Skip to main content

Advertisement

Log in

Emerging treatment approaches for triple-negative breast cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Approximately, 15% of global breast cancer cases are diagnosed as triple-negative breast cancer (TNBC), identified as the most aggressive subtype due to the simultaneous absence of estrogen receptor, progesterone receptor, and HER2. This characteristic renders TNBC highly aggressive and challenging to treat, as it excludes the use of effective drugs such as hormone therapy and anti-HER2 agents. In this review, we explore standard therapies and recent emerging approaches for TNBC, including PARP inhibitors, immune checkpoint inhibitors, PI3K/AKT pathway inhibitors, and cytotoxin-conjugated antibodies. The mechanism of action of these drugs and their utilization in clinical practice is explained in a pragmatic and prospective manner, contextualized within the current landscape of standard therapies for this pathology. These advancements present a promising frontier for tailored interventions with the potential to significantly improve outcomes for TNBC patients. Interestingly, while TNBC poses a complex challenge, it also serves as a paradigm and an opportunity for translational research and innovative therapies in the field of oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Neophytou C, Boutsikos P, Papageorgis P. Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis. Front Oncol. 2018;8:31.

    Article  PubMed Central  Google Scholar 

  2. Anders CK, Carey LA. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009;9:S73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borri F, Granaglia A. Pathology of triple negative breast cancer. Semin Cancer Biol. 2021;72:136–45.

    Article  CAS  PubMed  Google Scholar 

  4. Petrucelli N, Daly MB, Pal T, BRCA1-and BRCA2-associated hereditary breast and ovarian cancer. 2022

  5. Vishnubalaji R, Alajez NM. Single-cell transcriptome analysis revealed heterogeneity and identified novel therapeutic targets for breast cancer subtypes. Cells. 2023;12:1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akhouayri L, Ostano P, Mello-Grand M, Gregnanin I, Crivelli F, Laurora S, et al. Identification of a minimum number of genes to predict triple-negative breast cancer subgroups from gene expression profiles. Hum Genomics. 2022;16:1–17.

    Article  Google Scholar 

  7. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE. 2016;11: e0157368.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19:5533–40.

    Article  CAS  Google Scholar 

  9. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21:1688–98.

    Article  CAS  PubMed  Google Scholar 

  10. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121:2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu K-D, Zhu R, Zhan M, Rodriguez AA, Yang W, Wong S, et al. Identification of prognosis-relevant subgroups in patients with chemoresistant triple-negative breast cancer. Clin Cancer Res. 2013;19:2723–33.

    Article  CAS  PubMed Central  Google Scholar 

  12. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:1–18.

    Article  Google Scholar 

  13. Staiger C, Cadot S, Györffy B, Wessels LF, Klau GW. Current composite-feature classification methods do not outperform simple single-genes classifiers in breast cancer prognosis. Front Genet. 2013;4:289.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu Y, Xu Q, Yang L, Ye X, Liu F, Wu F, et al. Identification and validation of a blood-based 18-gene expression signature in colorectal cancer. Clin Cancer Res. 2013;19:3039–49.

    Article  CAS  Google Scholar 

  15. Sabatier R, Diéras V, Pivot X, Brain E, Roche H, Extra J-M, et al. Safety results and analysis of eribulin efficacy according to previous microtubules-inhibitors sensitivity in the French prospective expanded access program for heavily pre-treated metastatic breast cancer. Cancer Res Treat. 2018;50:1226–37.

    Article  PubMed  Google Scholar 

  16. Watanabe G, Chiba N, Nomizu T, Furuta A, Sato K, Miyashita M, et al. Increased centrosome number in BRCA-related breast cancer specimens determined by immunofluorescence analysis. Cancer Sci. 2018;109:2027–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang SY, Kim YS, Kim Z, Kim HY, Kim HJ, Park S, et al. Breast cancer statistics in Korea in 2017: data from a breast cancer registry. J Breast Cancer. 2020;23:115.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion. 2005;5:89–108.

    Article  CAS  PubMed  Google Scholar 

  19. Perkhofer L, Gout J, Roger E, de Almeida FK, Simões CB, Wiesmüller L, Seufferlein T, Kleger A. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut. 2021;70(3):606–17.

    Article  CAS  PubMed  Google Scholar 

  20. Azim HA, Loutfy SA, Azim HA Jr, Kamal NS, Abdel Fattah NF, Elberry MH, Abdelaziz MR, Abdelsalam M, Aziz M, Shohdy KS, Kassem L. The landscape of BRCA mutations among egyptian women with breast cancer. Oncol Ther. 2023;15:1–8.

    Google Scholar 

  21. Pujol P, Barberis M, Beer P, Friedman E, Piulats JM, Capoluongo ED, et al. Clinical practice guidelines for BRCA1 and BRCA2 genetic testing. Eur J Cancer. 2021;146:30–47.

    Article  CAS  PubMed  Google Scholar 

  22. Kwong A, Chen J, Shin VY, Ho JC, Law FB, Au CH, Chan TL, Ma ES, Ford JM. The importance of analysis of long-range rearrangement of BRCA1 and BRCA2 in genetic diagnosis of familial breast cancer. Cancer Genet. 2015;208(9):448–54.

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan MR, Bernstein KA. RAD-ical new insights into RAD51 regulation. Genes (Basel). 2018;9(12):629.

    Article  PubMed  Google Scholar 

  24. Qin Z, Li J, Tam B, Sinha S, Zhao B, Bhaskaran SP, Huang T, Wu X, Chian JS, Guo M, Kou SH, Lei H, Zhang L, Wang X, Lagniton PNP, Xiao F, Jiang X, Wang SM. Ethnic-specificity, evolution origin and deleteriousness of Asian BRCA variation revealed by over 7500 BRCA variants derived from Asian population. Int J Cancer. 2023;152(6):1159–73.

    Article  CAS  PubMed  Google Scholar 

  25. Kwong A, Ho CYS, Shin VY, Au CH, Luk WP, Fung LH, Chan TL, Chan KKL, Ngan HYS, Ma ESK. Germline mutations in Chinese ovarian cancer with or without breast cancer. Mol Genet Genomic Med. 2022;10(7): e1940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caleca L, Radice P. Refinement of the assignment to the ACMG/AMP BS3 and PS3 criteria of eight BRCA1 variants of uncertain significance by integrating available functional data with protein interaction assays. Front Oncol. 2023;13:1146604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cetin B, Wabl CA, Gumusay O. The DNA damaging revolution. Crit Rev Oncol Hematol. 2020;156: 103117.

    Article  PubMed  Google Scholar 

  28. Ford D, Easton D, Stratton M, Narod S, Goldgar D, Devilee P, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet. 1998;62:676–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rummel S, Varner E, Shriver CD, Ellsworth RE. Evaluation of BRCA1 mutations in an unselected patient population with triple-negative breast cancer. Breast Cancer Res Treat. 2013;137:119–25.

    Article  Google Scholar 

  30. Ellsworth DL, Turner CE, Ellsworth RE. A review of the hereditary component of triple negative breast cancer: High-and moderate-penetrance breast cancer genes, low-penetrance loci, and the role of nontraditional genetic elements. J Oncol. 2019;25:78–96.

    Google Scholar 

  31. Melki R, Melloul M, Aissaoui S, El-Harroudi T. Increased prevalence of the founder BRCA1 c. 5309G> T and recurrent BRCA2 c. 1310_1313delAAGA mutations in breast cancer families from Northerstern region of Morocco: evidence of geographical specificity and high relevance for genetic counseling. BMC Cancer. 2023;23:339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdallah N, Purrington KS, Tatineni S, Assad H, Petrucelli N, Simon MS. Racial and ethnic variation in BRCA1 and BRCA2 genetic test results among individuals referred for genetic counseling at a large urban comprehensive cancer center. Cancer Causes Control. 2023;34:141–9.

    Article  PubMed  Google Scholar 

  33. Forbes C, Fayter D, de Kock S, Quek RG. A systematic review of international guidelines and recommendations for the genetic screening, diagnosis, genetic counseling, and treatment of BRCA-mutated breast cancer. Cancer Manage Res. 2019;15:2321–37.

    Article  Google Scholar 

  34. Maqbool M, Bekele F, Fekadu G. Treatment strategies against triple-negative breast cancer: an updated review. Breast Cancer. 2022;15:15–24.

    Google Scholar 

  35. Wang J, Zhao H, Ye L, Li J, Zhang H, Zhang C, et al., Diagnostic and prognostic nomograms for lung metastasis in triple-negative breast cancer. Comput Math Methods Med. 2022

  36. Dieci MV, Del Mastro L, Cinquini M, Montemurro F, Biganzoli L, Cortesi L, et al. Inclusion of platinum agents in neoadjuvant chemotherapy regimens for triple-negative breast cancer patients: development of GRADE (Grades of Recommendation, Assessment, Development and Evaluation) recommendation by the Italian Association of Medical Oncology (AIOM). Cancers. 2019;11:1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Al-Showimi M, Al-Yousef N, Alharbi W, Alkhezayem S, Almalik O, Alhusaini H, et al. MicroRNA-126 expression in the peripheral white blood cells of patients with breast and ovarian cancer is a potential biomarker for the early prediction of cancer risk in the carriers of methylated BRCA1. Oncol Lett. 2022;24:1–9.

    Article  Google Scholar 

  38. Biswas T, Efird JT, Prasad S, Jindal C, Walker PR. The survival benefit of neoadjuvant chemotherapy and pCR among patients with advanced stage triple negative breast cancer. Oncotarget. 2017;8: 112712.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol. 2010;28:375–9.

    Article  CAS  PubMed  Google Scholar 

  40. Torrisi R, Zuradelli M, Agostinetto E, Masci G, Losurdo A, De Sanctis R, et al. Platinum salts in the treatment of BRCA-associated breast cancer: a true targeted chemotherapy? Crit Rev Oncol Hematol. 2019;135:66–75.

    Article  PubMed  Google Scholar 

  41. Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33:13.

    Article  CAS  PubMed  Google Scholar 

  42. Von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15:747–56.

    Article  Google Scholar 

  43. Poggio F, Bruzzone M, Ceppi M, Pondé N, La Valle G, Del Mastro L, et al. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis. Ann Oncol. 2018;29:1497–508.

    Article  CAS  PubMed  Google Scholar 

  44. Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L, Gazinska P, et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med. 2018;24:628–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cardoso F, Paluch-Shimon S, Senkus E, Curigliano G, Aapro M, André F, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol. 2020;31:1623–49.

    Article  CAS  Google Scholar 

  46. Herrmann GK, Yin YW. The role of poly(ADP-ribose) polymerase 1 in nuclear and mitochondrial base excision repair. Biomolecules. 2023;13(8):1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mateo J, Lord C, Serra V, Tutt A, Balmaña J, Castroviejo-Bermejo M, et al. A decade of clinical development of PARP inhibitors in perspective. Ann Oncol. 2019;30:1437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robson M, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–33.

    Article  CAS  PubMed  Google Scholar 

  49. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee K-H, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379:753–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rugo HS, Olopade OI, DeMichele A, Yau C, van Veer LJ, Buxton MB, et al. Adaptive randomization of veliparib–carboplatin treatment in breast cancer. N Engl J Med. 2016;375:23–34.

    Article  CAS  PubMed Central  Google Scholar 

  51. Geyer CE, O'Shaughnessy J, Untch M, Sikov W, Rugo HS, McKee MD, et al. Phase 3 study evaluating efficacy and safety of veliparib (V) plus carboplatin (Cb) or Cb in combination with standard neoadjuvant chemotherapy (NAC) in patients (pts) with early stage triple-negative breast cancer (TNBC). In: American Society of Clinical Oncology; 2017

  52. Litton JK, Scoggins ME, Hess KR, Adrada BE, Murthy RK, Damodaran S, et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J Clin Oncol. 2020;38:388.

    Article  CAS  PubMed  Google Scholar 

  53. Fasching P, Link T, Hauke J, Seither F, Jackisch C, Klare P, et al. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study). Ann Oncol. 2021;32:49–57.

    Article  CAS  PubMed  Google Scholar 

  54. Kalra M, Tong Y, Jones DR, Walsh T, Danso MA, Ma CX, et al. Cisplatin+/− rucaparib after preoperative chemotherapy in patients with triple-negative or BRCA mutated breast cancer. NPJ Breast Cancer. 2021;7:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tutt A, Stephens C, Frewer P, Pierce A, Rhee J, So K, et al. VIOLETTE: A randomized phase II study to assess DNA damage response inhibitors in combination with olaparib (Ola) vs Ola monotherapy in patients (pts) with metastatic, triple-negative breast cancer (TNBC) stratified by alterations in homologous recombination repair (HRR)-related genes. In.: American Society of Clinical Oncology; 2018.

  56. Kirova YM, Loirat D, Berger F, Rodrigues M, Bazire L, Pierga J-Y, et al. Radioparp: A phase I of olaparib with radiation therapy (RT) in patients with inflammatory, locoregionally advanced or metastatic triple-negative breast cancer (TNBC) or patient with operated TNBC with residual disease—Preliminary results. In.: American Society of Clinical Oncology; 2020.

  57. Wang X, Collet L, Rediti M, Debien V, De Caluwé A, Venet D, et al. Predictive biomarkers for response to immunotherapy in triple negative breast cancer: promises and challenges. J Clin Med. 2023;12:953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sadreddini S, Baradaran B, Aghebati-Maleki A, Sadreddini S, Shanehbandi D, Fotouhi A, et al. Immune checkpoint blockade opens a new way to cancer immunotherapy. J Cell Physiol. 2019;234:8541–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory properties of immune checkpoint inhibitors-more than boosting t-cell responses? Cancers (Basel). 2022;14(7):1710.

    Article  CAS  PubMed  Google Scholar 

  60. Kumar S, Singh SK, Srivastava P, Suresh S, Rana B, Rana A. Interplay between MAP kinases and tumor microenvironment: opportunity for immunotherapy in pancreatic cancer. Adv Cancer Res. 2023;159:113–43.

    Article  CAS  PubMed  Google Scholar 

  61. Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali H, et al. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 2015; 6 (7): 5449–64. Largest retrospective study analysing the mRNA expression of PD-L1 in.5.

  62. Ni Y, Tsang JY, Shao Y, Poon IK, Tam F, Shea K-H, et al. Combining analysis of tumor-infiltrating lymphocytes (TIL) and PD-L1 refined the prognostication of breast cancer subtypes. Oncologist. 2022;27:e313–27.

    Article  PubMed Central  Google Scholar 

  63. Yuan Y, Lee JS, Yost SE, Frankel PH, Ruel C, Egelston CA, et al. A phase II clinical trial of pembrolizumab and enobosarm in patients with androgen receptor-positive metastatic triple-negative breast cancer. Oncologist. 2021;26:99-e217.

    Article  CAS  Google Scholar 

  64. Sood R, Kumar S, Laroiya I, Khare S, Das A, Singh G, et al. Assessment of PD-L1 expression and tumor-infiltrating lymphocytes (TILs) across molecular subtypes of triple-negative breast cancer. Breast J. 2020;26:2424–7.

    Article  CAS  PubMed  Google Scholar 

  65. Li M, Li A, Zhou S, Xu Y, Xiao Y, Bi R, et al. Heterogeneity of PD-L1 expression in primary tumors and paired lymph node metastases of triple negative breast cancer. BMC Cancer. 2018;18:1–9.

    Google Scholar 

  66. Carter JM, Polley MYC, Leon-Ferre RA, Sinnwell J, Thompson KJ, Wang X, et al. Characteristics and spatially defined immune (micro) landscapes of early-stage PD-L1-positive Triple-negative Breast Cancer. Clin Cancer Res. 2021;27:5628–37.

    Article  CAS  PubMed Central  Google Scholar 

  67. Bertucci F, Gonçalves A. Immunotherapy in breast cancer: the emerging role of PD-1 and PD-L1. Curr Oncol Rep. 2017;19:1–11.

    Article  CAS  Google Scholar 

  68. Fabozzi A, Della Sala F, di Gennaro M, Solimando N, Pagliuca M, Borzacchiello A. Polymer based nanoparticles for biomedical applications by microfluidic techniques: from design to biological evaluation. Polym Chem. 2021;12:6667–87. https://doi.org/10.1039/d1py01077h.

    Article  CAS  Google Scholar 

  69. Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med. 2019;17:1–9.

    Article  Google Scholar 

  70. Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21:44–59.

    Article  CAS  PubMed  Google Scholar 

  71. Adams S, Schmid P, Rugo H, Winer E, Loirat D, Awada A, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30:397–404.

    Article  CAS  PubMed  Google Scholar 

  72. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34:2460.

    Article  CAS  PubMed Central  Google Scholar 

  73. Gianni L, Huang C-S, Egle D, Bermejo B, Zamagni C, Thill M, et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Ann Oncol. 2022;33:534–43.

    Article  CAS  Google Scholar 

  74. Rugo HS, Loi S, Adams S, Schmid P, Schneeweiss A, Barrios CH, et al. Performance of PD-L1 immunohistochemistry (IHC) assays in unresectable locally advanced or metastatic triple-negative breast cancer (mTNBC): Post-hoc analysis of IMpassion130. Ann Oncol. 2019;30:v858–9.

    Article  Google Scholar 

  75. Paré L, Pascual T, Seguí E, Teixidó C, Gonzalez-Cao M, Galván P, et al. Association between PD1 mRNA and response to anti-PD1 monotherapy across multiple cancer types. Ann Oncol. 2018;29:2121–8.

    Article  Google Scholar 

  76. Bianchini G, Huang C, Egle D, Bermejo B, Zamagni C, Thill M, et al. LBA13 Tumour infiltrating lymphocytes (TILs), PD-L1 expression and their dynamics in the NeoTRIPaPDL1 trial. Ann Oncol. 2020;31:S1145–6.

    Article  Google Scholar 

  77. Lehmann BD, Colaprico A, Silva TC, Chen J, An H, Ban Y, et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun. 2021;12:6276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, et al. (2016) Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Sci Transl Med. 2016;8:334.

    Article  Google Scholar 

  79. Stanton SE, Adams S, Disis ML. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol. 2016;2:1354–60.

    Article  PubMed  Google Scholar 

  80. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 2016;13:228–41.

    Article  CAS  PubMed  Google Scholar 

  81. Bareche Y, Buisseret L, Gruosso T, Girard E, Venet D, Dupont F, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. JNCI. 2020;112:708–19.

    Article  Google Scholar 

  82. Ochi T, Bianchini G, Ando M, Nozaki F, Kobayashi D, Criscitiello C, et al. Predictive and prognostic value of stromal tumour-infiltrating lymphocytes before and after neoadjuvant therapy in triple negative and HER2-positive breast cancer. Eur J Cancer. 2019;118:41–8.

    Article  CAS  PubMed  Google Scholar 

  83. Gao ZH, Li CX, Liu M, Jiang JY. Predictive and prognostic role of tumour-infiltrating lymphocytes in breast cancer patients with different molecular subtypes: a meta-analysis. BMC Cancer. 2020;20:1–14.

    Google Scholar 

  84. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19:40–50.

    Article  PubMed  Google Scholar 

  85. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32:2959.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Manzo E, Fioretto L, Gallo C, Ziaco M, Nuzzo G, D’Ippolito G, et al. Preparation, supramolecular aggregation and immunological activity of the bona fide vaccine adjuvant sulfavant s. Mar Drugs. 2020;18:451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37:559.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Park J, Jonas S, Bataillon G, Criscitiello C, Salgado R, Loi S, et al. Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. Ann Oncol. 2019;30:1941–9.

    Article  CAS  PubMed  Google Scholar 

  89. Loi S, Michiels S, Adams S, Loibl S, Budczies J, Denkert C, et al. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: clinical utility in an era of checkpoint inhibition. Ann Oncol. 2021;32:1236–44.

    Article  CAS  PubMed  Google Scholar 

  90. Sasaki R, Horimoto Y, Yanai Y, Kurisaki-Arakawa A, Arakawa A, Nakai K, et al. Molecular characteristics of lymphocyte-predominant triple-negative breast cancer. Anticancer Res. 2021;41:2133–40.

    Article  CAS  PubMed  Google Scholar 

  91. Criscitiello C, Bayar M, Curigliano G, Symmans F, Desmedt C, Bonnefoi H, et al. A gene signature to predict high tumor-infiltrating lymphocytes after neoadjuvant chemotherapy and outcome in patients with triple-negative breast cancer. Ann Oncol. 2018;29:162–9.

    Article  CAS  PubMed  Google Scholar 

  92. Fabozzi A, Della Sala F, di Gennaro M, Borzacchiello A. Synthesis of hyaluronic acid core–shell nanoparticles via simple microfluidic-assisted nanoprecipitation method for active tumor targeting. New J Chem. 2022;46:19763–72.

    Article  CAS  Google Scholar 

  93. Loi S, Adams S, Schmid P, Cortés J, Cescon D, Winer E, et al. Relationship between tumor infiltrating lymphocyte (TIL) levels and response to pembrolizumab (pembro) in metastatic triple-negative breast cancer (mTNBC): results from KEYNOTE-086. Ann Oncol. 2017;28: v608.

    Article  Google Scholar 

  94. Loi S, Schmid P, Aktan G, Karantza V, Salgado R. Relationship between tumor infiltrating lymphocytes (TILs) and response to pembrolizumab (pembro)+ chemotherapy (CT) as neoadjuvant treatment (NAT) for triple-negative breast cancer (TNBC): phase Ib KEYNOTE-173 trial. Ann Oncol. 2019;30:32.

    Article  Google Scholar 

  95. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio I, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:1194–220.

    Article  CAS  PubMed  Google Scholar 

  96. Sporikova Z, Koudelakova V, Trojanec R, Hajduch M. Genetic markers in triple-negative breast cancer. Clin Breast Cancer. 2018;18:e841–50.

    Article  CAS  PubMed  Google Scholar 

  97. Jin J, He J, Li X, Ni X, Jin X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: a potential target for cancer therapy. Gene. 2023;889: 147807.

    Article  CAS  PubMed  Google Scholar 

  98. Bang J, Jun M, Lee S, Moon H, Ro SW. Targeting EGFR/PI3K/AKT/mTOR signaling in hepatocellular carcinoma. Pharmaceutics. 2023;15(8):2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin Cancer Biol. 2019;59:66–79.

    Article  Google Scholar 

  100. Zhang H, Cohen AL, Krishnakumar S, Wapnir IL, Veeriah S, Deng G, et al. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Res. 2014;16:1–16.

    Article  Google Scholar 

  101. Martín M, Chan A, Dirix L, O’Shaughnessy J, Hegg R, Manikhas A, et al. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2–advanced breast cancer (BELLE-4). Ann Oncol. 2017;28:313–20.

    Article  PubMed  Google Scholar 

  102. Kim S-B, Dent R, Im S-A, Espié M, Blau S, Tan AR, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017;18:1360–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. J Clin Oncol. 2020;38:423–33.

    Article  CAS  PubMed  Google Scholar 

  104. Lehmann BD, Abramson VG, Sanders ME, Mayer EL, Haddad TC, Nanda R, et al. TBCRC 032 IB/II multicenter study: molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR+ metastatic triple-negative breast cancer. Clin Cancer Res. 2020;26:2111–23.

    Article  CAS  PubMed  Google Scholar 

  105. Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, et al. SGN–LIV1A: a novel antibody–drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther. 2014;13:2991–3000.

    Article  CAS  PubMed  Google Scholar 

  106. Saravanan R, Balasubramanian V, Swaroop Balamurugan SS, Ezhil I, Afnaan Z, John J, et al. Zinc transporter LIV1: A promising cell surface target for triple negative breast cancer. J Cell Physiol. 2022;237:4132–56.

    Article  CAS  PubMed  Google Scholar 

  107. Fabozzi A, Della Sala F, di Gennaro M, Barretta M, Longobardo G, Solimando N, et al. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. Lab Chip. 2023;23:1389–409.

    Article  CAS  PubMed  Google Scholar 

  108. Vessella G, Casillo A, Fabozzi A, Traboni S, Iadonisi A, Corsaro MM, et al. Synthesis of the tetrasaccharide repeating unit of the cryoprotectant capsular polysaccharide from Colwellia psychrerythraea 34H. Org Biomol Chem. 2019;17:3129–40.

    Article  CAS  PubMed  Google Scholar 

  109. Shi D, Li Y, Liang X, Chen L. Cost-effectiveness of sacituzumab govitecan in hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. Front Oncol. 2023;13:1162360.

    Article  PubMed Central  Google Scholar 

  110. Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018;9:28989.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shastry M, Jacob S, Rugo HS, Hamilton E. Antibody-drug conjugates targeting TROP-2: clinical development in metastatic breast cancer. The Breast. 2022;66:169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Li J, Goh EL, He J, Li Y, Fan Z, Yu Z, et al. Emerging intrinsic therapeutic targets for metastatic breast cancer. Biology. 2023;12:697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McGuinness JE, Kalinsky K. Antibody-drug conjugates in metastatic triple negative breast cancer: a spotlight on sacituzumab govitecan, ladiratuzumab vedotin, and trastuzumab deruxtecan. Expert Opin Biol Ther. 2021;21:903–13.

    Article  CAS  Google Scholar 

  114. Fabozzi A, Barretta M, Valente T, Borzacchiello A. Preparation and optimization of hyaluronic acid decorated irinotecan-loaded poly (lactic-co-glycolic acid) nanoparticles by microfluidics for cancer therapy applications. Colloids Surf A. 2023;15:131790.

    Article  Google Scholar 

  115. Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, et al. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol. 2017;35:2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380:741–51.

    Article  CAS  PubMed  Google Scholar 

  117. Bardia A, Tolaney S, Loirat D, Punie K, Oliveira M, Rugo H, et al. LBA17 ASCENT: a randomized phase III study of sacituzumab govitecan (SG) vs treatment of physician’s choice (TPC) in patients (pts) with previously treated metastatic triple-negative breast cancer (mTNBC). Ann Oncol. 2020;31:S1149–50.

    Article  Google Scholar 

  118. Rose AA, Grosset A-A, Dong Z, Russo C, MacDonald PA, Bertos NR, et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res. 2010;16:2147–56.

    Article  CAS  PubMed  Google Scholar 

  119. Yao L, Hao Q, Wang M, Chen Y, Cao H, Zhang Q, Yu K, Jiang Y, Shao Z, Zhou X, Xu Y. KLHL29-mediated DDX3X degradation promotes chemosensitivity by abrogating cell cycle checkpoint in triple-negative breast cancer. Oncogene. 2023. https://doi.org/10.1038/s41388-023-02858-5.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Byers HA, Brooks AN, Vangala JR, Grible JM, Feygin A, Clevenger CV, Harrell JC, Radhakrishnan SK. Evaluation of the NRF1-proteasome axis as a therapeutic target in breast cancer. Sci Rep. 2023;13(1):15843. https://doi.org/10.1038/s41598-023-43121-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cen S, Peng X, Deng J, Jin H, Deng Z, Lin X, Zhu DI, Jin M, Zhu Y, Zhang P, Luo Y, Huang H. The role of AFAP1-AS1 in mitotic catastrophe and metastasis of triple-negative breast cancer cells by activating the PLK1 signaling pathway. Oncol Res. 2023;31(3):375–88. https://doi.org/10.32604/or.2023.028256.

    Article  PubMed Central  Google Scholar 

  122. Raute K, Strietz J, Parigiani MA, Andrieux G, Thomas OS, Kistner KM, Zintchenko M, Aichele P, Hofmann M, Zhou H, Weber W, Boerries M, Swamy M, Maurer J, Minguet S. Breast cancer stem cell-derived tumors escape from γδ T-cell immunosurveillance in vivo by modulating γδ T-cell ligands. Cancer Immunol Res. 2023;11(6):810–29. https://doi.org/10.1158/2326-6066.CIR-22-0296.

    Article  CAS  PubMed Central  Google Scholar 

  123. Psilopatis I, Mantzari A, Vrettou K, Theocharis S. The role of patient-derived organoids in triple-negative breast cancer drug screening. Biomedicines. 2023;11(3):773. https://doi.org/10.3390/biomedicines11030773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Usary J, Darr DB, Pfefferle AD, Perou CM. Overview of genetically engineered mouse models of distinct breast cancer subtypes. Curr Protoc Pharmacol. 2016;72:14. https://doi.org/10.1002/0471141755.ph1438s72.

    Article  PubMed Central  Google Scholar 

  125. Holen I, Speirs V, Morrissey B, Blyth K. In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech. 2017;10(4):359–71. https://doi.org/10.1242/dmm.028274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Doha ZO, Wang X, Calistri NL, Eng J, Daniel CJ, Ternes L, Kim EN, Pelz C, Munks M, Betts C, Kwon S, Bucher E, Li X, Waugh T, Tatarova Z, Blumberg D, Ko A, Kirchberger N, Pietenpol JA, Sanders ME, Langer EM, Dai MS, Mills G, Chin K, Chang YH, Coussens LM, Gray JW, Heiser LM, Sears RC. MYC deregulation and PTEN loss model tumor and stromal heterogeneity of aggressive triple-negative breast cancer. Nat Commun. 2023;14(1):5665. https://doi.org/10.1038/s41467-023-40841-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Houthuijzen JM, de Bruijn R, van der Burg E, Drenth AP, Wientjens E, Filipovic T, Bullock E, Brambillasca CS, Pulver EM, Nieuwland M, de Rink I, van Diepen F, Klarenbeek S, Kerkhoven R, Brunton VG, Scheele CLGJ, Boelens MC, Jonkers J. CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer. Nat Commun. 2023;14(1):183. https://doi.org/10.1038/s41467-023-35793-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Daniela Capobianco for her technical editing and writing assistance. We also acknowledge the “Lega Italiana per la Lotta contro I Tumori (LILT)-sezione di Napoli” and the TRIAL scientific association (CF: 92088670622) for their invaluable and unwavering collaboration on this work.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MC and AO; methodology; FP, VC, and Marco Cascella; software: Mariachiara Santorsola; validation: FF, VG, AB, and FS; investigation: MC and AO; resources: OG and GS; data curation: OG, LL, AF, and GS; writing—original draft preparation: all authors; writing—review and editing: AO, AF, and MC. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Alessandro Ottaiano.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Institutional review board

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capuozzo, M., Celotto, V., Santorsola, M. et al. Emerging treatment approaches for triple-negative breast cancer. Med Oncol 41, 5 (2024). https://doi.org/10.1007/s12032-023-02257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02257-6

Keywords

Navigation