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Abstract

The annual herb, Ageratum conyzoides L. (Asteraceae), is distributed throughout the world. Although invasive, it can be
very useful as a source of essential oils, pharmaceuticals, biopesticides, and bioenergy. However, very limited information
exists on the molecular basis of its different utility as previous investigations were mainly focused on phytochemical/biologi-
cal activity profiling. Here we have explored various properties of A. conyzoides that may offer environmental, ecological,
agricultural, and health benefits. As this aromatic plant harbors many important secondary metabolites that may have various
implications, biotechnological interventions such as genomics, metabolomics and tissue-culture can be indispensable tools
for their mass-production. Further, A. conyzoides acts as a natural reservoir of begomoviruses affecting a wide range of plant
species. As the mechanisms of disease spreading and crop infection are not fully clear, whole-genome sequencing and various
advanced molecular technologies including RNAi, CRISPER/Cas9, multi-omics approaches, etc., may aid to decipher the
molecular mechanism of such disease development and thus, can be useful in crop protection. Overall, improved knowledge
of A. conyzoides is not only essential for developing sustainable weed control strategy but can also offer potential ways for
biomedicinal, environment, safe and clean agriculture applications.
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Introduction

Ageratum conyzoides L., an important medicinal herb from
the Asteraceae family, is native to Central America but
has been found globally including Africa, Asia, and South
Pacific Islands [1]. The plant has different names as per the
language such as Goat weed (English), Visadodi (Hindi),
Visamustih (Sanskrit), Mejorana (Spanish), Mentrasto (Por-
tuguese), Bhedaa Jhaar (Nepali), and Uralgidda (Kannada).
The genus name Ageratum is based on the Greek word
‘a geras’ (means non-aging), while the species name Cony-
zoides is through ‘konyz’ (as it looks similar to the Inula
helenium L.) [2]. The plant usually grows close to habita-
tion and prospers best in soils with high nutrients, minerals,
and moisture content [3]. It is very frequently found in and
around waste places, gardens, grasslands, disturbed habitats,
forest edges, watercourses, ruined sites, etc., covering from
sea level to mountain. With a height of 1-2 m, this aromatic
herb shows annual, erect, branched, slender, and hairy fea-
tures. White hairs are found on the leaves and stems. Leaves
are simple with petiolate, ovate, or rhomboid-ovate shapes
with a size range of 1-10 cm X 0.5-7.0 cm, apex acute, and
length up to 7.5 cm [4, 5]. Generally, the flower color is
white to purple with an inflorescence arrangement of a
close terminal type. The achene-type fruits are effortlessly
dispersed. The seeds having photoblastic nature may often
lose within a year [6]. Although about 30 species have been
reported from the Ageratum genus, the number of phyto-
chemically characterized species is low. The essential oils
obtained from A. conyzoides contain hydrogen cyanide and
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coumarin that may contribute to a powerful nauseating odor
[7]. The plant has been mainly studied for its biological
activities along with potential medicinal applications and
earlier reviews have focused largely on pharmacological
activities from A. conyzoides [4, 8—10]. However, the cur-
rent study explores various ways of modern biotechnological
interventions by which it can offer solutions for a better envi-
ronment, ecology, health, and/ or agriculture. The demand
is growing on crop breeding for improved resilience against
abiotic and biotic stress with changing climatic conditions
globally. Based on various biological and chemical proper-
ties, this weed plant might be potentially turned into a bene-
ficial commodity while addressing important questions such
as (1) how can we utilize it for the sustainable environment,
agriculture, and also the industrial sector? (2) How it can be
used in agricultural paste management? (3) How modern
molecular and tissue-culture techniques can be applied for its
mass multiplication and production of important secondary
metabolites with potential utility in safeguarding agriculture,
health, or the environment? (4) How can we exploit modern
biotechnological tools to prevent the spread of disease from
A. conyzoides and thus, can utilize this knowledge to gener-
ate resistant crops?

The Usefulness of A. conyzoides
in Agriculture, Environment, and Industrial
Utilities

Ageratum conyzoides successfully invades native habitats
due to its fast growth rates, short life cycles, drought toler-
ance, allelopathy, greater competitive abilities, and higher
reproductive potential [11]. Moreover, seed germination is
the most important stage in the plant life cycle that contrib-
utes to its distribution. As per the surrounding environment,
A. conyzoides has a wide range of temperature and light
suitability to allow seed germination, which helps them to
adapt to different local micro-habitats [12]. On the other
side, the germination and growth rates of A. conyzoides were
severely reduced in an experimental study by the applica-
tion of different concentrations (50, 100, and 200 M) of
parthenin (a sesquiterpene lactone from Parthenium hys-
terophorus L.), while it was completely inhibited at 400 M
level [13]. The parthenin exhibited germination and growth
reduction effects by altering the contents of various macro-
molecules (proteins, carbohydrates, chlorophyll, etc.) and
specific activities of important enzymes such as protease,
a-amylase, and f-amylase.

Further, novel genetic resources with higher yield and
capacity to withstand the invasive species during climate
change scenarios can be developed based on the advanced
knowledge from the genetic exploration on the causal physi-
ological processes, which offer competitive advantages to
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weed plants [14]. For instance, a study revealed that the aver-
age number of plant species and diversity was reduced by
32.10% and 41.21%, respectively, due to the weed invasion
at Shivalik hills of Hamirpur district in Himachal Pradesh,
India. A. conyzoides invasion significantly reduced the
productivity and diversity of native species [5]. Moreover
with a nutrient gradient, phenotypic plasticity, growth, and
functional traits of A. conyzoides and Eupatorium catarium
Veldkamp were analyzed under two contrasting conditions.
The study revealed similar biomass of these two species
under low-nutrient treatment with non-competitive condi-
tion. However, the addition of nutrients led to increased
biomass in them. Consequently, under high-nutrient treat-
ment, E. catarium and A. conyzoides had better growth
over Vernonia cinerea (L.) Less. (a native species) in both
competitive and non-competitive conditions [15]. On the
other side, these two invasive species and the native plant
exhibited similar growth during comparatively low nutrients
in soil despite having sufficient water and light availability
[16]. Thus, based on the surrounding environmental condi-
tions A. conyzoides can potentially affect growth as well as
plant diversity. Consequently, superior knowledge of various
attributes of A. conyzoides is vital to develop better ways
of weed control. It can potentially be useful as a source of
essential oils, pharmaceuticals, biopesticides, and bioenergy
with different applications (Fig. 1) [17]. Its allelochemicals
are potential natural pesticides, which can offer a better solu-
tion for weed and pest management [16]. This plant other-
wise can also be used as organic material to improve soil
nutrient levels. The A. conyzoides was applied as Bokashi
(100, 120, 140, 160 g/ polybag in a test and control of 0.6 g
NPK/ polybag) to determine their nutrient and growth effects
on tomato. The Bokashi of Bandotan (A. conyzoides) 120 g/
polybag exhibited the greatest effect on the tomato weights.

Agricultural

Potential bio-pesticide
Potential bio-fertilizer
Allelopathic activty
Anti-fungal activity

Pharmacological
Antibacterial activity
Antioxidant activity
Anti-inflammatory activity

' Anti-malarial activity
A ) Anti-diabetic activity
Anticancer activity
Hypoglycaemic activity

Traditional uses

Burns, cuts, wounds,
and skin disease,
Fever, cold and cough,
Asthamaand dyspnea,
Leprosy and arthrosis,
Sexual dysfunction and
infertility

= Phytochemical
Environmental

Alkaloids
Soil decontamination potential Essential oils
Increases nutrients of soil Flavonoids
Reduces other weeds Sterols
Biochemical methane potential Saponh}s
Waste water treatment potential Terpenoids

Fig. 1 Various important activities / applications of A. conyzoides

However, there were no effects on the biomass, height, wet
weight, as well as nutrient contents (vitamin A and C) of
tomato [19]. Extrinsic environmental variables (total soil
nitrogen, and organic matter) and the evolutionary structure
of the resident community significantly affected the diversity
of A. conyzoides [20].

Phytopathogens (e.g., fungi, bacteria, viruses) cause vari-
ous diseases to crops and lead to a decline in one-third of
global agriculture production [21]. To mitigate this loss, dif-
ferent chemicals/ fertilizers (viz. fungicides, pesticides, etc.)
are used which could have severe toxic effects on human
beings as well as on surrounding environment [22]. Subse-
quently, synthetic and chemical fertilizers take a longer time
to be degraded in soil compared to biofertilizers. Extracts of
many plants including invasive species are known to exhibit
allelopathic properties and can be utilized in agriculture as
biofertilizers. The active ingredients found in these plants
can be used in the form of extracts or can also be synthe-
sized. Plant extracts can have a low environmental impact
due to their fast degradation in soil [23]. For example, the
suppressive effects of A. conyzoides were evaluated on the
growth and germination response from radish (Raphanus
sativus L.) and paddy weeds [Echinochloa crus-galli (L.)
P. Beauv., Monochoria vaginalis (Burm.f.) C. Presl and
Aeschynomene indica L.]. In comparison to A. conyzoides
root and stem tissue, leaves (2 t/ha input) showed significant
suppression with ~70% growth reduction of E. crus-galli
while completely prevented the germination of M. vaginalis
and A. indica in calcareous soil conditions [24]. Similar
treatment (2 t/ha) with leaves from A. conyzoides on a rice
(Oryza sativa L. var. indica) field led to an 86% decrease in
paddy weeds. This not only significantly lowered the fresh
and dry weights (~75% inhibition) of these weeds but also
contributed to a 14% higher rice yield in comparison to the
butachlor application [24]. On the other side, A. conyzoides
extract (ACE) was found to reduce the growth (e.g., plant
height, number of branches and leaves) and development of
redroot amaranth (Amaranthus retroflexus L.), peanut (Ara-
chis hypogaea L.), cacumber (Cucumis sativus L.), ryegrass
(Lolium multiflorum Lam.), and rice (Oryza sativa L.) by
releasing water-soluble phytochemicals (e.g., precocenes,
2H-benzopyran, monoterpenes, and sesquiterpenes) [25,
26]. Apart from this, A. conyzoides leaf biomass was found
to increase the microbial enzymatic activities, waste min-
eralization and microbial population build-up, earthworm
growth, and fecundity when applied to a vermicomposting
bed at 50-75% proportion along with cow dung. Compost
extracts enhanced the soil respiration rate and the germi-
nation index of mustard (Brassica campestris L.), indicat-
ing the suitability of A. conyzoides as a potting media for
vermicomposting [27]. Thus, A. conyzoides might be con-
sidered as a promising natural growth promoter, herbicide
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and can offer valuable solutions for sustainable and safe
agriculture.

For a Clean Environment

Increasing population density and climate change along
with inefficient management of water resources have
led to water scarcity all over the globe, and the need of
the hour is to develop an efficient water harvesting sys-
tem utilizing solar energy and re-using wastewater [28].
The wastewater is widely used in agricultural fields in
peri-urban areas of developing countries [29]. However,
the wastewater used in agriculture for irrigating crops
contains harmful pathogens, bacteria, viruses, excessive
nitrogen, phosphorus, and heavy metals, which are also
deleterious to humans and animals [30]. Wastewater treat-
ment plants used in urban areas are very costly and often
yield partially treated wastewater that may have still some
contaminants [31]. To overcome this, constructed wet-
lands that mimic the functions of natural wetlands can
be used to treat wastewater naturally involving wetland
vegetation and associated microbial populations that can
uptake excessive nitrogen, phosphorus, and heavy metals
[32]. Several wetland plants such as Typha latifolia L., T.
angustifolia L., Schoenoplectus validus (Vahl) A. Love
& D. Love, Phragmites australis (Cav.) Trin. ex Steud.,
Juncus effusus L., Canna indica L., Eichhornia crassipes
(Mart.) Solms, and Lemna minor L. have the potential to
remove contamination of nitrogen and phosphorus from
wastewater [33, 34]. More recently, A. conyzoides has
indicated similar efficacy in combination with wetland
plants. The study has demonstrated effective removal
of excessive phosphorus, nitrogen, and fecal coliforms
from domestic wastewater using A. conyzoides along
with Pistia stratiotes L., T. latifolia, and C. indica [35].
Additionally, municipal and electronic wastes can lead
to more soil pollution, which is a grave universal issue
for waste sites and related environments [36]. The phy-
toremediation approach can offer a potential strategy to
protect the soil environment from such contamination [37,
38]. As A. conyzoides can grow easily on contaminated
soil, it can take up heavy metals from any waste site [36].
Soil decontamination potentiality of A. conyzoides was
evaluated in pot experiments using ethylenediaminetet-
raacetic acid (EDTA at 0.1 g/kg) in combination with
kinetin (100 pM). Leaves exhibited the highest accu-
mulation of Fe (6.51-38.58%), Mn (0.14-73.12%), Zn
(5.24-269.07%), and Cu (9.38-116.59%), whereas accu-
mulation of Pb (22.83-113.41%) and Cr (21.05-500%)
was highest in the stem, as compared with controls. Plants
exhibited overall improved growth with the planned kine-
tin-EDTA combination [36]. Similarly, another weed
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Santa-Maria (P. hysterophorus L.) can also reduce heavy
metals from contaminated soil [39].

For Industrial Purpose

The A. conyzoides extract (ACE) can be used to manufacture
better sodium alginate (SA) films having improved physical,
mechanical, and thermal assets [40]. With ACE, the tensile
strength was superior and the water vapor transmission rate
was significantly reduced in SA film. Consequently, the ther-
mal stability and swelling rate of the SA film were also bet-
ter. Thus, ACE-SA film can potentially serve as an effective
wound-dressing material [40]. Additionally, the biochemical
methane potential (BMP) of A. conyzoides has been studied
to find the ideal food to microorganism (F/M) ratio and as
an alternative energy source [41]. The assay revealed that
out of different ratios examined (1.0, 1.5, 2.0, and 2.5), the
F/M ratio of 2 showed maximum methane (CH,) and vol-
atile solid (VS) production from the anaerobic digestion.
Further, the highest biogas production was achieved with
205+ 10 mL CH,/g VS and cumulative methane production
reached up to 4994 + 25 mL on the 25" day. Within 30 days
of incubation, 80% of biogas production was achieved and
kinetic study also confirmed the efficiency of biogas produc-
tion [41]. Thus, the biomass from this terrestrial invasive
plant can be converted as a very effective resource and used
in an eco-friendly manner with the generation of viable clean
energy at a minimum cost.

Effectiveness of Secondary Metabolites
from A. conyzoides

The chemical composition of A. conyzoides has been ana-
lyzed by various qualitative and quantitative methods such
as gas-chromatography-mass spectrometry (GC-MS), GC-
equipped with flame ionization detector (GC-FID), liquid-
chromatography-mass spectrometry (LC-MS), thin-layer
chromatography (TLC), high-performance liquid chro-
matography-high-resolution mass spectrometry (HPLC-
HRMS), HPLC with diode array detector (HPLC-DAD),
and ultra-performance liquid chromatography, coupled to
photodiode-array and electrospray ionization/quadrupole-
time-of-flight mass spectrometry (UPLC-PDA-ESI-QToF-
MS). These have allowed the identification of various phy-
tochemicals, such as the pyrrolizidine alkaloids, saponins,
coumarin, pyrrolone, phenolic acids, polymethoxyflavones,
and terpenoids [8, 42-44]. A. conyzoides contains many dif-
ferent types of sterols like brassicasterol, p-sitosterol, cho-
lesterol, stigmasterol, spinasterol, etc. [45, 46]. Similarly, it
is also very rich in flavonoids such as scutellarein-5,6,7,1-
tetrahydroxyflavone, polymethoxy flavones, eupalestin,
quercetin, kaempferol, kaempferol 3,7-diglucopyranoside,
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(25)-7,3",4'-trimethoxyflavone, (2S)-7-methoxy-3',4'-
methylenedioxyflavan, 5,6,7,3’,4°,5’-hexamethoxyflavone,
nobiletin, and 5’-methoxynobiletin [43, 47, 48]. Earlier
from the stems, a new isoflavone glycoside, [5,7,2',4'-
tetrahydroxy-6,3'-di-(3,3-dimethylallyl)-isoflavone-5-O-
a-L-rhamnopyranosyl-(1 — 4)—a-Lrhamnopyranoside]
was detected [49]. Glycosidal flavonoids isolated from
ethyl extracts are p-hydroxybenzoic acid, quercetin-3-O-
rhamnopyranoside, and quercetin-3,7-diglucopyranoside
[24, 50, 51]. Additionally, GC-MS analysis of A. conyzoides
essential oils are reported to contain 7-methoxy-2,2-di-
methylchromene (precocene I), f-copaene, hexanal, trans-
cadina-1(6), ageratochromene (precocene II), a-calacorene,
caryophylla-4(12), germacrene-D, trans-cadina-1(6),4-diene,
8(13)-diene-5-p-ol, p-caryophyllene, a-caryophyllene, trans-
B-farnesene, f-cubebene, coumarin, phytol (a diterpene
alcohol) and 1,10-di-epi-cubenol [52-54]. Additionally, a
total of 51 constituents including chromenes (85.2%), chro-
mans (0.9%), oxygenated monoterpenoids (1.4%), phenyl-
propanoids and benzenoids (2.33%), oxygenated sesquiter-
penoids (0.8%), monoterpenoid hydrocarbons (5.0%), and
sesquiterpenoid hydrocarbons (4.3%) have been reported
from the leaves of A. conyzoides [55]. Similarly, A new
chromene, [2,2-dimethylchromene-7-methoxy-6-0O-p-D-
glucopyranoside], has also been identified from the total
plant ethanol extract [56].

Many of these compounds can be useful in different ways
(Fig. 2) such as a substitute for synthetic and chemical fun-
gicides [57, 58]. Soil pathogenic fungi and weed invasion
are major threats to citrus plants as they significantly reduce

Precocene I

Precocene II

Encecalol angelate
Fenchyl acetate

Catechin
Phenolic acids
(gallic acid, coumaric acid,

Coumarin protocatechuic acid and
a-Farnesene p-hydroxybenzoic acid),
B-Farnesene Flavons
y-Bisabolene Coumarin
o-Bisabolene Volatile oil

B-Caryophllene Stigmasterol

Key
metabolites

Germacrene

Fenchyl acetate
Eupatoriochromene
Trans-caryophyllene

Eugenol
Kaempferol
Quercitrin

Stigmasterol
Quercetin-3,7-giglucopyranoside a-Cubebene
Agertochromone Pyrrpk_:ng
Chromenes Pyrrolizidine
Chromans Cmeole
Citronellol

Essential oils
B-farnesene

Fig. 2 Potential metabolites from A. conyzoides having implication in
different areas

the yield. The invasion of other weeds and pastes can be
controlled by incorporating A. conyzoides plants in the citrus
orchards [59]. Three flavones and ageratochromene allelo-
chemicals (levels of 11 to 93 pg/ g of soil) were released
from A. conyzoides on citrus orchards that significantly
inhibited (47.3% to 71.2%) the development of three weeds
(Cyperus difformis L., Bidens pilosa L., and Digitaria
sanguinalis (L.) Scop.). This also prevented the growth of
disease-causing soil fungi, namely Fusarium solani Mart.
(Sacc.), Pythium aphanidermatum (Edson) Fitzpatrick and
Phytophthora citrophthora (R.E. Sm. & E.H. Sm.). This
finding has suggested that the incorporation of A. conyzoides
and isolated allelochemicals (flavones and ageratochromene)
in soil may be useful in controlling other invasive weeds and
phytopathogens [59]. Similarly, the aqueous, n-hexane and
methanol extracts from various tissues of A. conyzoides at
different concentrations (2, 4, and 6 w/v) were used to assess
the antifungal potential against pathogenic fungi Fusarium
solani. All the extracts exerted antifungal activity and sig-
nificantly repressed the growth of the fungi [60]. Another
such study has been recently performed on Puccinia ara-
chidis Speg., which is the causal organism of rust disease in
peanuts. Crude ACE was very effective against this pathogen
when used at 2.5% to 5.0% concentrations. Additionally, the
aqueous ACE showed maximum antifungal activity against
Aspergillus niger Tiegh. and A. ustus (Bainier) Thom &
Church with an average inhibition zone of 20 mm, while
the minimum inhibition was recorded against A. fumigatus
Fresen. with 7 mm at 800 mg/mL concentration [57]. This
indicates that it can also be an effective biofungicide and
thus, helps to reduce the use of synthetic fungicides [58].
Taken together, A. conyzoides is very rich in different com-
pounds such as sterols, flavonoids, saponins, chromenes,
pyrrolizidine, alkaloids, coumarin, pyrrolone, terpenoids,
and lignin, and thus, can have potential implications in dif-
ferent sectors for a safe environment, agriculture, and bio-
medicine (Fig. 2).

Essential oils from A. conyzoides can also be a good
botanical insecticide and may be useful against insects for
integrated pest management practices. These secondary
metabolites such as alkaloids, flavonoids, phenols, and tan-
nins possibly can be exploited for the development of natural
pesticides and controlling pests for sustainable crop produc-
tion [18]. For instance, using these oils, in vitro and in vivo
fumigant tests resulted in 100% mortality of Tribolium cas-
taneum (Herbst), the storage grain insect. A. conyzoides
essential oils totally destroyed the insects at 1000 ppm. On
the other side, these oils were non-phytotoxic; and did not
affect the seed germination and growth of the seedlings [61].
Similarly, different concentrations (0.1, 0.2, 0.5, and 1.0%)
of petroleum ether leaf extract were used to evaluate insec-
ticidal activity against the Epilachna 28 punctata larvae.
The 1.0% and 0.5% of leaf ACE exhibited 100% and 66.67%
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mortality of the larvae, respectively. Both 0.1% and 0.2%
concentration indicated 33.33% mortality [62]. Addition-
ally, the whole plant ACE when used in different doses (2,
4,6, 8, and 10% conc.) to assess the potential as a biopesti-
cide against pest of Caisim (Brassica juncea L. Czern.), 4%
level was the most effective botanical pesticide to control an
amount of pest in Caisim compared to the treatment with-
out pesticides [63]. In another recent study, methanolic leaf
ACE (0, 6, 8, 10, and 12% conc.) was used as a biopesti-
cide against caterpillar larvae (Spodoptera litura Fabricius).
Larvae mortality rate was significantly improved with the
increased ACE concentration with the highest mortality at
the 12% level [64]. Antifungal bioassays using various frac-
tions of stem ACE such as n-hexane, chloroform, n-butanol,
and ethyl acetate were used against disease-causing patho-
gen Macrophomina phaseolina (Tassi) Goid. All fractions
exhibited a reduction in pathogen biomass over the control.
Several compounds from ACE [such as 2H-1-benzopyran,
7-dimethoxy-2,2-dimethyl, hexadecanoic acid, 11-octadece-
noic acid, methyl ester, 1,2-benzenedicarboxylic acid, and
mono(2-ethylhexyl) ester] could exert biopesticide potential
[65]. However, these isolated compounds should be further
evaluated separately for their potential application in agri-
culture as a biopesticide. Taken together with these reports,
Roiba and Stevenson [66] have strongly recommended A.
conyzoides as a potential biopesticide, which is very benefi-
cial on insects including ladybirds, spiders, and hoverflies.

Further, allelochemicals can restrain growth of other
weeds; however, they are not much effective to themselves or
the weeds from the same families. The allelopathic activity
was evaluated in Sesamum indicum L. using aqueous ACE
at different concentrations (5, 10, 15, and 20%). The ACE
was inhibitory to seed germination, shoot and root develop-
ment of sesame plants. There was an increase in allelopathic
effect with a gradual increase in ACE concentrations [67].
Similarly, the aqueous acetone shoot ACE at different con-
centrations (0, 0.1, 0.3, 1.0, 3.0, and 10.0 mg/cm3) resulted
in allelopathic activity and inhibited the seed germination,
shoot and root growth of Amaranthus caudatus L., Lactuca
sativa L. and Digitaria sanguinalis (L.) Scop. [68]. Over-
all, these investigations have potentially indicated that such
chemicals of A. conyzoides can be effectively utilized for
various purposes.

Evaluation of Traditional Medicinal Uses
by Molecular Tools

Plants provide many different types of products. From the
days of ancient civilizations, plants are widely used as raw
materials in different types of medicine [69]. This knowl-
edge of traditional remedies is extensively utilized for new
drug development by the contemporary industry [70]. Many
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sophisticated biotechnological interventions viz., tissue-cul-
ture, marker-assisted breeding, DNA microarrays, metabo-
lomics, proteomics, functional genomics, bioanalytics, etc.,
are used nowadays in novel drug discovery and formula-
tions from ethnomedicinal plants [71]. A. conyzoides has
been traditionally used as a medicine by local indigenous
people from the majority of globe to cure various diseases/
ailments (Table 1). The plant is utilized to cure dyspnea,
skin diseases, ulcer, wound, etc., and also as a purgative,
and febrifuge. In some African countries, the plant is use-
ful in conventional medicine due to its anti-asthmatic, anti-
spasmodic, and hemostatic properties [72, 73]. The ACE
contains numerous phytochemical compounds that may have
different therapeutic activities such as antioxidant, antibac-
terial, antimicrobial, anticancer, etc., either from crude or
tissue-specific fractions (Table 2) [8, 9, 74]. It has been also
used to cure urinary and prostate-related issues in traditional
practices for a long time. However, there is a deficit of gene
expression studies and evaluation of the pharmacological
activity of A. conyzoides using advanced molecular tools.
Pharmaceutical treatments of prostate swelling (Benign
prostate hypertrophy- BPH) include the use of 5-a-reductase
inhibitors, which loosen up the muscles in the region of the
urethra and bladder to mitigate urine retention. The effect of
ACE on the gene expression of 5-a-reductase was assessed
for efficacy and safety in treating BPH. The extract showed
a significantly reduced human 5-a-reductase mRNA level in
prostate epithelial cells. Thus, A. conyzoides could poten-
tially be used for the treatment of BPH by decreasing the
enzyme activity of 5-a-reductase [74], and can be employed
after purifying the active component from ACE with subse-
quent clinical studies.

Progress in bioinformatics has enormously facilitated
the identification of target drug molecules and their inter-
actions using computational algorithms before they can be
used for further experiments. In silico analysis not only helps
to screen and design potential drug targets for various dis-
eases using isolated phytochemicals but also to identify and
predict the metabolic fate of such compounds. Phytochemi-
cals isolated from ACE have been virtually screened using
in silico studies for their potential application in biopharma.
Several compounds viz. precocene I, B-sitosterol, precocene
II, 6-vinyl-7-methoxy-2,2-dimethyl chromene (VMDC),
stigmasterol, polymethoxyflavone, pyrrolizidine, neophyta-
diene, phytol, and caryophyllene isolated from ACE have
been used to screen their potential application against vari-
ous drug targets (e.g., MMP-9, p53, cox-2, a-amylase, etc.)
for various diseases like malaria, diabetes, breast cancer and
cervical cancer [75-78]. Recently, key secondary metabo-
lites (e.g., Kaempferol, Quercetin, etc.) isolated from ACE
have shown potential as drug candidates against the SARS-
CoV-2 virus. In silico molecular docking analysis has indi-
cated that these metabolites may inhibit the replication of the
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virus by interacting with the active site residues of the main
protease enzymes [79]. Thus, virtual screening and molecu-
lar dynamic simulations can be crucial tools to design and
identify target drug candidates against various diseases in
the future.

Numerous pro- and anti-inflammatory mediators are pro-
duced during the inflammatory process. From the leaves of
A. conyzoides, eupalestin, 5'-methoxy nobiletin (MeONOB),
and 1, 2-benzopyrone were isolated and evaluated for anti-
inflammatory effects. Various cytokines, genes, and enzymes
involved in inflammation response were also analyzed [79,
80]. Isolated compounds and other fractions of ACE sig-
nificantly reduced (p < 0.05) the levels of myeloperoxidase,
nitric oxide, adenosine deaminase, leukocyte influx, etc., and
also reduced the p-p38 MAPK and p-p65 NF-kB levels. The
isolated compounds might have prevented the activation of
MAPK and NF-xB; and thus, attributing to the anti-inflam-
matory response of A. conyzoides [80]. Restricted movement
with pain in joints due to inflammation is the main feature
of Osteoarthritis (OA) [81]. The effect of leaf ACE on the
OA has been studied in rats that might suggest how TNF-«
and MMP-9 affect the proteoglycan swelling and degrada-
tion during the OA. The leaf ACE (at 160 mg/ 200 g body
weight) significantly lowered the MMP-9 and TNF-« level.
This suggested that ACE can reduce cartilage inflammation
and degradation by potentially inhibiting the activities of
TNF-o and MMP-9, respectively [82]. Also, the level of
MMP-9 expression is the key indicator of triple-negative
breast cancer disease diagnosis. Recently, Hariono et al. [78]
used the n-hexane fraction of ACE to assess its inhibitory
potential against MMP-9. The compound oxytetracycline
(OTC) isolated from n-hexane fraction had a potent inhibi-
tory effect against MMP-9 with ICy, value of 246.1 ug/ mL.
Further, molecular docking analysis suggested that OTC
inhibited MMP-9 activity by binding to the PEX9 domain
rather than the catalytic site. Therefore, due to higher selec-
tive inhibition of MMP-9, OTC can be a safe and promising
candidate against triple-negative breast cancer [78]. With
the tremendous progress in advanced molecular technolo-
gies, more focused studies in the future would bring out
numerous beneficial uses affirming biomedicinal properties
of A. conyzoides.

Tissue-Culture and Secondary Metabolite
Production from A. conyzoides

Although the Indian subcontinent contains the richest source
of ethnomedicinally important plant species with approxi-
mately 45,000 plants, many of these resources are rapidly
turning extinct [83, 84]. Medicinal and aromatic plants
(MAPs) can produce a diverse array of secondary metab-
olites generating an invaluable resource of plant-derived

bioactive compounds [85]. These are mainly represented as
phenolics, nitrogen-containing compounds, terpenes, and
terpenoids [86]. Such secondary metabolites from MAPs
are widely utilized as a natural cure for various diseases.
However, for large-scale production and proper explora-
tion of medicinal properties with contributory secondary
metabolites as well as conservation of MAPs, standard cell,
organ, and tissue-culture protocols are required. Plant cell,
tissue, and organ cultures offer an efficient homogeneous,
controlled production of secondary metabolites, especially
to meet commercial demands. These techniques have facili-
tated the identification and de novo synthesis of novel com-
pounds in higher amounts than the intact natural plants [87,
88]. Tissue-culture techniques especially micropropagation
can be a promising tool for the mass multiplication, sec-
ondary metabolites production, and conservation of these
medicinally important plants [89, 90]. However, very scanty
information exists on the tissue-culture-related efforts on A.
conyzoides. Earlier, a micropropagation protocol was devel-
oped from nodal explants of A. conyzoides [91]. Using dif-
ferent combinations of auxin and cytokinins in Murashige
and Skoog (MS) medium the multiple shoot induction was
achieved. A maximum no. of shoots/ explants was observed
with a combination of indole-3-acetic acid IAA) (3.0 mg/L)
and 6-benzyl aminopurine (BAP) in MS medium. The elon-
gation of multiple shoots was observed with 3.05 mg/L
of BAP and IAA along with 600 mg/L activated charcoal
containing MS medium. Out of different auxin-cytokinin
combinations, IAA-BAP combinations at 2.0 and 3.0 mg/L
concentrations exhibited the greatest induction of multiple
shoots and roots, respectively. Similarly, Renu and Nidhi
[92] also developed in vitro tissue-culture protocol using
various mature plant parts of Adhatoda vasica Nees and A.
conyzoides to explore and analyze the sterol content as they
are extensively used in traditional medicine. p-sitosterol is
the active phytosterol constituent present in the root, stems,
and leaves of both of these plants. In A. vasica, callus cul-
ture from nodal explants was developed on MS medium
containing BAP and a-naphthalene acetic acid (NAA) at
0.5 mg/L and 2.5 mg/L, respectively, whereas for A. cony-
zoides, stock callus was developed from nodal segments on
MS medium with 2, 4-Dichlorophenoxyacetic acid (2, 4-D)
and BAP at 3.0 mg/L and 0.5 mg/L concentrations, respec-
tively. The callus culture was maintained for 18 months by
frequent sub-culturing and analyzed for sterol contents.
TLC and infrared (IR) spectroscopy confirmed the stig-
masterol and p-sitosterol presence in different plant parts
of both species. The six-week-old tissue of A. vasica exhib-
ited higher concentrations of total sterol [0.439 mg/gram
dry weight (g d.wt.)], p-sitosterol (0.272 mg/g d.wt.) and
stigmasterol (0.167 mg/g d.wt.) compared to A. conyzoides
tissue (total sterol—0.432, B-sitosterol—0.270 and stig-
masterol—0.162 mg/g d.wt., respectively). In vivo studies
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of different tissues also revealed that A. vasica contained
slightly higher levels of steroids compared to A. conyzoides
[92]. In another separate investigation, nodal, leaf, and
shoot-tip explants of A. conyzoides were utilized for in vitro
culture protocol on MS medium having different 2, 4-D,
and NAA levels [93]. The leaf explants exhibited the high-
est (86%) frequency of callus induction when fortified with
NAA (at 2.0 mg/L) and 2, 4-D (2.5 mg/L). The auxiliary
meristem (67% of explants) produced shoots (2.70 + 1.05
shoots per explants) when placed on MS medium containing
1.0 mg/L BAP and 0.5 mg/L NAA. Rooting of explants was
accomplished with NAA (2.5 mg/L) and indole-3-butyric
acid (IBA at 3.0 mg/L). About 86% of nodal explants pro-
duced shoots when placed on MS medium containing NAA
(1.0 mg/L) and BAP (1.5 mg/L) with 2.16 +0.75 shoots per
explants. Similarly, MS medium having IBA (3.0 mg/L)
and NAA (2.5 mg/L) were used in rooting of explants and
this led to 86% response with 6.5+ 1.04 roots per explants.
These were then shifted to small cups filled with sand, ver-
miculite, and soil (1:1:1 combination) for hardening and
later transferred to soil successfully for acclimatization.
Additionally, endophytes are a promising source of biologi-
cally active compounds having potential applications in the
medical, agricultural, and industrial sectors [94]. Endophytic
microbes form a symbiotic association with their plant part-
ners. They help plants to absorb nutrients efficiently and also
provide protection against biotic and abiotic stresses. There
are some reports indicating the presence of endophytes on
A. conyzoides plants with several endophytic bacteria [94,
95] and fungi [96] that exhibit plant growth-promoting
(PGPR) [94] as well as pharmacological activities [95, 97]
by producing some important secondary metabolites (e.g.,
xanthorrhizol, orsellinic acid, p-hydroxybenzoic acid, scal-
arolide, 2-amino-3-quinoline carbonitrile and boric acid and
stigmasterol). Overall, tissue-culture protocols can facilitate
mass propagation and in vitro germplasm conservation of A.
conyzoides as well as secondary metabolite production for
various utilities [93].

Role of Advanced Molecular Technologies
for Better Utility of A. conyzoides

In the last few decades, PCR-based tools and other advanced
molecular technologies have been effectively used to fore-
cast disease epidemiology as well as for the early detection
and characterization of various disease-causing pathogens at
different stages of crop development. Begomoviruses have
become devastating pathogens for diverse crops due to inten-
sive farming and transportation of plant material globally,
as well as recombination and pseudo-recombination (reas-
sortment of genetic materials) of viruses [98]. Several bego-
moviruses, namely ageratum yellow vein virus (AYVV),
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ageratum enation virus, tomato yellow leaf curl Tanzania
virus, etc., reside naturally on A. conyzoides [99, 100]. The
viral proteins collectively capture the host cellular processes
hampering/stifling the plant defense cascade. This leads to
disease development by inducing programmed cell death
and altering host metabolite biosynthesis with leaf enation,
crumpling, yellowing, and stunting symptoms in plants [101,
102]. Additionally in opium poppy (Papaver somniferum
L.), leaf curling with vein thickening was reported through
ageratum leaf curl betasatellite and ageratum enation virus.
The qRT-PCR analysis from the infected poppy samples
suggested significant gene expression variations in the alka-
loid pathway. As a result, the content of several key alkaloids
such as codeine, morphine, papaverine, etc., was decreased,
while the noscapine level was enhanced in the infected
plants. Overall, such metabolite variations might lower the
market worth of the poppy and other plants [101]. Conse-
quently, begomoviruses infecting crops and other non-crop
species can be detected efficiently by circomics (based on
rolling circle amplification (RCA), RFLP, and pyro-sequenc-
ing combination) [103]. Circomics is a proficient and eco-
nomic technique to detect geminiviral genomic components
including their satellites without any a priori knowledge of
their nucleotide sequences [104]. The genomic DNA and tar-
get gene sequences from the virus can be utilized effectively
for developing virus-resistant crop varieties. Pathogens alter
the host plant’s defense mechanism and release cell wall
degrading enzymes leading to successful disease develop-
ment [105]. Some viruses also reported hijacking host RNA
interference (RNAi) defense pathway that helps to increase
their virulence while suppressing and silencing the host
genes [106]. Additionally, whitefly (Bemisia tabaci Genn.) is
a carrier of these begomoviruses that can affect diverse plant
species such as crops, weeds, medicinal and aromatic plants
[107, 108]. Globally, the whitefly is a serious threat to many
important plants due to the high invasiveness of the pest
[109, 110]. This pest damages plants in multiple manners,
such as (1) by direct infection, (2) by honeydew secretion
to attract fungi on the infected sites, and (3) via begomovi-
ruses [111, 112]. Begomoviruses are infecting various plants
worldwide due to increased levels of biotypes B and Q of B.
tabaci [110, 111]. In addition to this, the Q biotype is highly
defiant to most insecticides (e.g., pyriproxyfen and neonico-
tinoid), thus making it difficult to globally manage B. tabaci
and begomoviruses [113]. For example, normal tomatoes
can have begomoviruses (AY VV) natural transmission from
the infected A. conyzoides via whitefly (B. tabaci B biotype)
on the Ishigaki Island [114] resulting in severe yellowing
and curling of tomato leaves (Fig. 3A). As a protection strat-
egy through the utilization of viral genome sequences, A.
conyzoides can be engineered with antimicrobial peptides
or compounds [115] to directly suppress the virus infec-
tion (Fig. 3B). Alternatively, the vector- whitefly can also
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White fly
carrying the
begomovirus

Begomovirus infecting
other crop plants

A. conyzoides plant infected
by the begomovirus

Engincered A. conyzoides plant

: = Crop plant free from
resistant to begomovirus

begomovirus

Engincered white
fly, unable to
carry viruses

Engineered crop plant
resistant to begomovirus

A. conyzoides infected
by the begomovirus

Fig.3 Transmission of begomovirus from A. conyzoides to other crop
plants and potential ways to reduce such infection. A Begomovirus
gets transmitted through whitefly from host to other crops, B engi-
neered A. conyzoides plant is resistant to begomovirus infection and
thereby begomovirus transmission is blocked, C engineered crop
plant with resistance against begomovirus or engineered whitefly
with inability to carry pathogen (virus-free) can offer valuable protec-
tion to nearby plants and thus, can minimize the damage from bego-
movirus

be targeted by advanced genetic engineering tools to make
them incapable of carrying these pathogens, and thereby,
damage to other crops and surrounding plants can be mini-
mized (Fig. 3C). Further by targeting viral RNA for degra-
dation, the engineered host plant can have strong immunity
[116]. In the last few years, the CRISPR/Cas9 (clustered
regularly interspaced short palindromic repeats /CRISPR-
associated 9) genome editing approach has demonstrated a
potential to develop virus-resistant plants [117]. CRISPR/
Cas9 can offer an antiviral defense strategy, wherein an
RNA-directed nuclease (frequently a Cas protein) slices a
viral DNA or RNA at specific target sites complementary
to CRISPR RNA, leading to their degradation [118]. Thus,
based on modern molecular technologies and targeted gene
manipulation via genome editing tools can facilitate future
development of broad-spectrum resistance.

To develop proper weed management schemes molecular
studies would be essential that can greatly help to explore the
interplay of genotype-phenotype. Techniques of restriction
fragment length polymorphisms (RFLPs), random amplified
polymorphic DNA (RAPD), inter simple sequence repeats
(ISSRs), and microsatellites have been applied for weed
genomics exploration, which may facilitate the selection

of proper biocontrol agents [119]. Additionally, Rowe et al.
[120] determined higher genetic variation among popula-
tions of Euphorbia esula L. from North America through the
genetic diversity assessment using RFLP and RAPD. Simi-
larly, various molecular markers are successfully utilized to
understand genetic diversity levels among and within weed
species from different geographical regions. However, there
is a dearth of such studies on A. conyzoides till now. With
RAPD and ISSR markers, Dieu and Ni [121] have evaluated
the genetic diversity of 14 different A. conyzoides acces-
sions from different places of the Mekong Delta in Vietnam.
Eleven primers (3 RAPD and 8 ISSR) amplified a total of
92 fragments (30- RAPD and 62- ISSR). The percentage
of polymorphism and polymorphic bands per primer were
59.78% and 6.11 +2.72, respectively, indicating a greater
genetic diversity among A. conyzoides plants from different
locations. UPGMA dendrogram separated all the accessions
into three discrete groups. Thus, a high degree of genetic
diversity might indicate that A. conyzoides plants are well
adapted to environmental changes [121]; however, more
such studies would be necessary to make any meaningful
outcome.

Herbicides and pesticides have long been used in crop
fields to manage weeds and increase agricultural produc-
tion [122]. Agricultural intensification and higher production
requirements have lead to inefficient utilization of these her-
bicides and pesticides. Subsequently over time, the majority
of the weed species become resistant to these chemicals.
Detection of point mutations leading to target-site resist-
ance has provided the potential molecular mechanism(s)
for herbicide resistance. Lately, next-generation sequencing
(NGS) methods are applied for whole-genome sequencing of
mitochondria as well as chloroplast from A. conyzoides [123,
124]. Additionally, genes governing complex non-target-site
resistance for herbicide metabolism and translocation have
been detected using NGS [14]. The knowledge from weed
genomes will facilitate creating solutions for tackling spe-
cific weeds. Epigenetic changes, gene copy number varia-
tion, and resulting altered gene expression are potential rea-
sons for herbicide tolerance in many weed plants [125, 126].
Bioinformatics, genetic and genomic studies are essential
to understand weed adaptation mechanisms under chang-
ing environmental and management conditions. Global food
security is facing major trouble due to the yield reduction in
several crops although major advancements are being made
in breeding, genetics, and other technologies [127]. The
major reason behind reduced crop yield is the loss of genetic
diversity (genetic erosion) due to the selection of uniform
crop varieties with specific traits for a particular environ-
ment as they adapt to local conditions [128]. Wild relatives
and agricultural weed of crops can provide better resources
of genetic diversity that can be utilized for crop improvement
[127]. Many weed plants have a strong tolerance against
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different abiotic stresses [129]. Identification of such tar-
get gene(s) from weeds may offer ways to improve abiotic
stress tolerance in crops [130]. These genes can be incorpo-
rated into new crop varieties utilizing transgenic approaches
and multi-omics techniques [14]. Overall, such new lines/
cultivars, thus developed will have improved yield, biomass
generation and durable resilience against various biotic and
abiotic stresses associated with changing climate and envi-
ronments [130].

Conclusion

Although considered invasive, A. conyzoides L. is globally
utilized in traditional medicine to treat different ailments and
diseases. This is due to the presence of diverse pharmaco-
logical properties. However, the mechanistic basis of such
activities from this plant has not yet been properly evalu-
ated through various molecular technologies. Also, there is
very scanty information on specific adverse side effects of
ACE and thus, calls for such independent research efforts
for better utilization of this herbal formulation in biop-
harma. Additionally, it is very rich in sterols, flavonoids,
saponins, chromenes, pyrrolizidine, alkaloids, coumarin,
pyrrolone, terpenoids, and lignin. As their biosynthetic
pathways with gene regulatory components are not prop-
erly deciphered till now, future research exploration in such
a direction would be widely useful. Besides, in silico analy-
sis/ computational simulations such as molecular docking,
and in vitro/ in vivo studies of such compounds may aid to
develop various potential drugs against important human
diseases. Further, secondary metabolites of A. conyzoides
have exhibited greater potential against various pathogens
and thus, these could be further investigated to generate
environment-friendly biopesticide for green agriculture and
a safe environment. Similarly, tissue-culture-based proto-
cols may be utilized in mass propagation and for the gen-
eration of important specialized metabolites with modern
genomics and multi-omics tools. Moreover, A. conyzoides
can facilitate the removal of excess nitrogen, phosphorus,
and heavy metals from waste or polluted sites. This could
be explored further using the nanotechnology-based green
synthesis of nanoparticles from plant material that may have
various applications not only in agriculture to improve seed
germination, growth, and protection of plants to abiotic and
biotic stress but also in the removal of heavy metals from
polluted areas for a clean environment. The plant is a natural
reservoir host of several begomoviruses that transmit the
disease to adjacent crop plants. Using advanced molecular
technologies, the enhanced knowledge regarding the trans-
fer of the virus from the host to other plants and disease

establishment may facilitate the improved defense in crop
plants while safeguarding the environment.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12033-021-00409-5.
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