Skip to main content

Advertisement

Log in

MiR-139-5p Targeting CCNB1 Modulates Proliferation, Migration, Invasion and Cell Cycle in Lung Adenocarcinoma

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lung adenocarcinoma (LUAD) is the most frequent histological subtype of non-small cell lung cancer. Cyclin B1 (CCNB1) is the vital initiator and controller of mitosis. Studies have indicated that CCNB1 overexpression is closely associated with cell proliferation and tumorigenesis in many cancers. Thus, discovery of molecular mechanism of CCNB1 in LUAD is conducive to developing new diagnostic or therapeutic targets for LUAD. We acquired mature miRNA and mRNA expression information of LUAD from TCGA database, as well as related clinical data. CCNB1 expression in normal and LUAD tissue was analyzed. Relationship between CCNB1 and patient’s survival and clinical stage was analyzed. Upstream regulatory gene miRNA of CCNB1 was predicted. qRT-PCR and western blot examined expression levels of CCNB1 and miR-139-5p in cells. CCK-8 tested cell proliferation. Scratch healing and Transwell determined cell migration and invasion. Flow cytometry analyzed the cell cycle. Dual-luciferase verified targeting relationship between the two genes. Compared to controls, CCNB1 expression was prominently high in LUAD patient samples, and associated with advanced tumor stages and shorter overall survival. MiR-139-5p expressed an evidently negative correlation with CCNB1 and was predicted to target CCNB1. MiR-139-5p mimics reduced CCNB1 mRNA and protein expression, and suppressed luciferase activity in a target-specific manner, as confirmed by a control construct with a mutated miR-139-5p binding site. CCNB1 overexpression fostered progression of LUAD cells. Mechanistically, miR-139-5p might negatively regulate CCNB1 in LUAD, thereby suppressing cell proliferation, migration, invasion and cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article. The data and materials in the current study are available from the corresponding author on reasonable request.

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  2. Thomson, C. S., & Forman, D. (2009). Cancer survival in England and the influence of early diagnosis: What can we learn from recent EUROCARE results? British Journal of Cancer, 101(Suppl 2), S102-109. https://doi.org/10.1038/sj.bjc.6605399

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60, 277–300. https://doi.org/10.3322/caac.20073

    Article  Google Scholar 

  4. Zhou, C., & Yao, L. D. (2016). Strategies to improve outcomes of patients with EGRF-mutant non-small cell lung cancer: Review of the literature. Journal of Thoracic Oncology, 11, 174–186. https://doi.org/10.1016/j.jtho.2015.10.002

    Article  PubMed  Google Scholar 

  5. Villanueva, N., & Bazhenova, L. (2018). New strategies in immunotherapy for lung cancer: Beyond PD-1/PD-L1. Therapeutic Advances in Respiratory Disease, 12, 1753466618794133. https://doi.org/10.1177/1753466618794133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riaz, S. P., et al. (2012). Trends in incidence of small cell lung cancer and all lung cancer. Lung Cancer, 75, 280–284. https://doi.org/10.1016/j.lungcan.2011.08.004

    Article  PubMed  Google Scholar 

  7. Shin, J. U., et al. (2012). Prognostic significance of ATM and cyclin B1 in pancreatic neuroendocrine tumor. Tumour Biology, 33, 1645–1651. https://doi.org/10.1007/s13277-012-0420-5

    Article  CAS  PubMed  Google Scholar 

  8. Krek, W., & Nigg, E. A. (1991). Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: Identification of major phosphorylation sites. EMBO Journal, 10, 305–316.

    Article  CAS  Google Scholar 

  9. Morgan, D. O. (1995). Principles of CDK regulation. Nature, 374, 131–134. https://doi.org/10.1038/374131a0

    Article  CAS  PubMed  Google Scholar 

  10. Chai, N., et al. (2018). FOXM1 promotes proliferation in human hepatocellular carcinoma cells by transcriptional activation of CCNB1. Biochemical and Biophysical Research Communications, 500, 924–929. https://doi.org/10.1016/j.bbrc.2018.04.201

    Article  CAS  PubMed  Google Scholar 

  11. Fang, Y., Yu, H., Liang, X., Xu, J., & Cai, X. (2014). Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer. Cancer Biology & Therapy, 15, 1268–1279. https://doi.org/10.4161/cbt.29691

    Article  CAS  Google Scholar 

  12. Li, S., et al. (2018). Identification of an eight-gene prognostic signature for lung adenocarcinoma. Cancer Manag Res, 10, 3383–3392. https://doi.org/10.2147/CMAR.S173941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  14. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, L. L., et al. (2017). Potential role of miR-139-5p in cancer diagnosis, prognosis and therapy. Oncology Letters, 14, 1215–1222. https://doi.org/10.3892/ol.2017.6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krishnan, K., et al. (2013). miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA, 19, 1767–1780. https://doi.org/10.1261/rna.042143.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bushati, N., & Cohen, S. M. (2007). microRNA functions. Annual Review of Cell and Developmental Biology, 23, 175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406

    Article  CAS  PubMed  Google Scholar 

  18. Adam, L., et al. (2009). miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clinical Cancer Research, 15, 5060–5072. https://doi.org/10.1158/1078-0432.CCR-08-2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qiu, G., Lin, Y., Zhang, H., & Wu, D. (2015). miR-139-5p inhibits epithelial-mesenchymal transition, migration and invasion of hepatocellular carcinoma cells by targeting ZEB1 and ZEB2. Biochemical and Biophysical Research Communications, 463, 315–321. https://doi.org/10.1016/j.bbrc.2015.05.062

    Article  CAS  PubMed  Google Scholar 

  20. Asangani, I. A., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27, 2128–2136. https://doi.org/10.1038/sj.onc.1210856

    Article  CAS  PubMed  Google Scholar 

  21. Shao, Y., Liang, B., Long, F., & Jiang, S. J. (2017). Diagnostic MicroRNA biomarker discovery for non-small-cell lung cancer adenocarcinoma by integrative bioinformatics analysis. BioMed Research International, 2017, 2563085. https://doi.org/10.1155/2017/2563085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Survival Analysis v. 2.37–7 (2014).

  23. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  Google Scholar 

  24. Zhuang, L., Yang, Z., & Meng, Z. (2018). Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients. BioMed research international, 2018, 7897346. https://doi.org/10.1155/2018/7897346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, S., Sun, H., Zhan, X., & Wang, Q. (2020). MicroRNA718 serves a tumorsuppressive role in nonsmall cell lung cancer by directly targeting CCNB1. International Journal of Molecular Medicine, 45, 33–44. https://doi.org/10.3892/ijmm.2019.4396

    Article  CAS  PubMed  Google Scholar 

  26. Choudhury, T. R. Is Hepatoglobin therapy justified? J Assoc Physicians India 39, 724; author reply 724–725 (1991).

  27. Greenawalt, E. J., et al. (2019). Targeting of SGK1 by miR-576-3p inhibits lung adenocarcinoma migration and invasion. Molecular Cancer Research, 17, 289–298. https://doi.org/10.1158/1541-7786.MCR-18-0364

    Article  CAS  PubMed  Google Scholar 

  28. Pan, Z. H., Guo, X. Q., Shan, J., & Luo, S. X. (2018). LINC00324 exerts tumor-promoting functions in lung adenocarcinoma via targeting miR-615-5p/AKT1 axis. European Review for Medical and Pharmacological Sciences, 22, 8333–8342. https://doi.org/10.26355/eurrev_201812_16531

    Article  PubMed  Google Scholar 

  29. Zhu, D., et al. (2019). MiR-138-5p suppresses lung adenocarcinoma cell epithelial-mesenchymal transition, proliferation and metastasis by targeting ZEB2. Pathology, Research and Practice, 215, 861–872. https://doi.org/10.1016/j.prp.2019.01.029

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, L. Y., Zhang, F. W., Tong, J., & Liu, F. (2020). MiR-191-5p inhibits lung adenocarcinoma by repressing SATB1 to inhibit Wnt pathway. Molecular Genetics & Genomic Medicine, 8, e1043. https://doi.org/10.1002/mgg3.1043

    Article  Google Scholar 

  31. Wang, F., Chen, X., Yu, X., & Lin, Q. (2019). Degradation of CCNB1 mediated by APC11 through UBA52 ubiquitination promotes cell cycle progression and proliferation of non-small cell lung cancer cells. Am J Transl Res, 11, 7166–7185.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, J., et al. (2020). PKMYT1 is associated with prostate cancer malignancy and may serve as a therapeutic target. Gene, 744, 144608. https://doi.org/10.1016/j.gene.2020.144608

    Article  CAS  PubMed  Google Scholar 

  33. Li, P., Xiao, Z., Luo, J., Zhang, Y., & Lin, L. (2019). MiR-139-5p, miR-940 and miR-193a-5p inhibit the growth of hepatocellular carcinoma by targeting SPOCK1. Journal of Cellular and Molecular Medicine, 23, 2475–2488. https://doi.org/10.1111/jcmm.14121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, J., et al. (2018). Tumor-suppressor role of miR-139-5p in endometrial cancer. Cancer Cell International, 18, 51. https://doi.org/10.1186/s12935-018-0545-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yong-Hao, Y., Xian-Guo, W., Ming, X., & Jin-Ping, Z. (2019). Expression and clinical significance of miR-139-5p in non-small cell lung cancer. Journal of International Medical Research, 47, 867–874. https://doi.org/10.1177/0300060518815379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, K., Jin, J., Ma, T., & Zhai, H. (2017). MiR-139-5p inhibits the tumorigenesis and progression of oral squamous carcinoma cells by targeting HOXA9. Journal of Cellular and Molecular Medicine, 21, 3730–3740. https://doi.org/10.1111/jcmm.13282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pajic, M., et al. (2018). miR-139-5p modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense. Cancer Research, 78, 501–515. https://doi.org/10.1158/0008-5472.Can-16-3105

    Article  CAS  PubMed  Google Scholar 

  38. Pang, C., et al. (2016). MiR-139-5p is increased in the peripheral blood of patients with prostate cancer. Cellular physiology and biochemistry: International journal of experimental cellular physiology, biochemistry, and pharmacology, 39, 1111–1117. https://doi.org/10.1159/000447819

    Article  CAS  Google Scholar 

  39. Yang, B., et al. (2019). Downregulation of miR-139-5p promotes prostate cancer progression through regulation of SOX5. Biomedicine & Pharmacotherapy, 109, 2128–2135. https://doi.org/10.1016/j.biopha.2018.09.029

    Article  CAS  Google Scholar 

  40. Wu, J., Zhang, T., Chen, Y., & Ha, S. (2020). MiR-139-5p influences hepatocellular carcinoma cell invasion and proliferation capacities via decreasing SLITRK4 expression. Bioscience Reports. https://doi.org/10.1042/BSR20193295

  41. Wu, J., et al. (2019). LncSNHG3/miR-139-5p/BMI1 axis regulates proliferation, migration, and invasion in hepatocellular carcinoma. OncoTargets and Therapy, 12, 6623–6638. https://doi.org/10.2147/ott.S196630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data analysis, drafting and revising the article, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Bin Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Ethical Approval

Not applicable.

Consent for Publication

All authors consent to submit the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2022_465_MOESM1_ESM.tif

Supplementary Fig. 1 LUAD malignant progression was suppressed by silencing CCNB1. A: CCNB1 level in H1299 cells; B: The proliferation ability of H1299 cells; C: The invasion of H1299 cells (100×); D: The migration ability of H1299 cells (40×); E: The cell cycle of H1299. The cell grouping settings were as follows: H1299 cells with si-NC and si-CCNB1. * denotes p<0.05 (TIF 3302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, B., Yu, X. & Zheng, W. MiR-139-5p Targeting CCNB1 Modulates Proliferation, Migration, Invasion and Cell Cycle in Lung Adenocarcinoma. Mol Biotechnol 64, 852–860 (2022). https://doi.org/10.1007/s12033-022-00465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00465-5

Keywords

Navigation