p functions as a tumor suppressor in renal cell carcinoma by targeting WNT2. Am J Transl Res, 11, 4976–4983.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pencik, J., et al. (2016). JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine, 87, 26–36. https://doi.org/10.1016/j.cyto.2016.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, C. S., et al. (2019). miR-409 down-regulates Jak-Stat pathway to inhibit progression of liver cancer. European Review for Medical and Pharmacological Sciences, 23, 146–154. https://doi.org/10.26355/eurrev_201901_16758

    Article  PubMed  Google Scholar 

  39. Bing, Z., Zheng, Z., Wang, Y., & Zhang, J. (2021). miR-153 targeting PRDM2 gene affects the proliferation and invasion of non-small cell lung cancer through JAK / STAT signaling pathway. Minerva Surgery. https://doi.org/10.23736/s2724-5691.21.09200-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

DX contributed to the study design. HH conducted the literature search. YQ and XD acquired the data. KS wrote the article. WJ performed data analysis. JJ drafted the manuscript. LW and ZJ revised the article and gave the final approval of the version to be submitted. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haihua Hong.

Ethics declarations

Conflict of Interest

The authors declare that they have no potential conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to submit the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 981 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Zhang, Y., Zhang, X. et al. MiR-30a-3p Suppresses the Growth and Development of Lung Adenocarcinoma Cells Through Modulating GOLM1/JAK-STAT Signaling. Mol Biotechnol 64, 1143–1151 (2022). https://doi.org/10.1007/s12033-022-00497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00497-x

Keywords

Navigation