Skip to main content
Log in

Epithelial to mesenchymal transition (EMT) in metaplastic breast cancer and phyllodes breast tumors

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Epithelial–mesenchymal transition (EMT), a transdifferentiation program whereby epithelial cells acquire mesenchymal phenotype, is essential during embryonic development. EMT has also been implicated in cancer progression by conferring migratory and metastatic potential, as well as cell plasticity and stem cell like traits, to cancer cells. Metaplastic breast carcinoma (MBC) is a rare aggressive type of breast cancer characterized by the presence of heterologous elements, typically by the existence of epithelial and mesenchymal components. Phyllodes tumors (PTs) are uncommon fibroepithelial neoplasms consisting of epithelial and mesenchymal elements. Although various hypotheses have been proposed on the pathogenesis of these biphasic tumors, there is growing evidence supporting the theory that PTs and MBC could both correlate with cancer related EMT. This review summarizes the existing literature on the emerging role of EMT in the pathogenesis of MBC and PTs. Both malignant PTs and MBC are characterized by poor prognosis. Therefore, several anti-EMT targeting strategies such as blocking upstream signaling pathways, targeting the molecular drivers of EMT and targeting mesenchymal cells and the extracellular matrix, could potentially represent a promising therapeutic approach for patients suffering from these aggressive neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nieto MA. Are you interested or afraid of working on EMT? Methods Mol Biol. 2021;2179:19–28. https://doi.org/10.1007/978-1-0716-0779-4_4.

    Article  CAS  PubMed  Google Scholar 

  2. Chui MH. Insights into cancer metastasis from a clinicopathologic perspective: epithelial-mesenchymal transition is not a necessary step. Int J Cancer. 2013;132(7):1487–95. https://doi.org/10.1002/ijc.27745.

    Article  CAS  PubMed  Google Scholar 

  3. Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol. 2009;174(5):1588–93. https://doi.org/10.2353/ajpath.2009.080545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, de GarcíaHerreros A, Goodall GJ, Hadjantonakis AK, Huang RYJ, Kalcheim C, Kalluri R, Kang Y, Khew-Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, Massagué J, Mayor R, McClay D, Mostov KE, Newgreen DF, Nieto MA, Puisieux A, Runyan R, Savagner P, Stanger B, Stemmler MP, Takahashi Y, Takeichi M, Theveneau E, Thiery JP, Thompson EW, Weinberg RA, Williams ED, Xing J, Zhou BP, Sheng G, EMT International Association (TEMTIA). Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21(6):341–52. https://doi.org/10.1038/s41580-020-0237-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stewart CJ, McCluggage WG. Epithelial-mesenchymal transition in carcinomas of the female genital tract. Histopathology. 2013;62(1):31–43. https://doi.org/10.1111/his.12057.

    Article  PubMed  Google Scholar 

  6. Pang A, Carbini M, Moreira AL, Maki RG. Carcinosarcomas and related cancers: tumors caught in the act of epithelial-mesenchymal transition. J Clin Oncol. 2018;36(2):210–6. https://doi.org/10.1200/JCO.2017.74.9523.

    Article  CAS  Google Scholar 

  7. González-Martínez S, Pérez-Mies B, Pizarro D, Caniego-Casas T, Cortés J, Palacios J. Epithelial mesenchymal transition and immune response in metaplastic breast carcinoma. Int J Mol Sci. 2021;22(14):7398. https://doi.org/10.3390/ijms22147398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT factors and metabolic pathways in cancer. Front Oncol. 2020;10:499. https://doi.org/10.3389/fonc.2020.00499.

    Article  PubMed Central  Google Scholar 

  9. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429–37. https://doi.org/10.1172/JCI36183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Derynck R, Weinberg RA. EMT and cancer: more than meets the eye. Dev Cell. 2019;49(3):313–6. https://doi.org/10.1016/j.devcel.2019.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sannino G, Marchetto A, Kirchner T, Grünewald TGP. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in mesenchymal tumors: a paradox in sarcomas? Cancer Res. 2017;77(17):4556–61. https://doi.org/10.1158/0008-5472.CAN-17-0032.

    Article  CAS  PubMed  Google Scholar 

  12. Kahlert UD, Joseph JV, Kruyt FAE. EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol. 2017;11(7):860–77. https://doi.org/10.1002/1878-0261.12085.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pezzicoli G, Moscaritolo F, Silvestris E, Silvestris F, Cormio G, Porta C, D’Oronzo S. Uterine carcinosarcoma: an overview. Crit Rev Oncol Hematol. 2021;163: 103369. https://doi.org/10.1016/j.critrevonc.2021.103369.

    Article  PubMed  Google Scholar 

  14. Reddy TP, Rosato RR, Li X, Moulder S, Piwnica-Worms H, Chang JC. A comprehensive overview of metaplastic breast cancer: clinical features and molecular aberrations. Breast Cancer Res. 2020;22(1):121. https://doi.org/10.1186/s13058-020-01353-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. González-Martínez S, Pérez-Mies B, Carretero-Barrio I, Palacios-Berraquero ML, Perez-García J, Cortés J, Palacios J. Molecular features of metaplastic breast carcinoma: an infrequent subtype of triple negative breast carcinoma. Cancers. 2020;12(7):1832. https://doi.org/10.3390/cancers12071832.

    Article  CAS  PubMed Central  Google Scholar 

  16. Ong CT, Campbell BM, Thomas SM, Greenup RA, Plichta JK, Rosenberger LH, Force J, Hall A, Hyslop T, Hwang ES, Fayanju OM. Metaplastic breast cancer treatment and outcomes in 2500 patients: a retrospective analysis of a National Oncology Database. Ann Surg Oncol. 2018;25(8):2249–60. https://doi.org/10.1245/s10434-018-6533-3.

    Article  PubMed  PubMed Central  Google Scholar 

  17. El Zein D, Hughes M, Kumar S, Peng X, Oyasiji T, Jabbour H, Khoury T. Metaplastic carcinoma of the breast is more aggressive than triple-negative breast cancer: a study from a single institution and review of literature. Clin Breast Cancer. 2017;17(5):382–91. https://doi.org/10.1016/j.clbc.2017.04.009.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Al-Hilli Z, Choong G, Keeney MG, Visscher DW, Ingle JN, Goetz MP, Jakub JW. Metaplastic breast cancer has a poor response to neoadjuvant systemic therapy. Breast Cancer Res Treat. 2019;176(3):709–16. https://doi.org/10.1007/s10549-019-05264-2.

    Article  CAS  PubMed Central  Google Scholar 

  19. Zhang Y, Toy KA, Kleer CG. Metaplastic breast carcinomas are enriched in markers of tumor-initiating cells and epithelial to mesenchymal transition. Mod Pathol. 2012;25(2):178–84. https://doi.org/10.1038/modpathol.2011.167.

    Article  CAS  PubMed  Google Scholar 

  20. Zawati I, Jlassi A, Adouni O, Nouira M, Manai M, Rahal K, Driss M, Manai M. Association of ZEB1 and Vimentin with poor prognosis in metaplastic breast cancer. Ann Diagn Pathol. 2022;59: 151954. https://doi.org/10.1016/j.anndiagpath.2022.151954.

    Article  PubMed  Google Scholar 

  21. Min Kim H, Kim SK, Jung WH, Koo JS. Metaplastic carcinoma show different expression pattern of YAP compared to triple-negative breast cancer. Tumour Biol. 2015;36(2):1207–12. https://doi.org/10.1007/s13277-014-2735-x.

    Article  CAS  PubMed  Google Scholar 

  22. Tevatia MS, Mishra P, Baranwal AK, Nichat PB, Shelly D, Awasthi S, Sengupta P. Primary breast tumors with mesenchymal morphology. J Lab Phys. 2021;13(4):362–7. https://doi.org/10.1055/s-0041-1732492.

    Article  CAS  Google Scholar 

  23. Piscuoglio S, Ng CKY, Geyer FC, Burke KA, Cowell CF, Martelotto LG, Natrajan R, Popova T, Maher CA, Lim RS, Bruijn I, Mariani O, Norton L, Vincent-Salomon A, Weigelt B, Reis-Filho JS. Genomic and transcriptomic heterogeneity in metaplastic carcinomas of the breast. NPJ Breast Cancer. 2017;3:48. https://doi.org/10.1038/s41523-017-0048-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gwin K, Buell-Gutbrod R, Tretiakova M, Montag A. Epithelial-to-mesenchymal transition in metaplastic breast carcinomas with chondroid differentiation: expression of the E-cadherin repressor Snail. Appl Immunohistochem Mol Morphol. 2010;18(6):526–31. https://doi.org/10.1097/PAI.0b013e3181e8d54b.

    Article  CAS  PubMed  Google Scholar 

  25. Asaduzzaman M, Constantinou S, Min H, Gallon J, Lin ML, Singh P, Raguz S, Ali S, Shousha S, Coombes RC, Lam EW, Hu Y, Yagüe E. Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer. Breast Cancer Res Treat. 2017;163(3):461–74. https://doi.org/10.1007/s10549-017-4202-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou S, Sun X, Yu L, Zhou R, Li A, Li M, Yang W. Differential expression and clinical significance of epithelial-mesenchymal transition markers among different histological types of triple-negative breast cancer. J Cancer. 2018;9(3):604–13. https://doi.org/10.7150/jca.19190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jang MH, Kim HJ, Kim EJ, Chung YR, Park SY. Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome. Hum Pathol. 2015;46(9):1267–74. https://doi.org/10.1016/j.humpath.2015.05.010.

    Article  CAS  PubMed  Google Scholar 

  28. McCart Reed AE, Kalaw E, Nones K, Bettington M, Lim M, Bennett J, Johnstone K, Kutasovic JR, Saunus JM, Kazakoff S, Xu Q, Wood S, Holmes O, Leonard C, Reid LE, Black D, Niland C, Ferguson K, Gresshoff I, Raghavendra A, Harvey K, Cooper C, Liu C, Kalinowski L, Reid AS, Davidson M, Pearson JV, Pathmanathan N, Tse G, Papadimos D, Pathmanathan R, Harris G, Yamaguchi R, Tan PH, Fox SB, O’Toole SA, Simpson PT, Waddell N, Lakhani SR. Phenotypic and molecular dissection of metaplastic breast cancer and the prognostic implications. J Pathol. 2019;247(2):214–27. https://doi.org/10.1002/path.5184.

    Article  CAS  PubMed  Google Scholar 

  29. Lien HC, Hsiao YH, Lin YS, Yao YT, Juan HF, Kuo WH, Hung MC, Chang KJ, Hsieh FJ. Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial-mesenchymal transition. Oncogene. 2007;26(57):7859–71. https://doi.org/10.1038/sj.onc.1210593.

    Article  CAS  Google Scholar 

  30. Coussy F, El Botty R, Lavigne M, Gu C, Fuhrmann L, Briaux A, de Koning L, Dahmani A, Montaudon E, Morisset L, Huguet L, Sourd L, Painsec P, Chateau-Joubert S, Larcher T, Vacher S, Melaabi S, Salomon AV, Marangoni E, Bieche I. Combination of PI3K and MEK inhibitors yields durable remission in PDX models of PIK3CA-mutated metaplastic breast cancers. J Hematol Oncol. 2020;13(1):13. https://doi.org/10.1186/s13045-020-0846-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, Hollier BG, Ram PT, Lander ES, Rosen JM, Weinberg RA, Mani SA. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 2010;107(35):15449–54. https://doi.org/10.1073/pnas.1004900107.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chouliaras K, Oshi M, Asaoka M, Tokumaru Y, Khoury T, Endo I, Ishikawa T, Takabe K. Increased intratumor heterogeneity, angiogenesis and epithelial to mesenchymal transition pathways in metaplastic breast cancer. Am J Cancer Res. 2021;11(9):4408–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Djomehri SI, Gonzalez ME, da Veiga LF, Tekula SR, Chang HY, White MJ, Cimino-Mathews A, Burman B, Basrur V, Argani P, Nesvizhskii AI, Kleer CG. Quantitative proteomic landscape of metaplastic breast carcinoma pathological subtypes and their relationship to triple-negative tumors. Nat Commun. 2020;11(1):1723. https://doi.org/10.1038/s41467-020-15283-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moukarzel LA, Ferrando L, Da Cruz PA, Brown DN, Geyer FC, Pareja F, Piscuoglio S, Papanastasiou AD, Fusco N, Marchiò C, Abu-Rustum NR, Murali R, Brogi E, Wen HY, Norton L, Soslow RA, Vincent-Salomon A, Reis-Filho JS, Weigelt B. The genetic landscape of metaplastic breast cancers and uterine carcinosarcomas. Mol Oncol. 2021;15(4):1024–39. https://doi.org/10.1002/1878-0261.12813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601. https://doi.org/10.1038/ncb1722.

    Article  CAS  PubMed  Google Scholar 

  36. Voutilainen S, Heikkilä P, Sampo M, Nevanlinna H, Blomqvist C, Mattson J. Expression of markers of stem cell characteristics, epithelial-mesenchymal transition, basal-like phenotype, proliferation, and androgen receptor in metaplastic breast cancer and their prognostic impact. Acta Oncol. 2021;60(9):1233–9. https://doi.org/10.1080/0284186X.2021.1950927.

    Article  CAS  PubMed  Google Scholar 

  37. Oon ML, Thike AA, Tan SY, Tan PH. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat. 2015;150(1):31–41. https://doi.org/10.1007/s10549-015-3299-1.

    Article  CAS  PubMed  Google Scholar 

  38. Chang TC, Matossian MD, Elliott S, Burks HE, Sabol RA, Ucar DA, Wathieu H, Zabaleta J, Del Valle L, Gill S, Martin E, Riker AI, Miele L, Bunnell BA, Burow ME, Collins-Burow BM. Evaluation of deacetylase inhibition in metaplastic breast carcinoma using multiple derivations of preclinical models of a new patient-derived tumor. PLoS ONE. 2020;15(10): e0226464. https://doi.org/10.1371/journal.pone.0226464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang X, Kandil D, Cosar EF, Khan A. Fibroepithelial tumors of the breast: pathologic and immunohistochemical features and molecular mechanisms. Arch Pathol Lab Med. 2014;138(1):25–36. https://doi.org/10.5858/arpa.2012-0443-RA.

    Article  PubMed  Google Scholar 

  40. Krings G, Bean GR, Chen YY. Fibroepithelial lesions; The WHO spectrum. Semin Diagn Pathol. 2017;34(5):438–52. https://doi.org/10.1053/j.semdp.2017.05.006.

    Article  PubMed  Google Scholar 

  41. Toussaint A, Piaget-Rossel R, Stormacq C, Mathevet P, Lepigeon K, Taffé P. Width of margins in phyllodes tumors of the breast: the controversy drags on? A systematic review and meta-analysis. Breast Cancer Res Treat. 2021;185(1):21–37. https://doi.org/10.1007/s10549-020-05924-8.

    Article  PubMed  Google Scholar 

  42. Kokkali S, Stravodimou A, Duran-Moreno J, Koufopoulos N, Voutsadakis IA, Digklia A. Chemotherapy and targeted treatments of breast sarcoma by histologic subtype. Expert Rev Anticancer Ther. 2021;21(6):591–604. https://doi.org/10.1080/14737140.2021.1880327.

    Article  CAS  PubMed  Google Scholar 

  43. Kwon JE, Jung WH, Koo JS. Molecules involved in epithelial-mesenchymal transition and epithelial-stromal interaction in phyllodes tumors: implications for histologic grade and prognosis. Tumour Biol. 2012;33(3):787–98. https://doi.org/10.1007/s13277-011-0296-9.

    Article  PubMed  Google Scholar 

  44. Karim RZ, Scolyer RA, Tse GM, Tan PH, Putti TC, Lee CS. Pathogenic mechanisms in the initiation and progression of mammary phyllodes tumours. Pathology. 2009;41(2):105–17. https://doi.org/10.1080/00313020802579342.

    Article  CAS  PubMed  Google Scholar 

  45. Sawyer EJ, Hanby AM, Poulsom R, Jeffery R, Gillett CE, Ellis IO, Ellis P, Tomlinson IP. Beta-catenin abnormalities and associated insulin-like growth factor overexpression are important in phyllodes tumours and fibroadenomas of the breast. J Pathol. 2003;200(5):627–32. https://doi.org/10.1002/path.1391.

    Article  CAS  PubMed  Google Scholar 

  46. Sawyer EJ, Hanby AM, Rowan AJ, Gillett CE, Thomas RE, Poulsom R, Lakhani SR, Ellis IO, Ellis P, Tomlinson IP. The Wnt pathway, epithelial-stromal interactions, and malignant progression in phyllodes tumours. J Pathol. 2002;196(4):437–44. https://doi.org/10.1002/path.1067.

    Article  CAS  PubMed  Google Scholar 

  47. Kim JH, Choi YD, Lee JS, Lee JH, Nam JH, Choi C, Park MH, Yoon JH. Borderline and malignant phyllodes tumors display similar promoter methylation profiles. Virchows Arch. 2009;455(6):469–75. https://doi.org/10.1007/s00428-009-0858-z.

    Article  CAS  PubMed  Google Scholar 

  48. Huang KT, Dobrovic A, Yan M, Karim RZ, Lee CS, Lakhani SR, Fox SB. DNA methylation profiling of phyllodes and fibroadenoma tumours of the breast. Breast Cancer Res Treat. 2010;124(2):555–65. https://doi.org/10.1007/s10549-010-0970-4.

    Article  CAS  PubMed  Google Scholar 

  49. Do SI, Kim JY, Kang SY, Lee JJ, Lee JE, Nam SJ, Cho EY. Expression of TWIST1, Snail, Slug, and NF-κB and methylation of the TWIST1 promoter in mammary phyllodes tumor. Tumour Biol. 2013;34(1):445–53. https://doi.org/10.1007/s13277-012-0569-y.

    Article  CAS  PubMed  Google Scholar 

  50. Feng X, Zhao L, Shen H, Liu X, Yang Y, Lv S, Niu Y. Expression of EMT markers and mode of surgery are prognostic in phyllodes tumors of the breast. Oncotarget. 2017;8(20):33365–74. https://doi.org/10.18632/oncotarget.16497.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lim JC, Koh VC, Tan JS, Tan WJ, Thike AA, Tan PH. Prognostic significance of epithelial-mesenchymal transition proteins Twist and Foxc2 in phyllodes tumours of the breast. Breast Cancer Res Treat. 2015;150(1):19–29. https://doi.org/10.1007/s10549-015-3296-4.

    Article  CAS  PubMed  Google Scholar 

  52. Akrida I, Nikou S, Gyftopoulos K, Argentou M, Kounelis S, Zolota V, Bravou V, Papadaki H. Expression of EMT inducers integrin-linked kinase (ILK) and ZEB1 in phyllodes breast tumors is associated with aggressive phenotype. Histol Histopathol. 2018;33(9):937–49. https://doi.org/10.14670/HH-11-987.

    Article  CAS  PubMed  Google Scholar 

  53. Karim RZ, Gerega SK, Yang YH, Horvath L, Spillane A, Carmalt H, Scolyer RA, Lee CS. Proteins from the Wnt pathway are involved in the pathogenesis and progression of mammary phyllodes tumours. J Clin Pathol. 2009;62(11):1016–20. https://doi.org/10.1136/jcp.2009.066977.

    Article  CAS  PubMed  Google Scholar 

  54. Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J. 2012;31(12):2714–36. https://doi.org/10.1038/emboj.2012.150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Basu S, Cheriyamundath S, Ben-Ze'ev A. Cell-cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res. 2018; 7:F1000 Faculty Rev-1488. https://doi.org/10.12688/f1000research.15782.1.

  56. Ahmed SS, Lim JCT, Thike AA, Iqbal J, Tan PH. Epithelial-mesenchymal transition and cancer stem cell interactions in breast phyllodes tumours: immunohistochemical evaluation of EZH2, EZR, HMGA2, CD24 and CD44 in correlation with outcome analysis. J Clin Pathol. 2022;75(5):316–23. https://doi.org/10.1136/jclinpath-2020-207068.

    Article  CAS  PubMed  Google Scholar 

  57. Song Y, Ma X, Zhang M, Wang M, Wang G, Ye Y, Xia W. Ezrin mediates invasion and metastasis in tumorigenesis: a review. Front Cell Dev Biol. 2020;8: 588801. https://doi.org/10.3389/fcell.2020.588801.

    Article  PubMed Central  Google Scholar 

  58. Kumar A, Nayakanti DS, Mangalaparthi KK, Gopinath V, Reddy NVN, Govindan K, Voolapalli G, Kumar P, Kumar LD. Quantitative proteome profiling stratifies fibroepithelial lesions of the breast. Oncotarget. 2021;12(5):507–18. https://doi.org/10.18632/oncotarget.27889.

    Article  PubMed Central  Google Scholar 

  59. Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs the unknown and perspectives. Cell Mol Life Sci. 2022;79(2):100. https://doi.org/10.1007/s00018-021-04104-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoshida M, Sekine S, Ogawa R, Yoshida H, Maeshima A, Kanai Y, Kinoshita T, Ochiai A. Frequent MED12 mutations in phyllodes tumours of the breast. Br J Cancer. 2015;112(10):1703–8. https://doi.org/10.1038/bjc.2015.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nagasawa S, Maeda I, Fukuda T, Wu W, Hayami R, Kojima Y, Tsugawa K, Ohta T. MED12 exon 2 mutations in phyllodes tumors of the breast. Cancer Med. 2015;4(7):1117–21. https://doi.org/10.1002/cam4.462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoon N, Bae GE, Kang SY, Choi MS, Hwang HW, Kim SW, Lee JE, Nam SJ, Gong G, Lee HJ, Bae YK, Lee A, Cho EY. Frequency of MED12 mutations in phyllodes tumors: inverse correlation with histologic grade. Genes Chromosomes Cancer. 2016;55(6):495–504. https://doi.org/10.1002/gcc.22351.

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Dios DA, Levi D, Shah V, Gillett C, Simpson MA, Hanby A, Tomlinson I, Sawyer EJ. MED12, TERT promoter and RBM15 mutations in primary and recurrent phyllodes tumours. Br J Cancer. 2018;118(2):277–84. https://doi.org/10.1038/bjc.2017.450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ng CCY, Md Nasir ND, Loke BN, Tay TKY, Thike AA, Rajasegaran V, Liu W, Lee JY, Guan P, Lim AH, Chang KTE, Gudi MA, Madhukumar P, Tan BKT, Tan VKM, Wong CY, Yong WS, Ho GH, Ong KW, International Fibroepithelial Consortium, Yip GWC, Bay BH, Tan P, Teh BT, Tan PH. Genetic differences between benign phyllodes tumors and fibroadenomas revealed through targeted next generation sequencing. Mod Pathol. 2021;34(7):1320–32. https://doi.org/10.1038/s41379-021-00787-w.

    Article  CAS  PubMed  Google Scholar 

  65. Lien HC, Huang CS, Yang YW, Jeng YM. Mutational analysis of MED12 exon 2 in a spectrum of fibroepithelial tumours of the breast: implications for pathogenesis and histogenesis. Histopathology. 2016;68(3):433–41. https://doi.org/10.1111/his.12764.

    Article  PubMed  Google Scholar 

  66. Hu Y, Li G, Wang L, Zhang L, Guan J, Wang J. MED12 exon 2 and TERT promoter mutations in primary and recurrent breast fibroepithelial lesions. Pathol Int. 2021;71(12):814–22. https://doi.org/10.1111/pin.13172.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang S, O’Regan R, Xu W. The emerging role of mediator complex subunit 12 in tumorigenesis and response to chemotherapeutics. Cancer. 2020;126(5):939–48. https://doi.org/10.1002/cncr.32672.9.

    Article  CAS  Google Scholar 

  68. Huang S, Hölzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U, Garnett M, Grernrum W, Sun C, Prahallad A, Groenendijk FH, Mittempergher L, Nijkamp W, Neefjes J, Salazar R, Ten Dijke P, Uramoto H, Tanaka F, Beijersbergen RL, Wessels LF, Bernards R. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell. 2012;151(5):937–50. https://doi.org/10.1016/j.cell.2012.10.035.

    Article  CAS  PubMed Central  Google Scholar 

  69. Gao H, Bai P, Xiao L, Shen M, Yu Q, Lei Y, Huang W, Lin X, Zheng X, Wei T, Jiang Y, Ye F, Bu H. Mediator complex subunit 16 is down-regulated in papillary thyroid cancer, leading to increased transforming growth factor-β signaling and radioiodine resistance. J Biol Chem. 2020;295(31):10726–40. https://doi.org/10.1074/jbc.RA119.012404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu Z, Li Q, Li K, Chen L, Li W, Hou M, Liu T, Yang J, Lindvall C, Björkholm M, Jia J, Xu D. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene. 2013;32(36):4203–13. https://doi.org/10.1038/onc.2012.441.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao T, Hu F, Qiao B, Chen Z, Tao Q. Telomerase reverse transcriptase potentially promotes the progression of oral squamous cell carcinoma through induction of epithelial-mesenchymal transition. Int J Oncol. 2015;46(5):2205–15. https://doi.org/10.3892/ijo.2015.2927.

    Article  CAS  PubMed  Google Scholar 

  72. Wu Y, Bian C, Zhen C, Liu L, Lin Z, Nisar MF, Wang M, Bartsch JW, Huang E, Ji P, Yang L, Yu Y, Yang J, Jiang X, Zhong JL. Telomerase reverse transcriptase mediates EMT through NF-κB signaling in tongue squamous cell carcinoma. Oncotarget. 2017;8(49):85492–503. https://doi.org/10.18632/oncotarget.20888.

    Article  PubMed  PubMed Central  Google Scholar 

  73. El-Badawy A, Ghoneim NI, Nasr MA, Elkhenany H, Ahmed TA, Ahmed SM, El-Badri N. Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biol Open. 2018;7(7): 034181. https://doi.org/10.1242/bio.034181.

    Article  CAS  Google Scholar 

  74. Kusoglu A, Goker Bagca B, Ozates Ay NP, Gunduz C, Biray AC. Telomerase inhibition regulates EMT mechanism in breast cancer stem cells. Gene. 2020;759: 145001. https://doi.org/10.1016/j.gene.2020.145001.

    Article  CAS  PubMed  Google Scholar 

  75. Yu L, Liu S, Guo W, Zhang C, Zhang B, Yan H, Wu Z. hTERT promoter activity identifies osteosarcoma cells with increased EMT characteristics. Oncol Lett. 2014;7(1):239–44. https://doi.org/10.3892/ol.2013.1692.

    Article  CAS  PubMed  Google Scholar 

  76. Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol. 2015;5:155. https://doi.org/10.3389/fonc.2015.00155.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lüönd F, Sugiyama N, Bill R, Bornes L, Hager C, Tang F, Santacroce N, Beisel C, Ivanek R, Bürglin T, Tiede S, van Rheenen J, Christofori G. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev Cell. 2021;56(23):3203–21. https://doi.org/10.1016/j.devcel.2021.11.006.

    Article  CAS  PubMed  Google Scholar 

  78. Yamashita N, Tokunaga E, Iimori M, Inoue Y, Tanaka K, Kitao H, Saeki H, Oki E, Maehara Y. Epithelial paradox: clinical significance of coexpression of E-cadherin and vimentin with regard to invasion and metastasis of breast cancer. Clin Breast Cancer. 2018;18(5):e1003–9. https://doi.org/10.1016/j.clbc.2018.02.002.

    Article  CAS  PubMed  Google Scholar 

  79. Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V, Agelaki S. Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol Cancer Ther. 2019;18(2):437–47. https://doi.org/10.1158/1535-7163.MCT-18-0584.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioanna Akrida.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akrida, I., Mulita, F., Plachouri, KM. et al. Epithelial to mesenchymal transition (EMT) in metaplastic breast cancer and phyllodes breast tumors. Med Oncol 41, 20 (2024). https://doi.org/10.1007/s12032-023-02259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02259-4

Keywords

Navigation