Skip to main content

Advertisement

Log in

Histone methyltransferase SUV39H2 regulates apoptosis and chemosensitivity in prostate cancer through AKT/FOXO signaling pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) is one of the most common malignant tumors that exhibit both chemoresistance and recurrence. SUV39H2 is highly expressed in many types of human tumors, but its role in the development and progression of PCa has never been clarified. The aim of this study is to elucidate the role of SUV39H2 in the development and progression of PCa, its association with the AKT/FOXO signaling pathway, and its potential implications for PCa diagnosis and treatment. SUV39H2 expression was analyzed in The Cancer Genome Atlas (TCGA) and genotype tissue expression pan-cancer data. The TCGA database was evaluated for SUV39H2 enrichment and its correlation to immune cell infiltration. SUV39H2 levels in PCa tissues and control tissues were determined in 30 patients using qPCR and IHC. Clinical relevance was assessed via The Cancer Genome Atlas (TCGA). In vitro assessments including colony formation assays, Western Blot analysis, CCK-8 assays, and flow cytometry were utilized to establish SUV39H2’s contribution to PCa cell growth. The influence of SUV39H2 on PC3 and DU145 cell proliferation was assessed through a cell line-derived xenograft model. Sphere formation assays and qPCR were employed to delineate SUV39H2’s role in PCa stemness and chemosensitivity. In vitro macrophage polarization assays provided insights into SUV39H2’s association with M2 macrophages, while enrichment analysis shed light on its role in FOXO signaling. PCa tissues expressed higher levels of SUV39H2 than normal tissues. By knocking down SUV39H2, PCa cells were made more chemosensitive to docetaxel and cell proliferation and stemness were inhibited. Additionally, SUV39H2 knockdown significantly inhibited in vivo PCa cell growth and inhibited the polarization of macrophages. Furthermore, SUV39H2 was found to regulate AKT/FOXO signaling by increasing Akt and FOXO3a phosphorylation. Our findings highlight SUV39H2’s role in PCa cell apoptosis and chemosensitivity mainly by regulating the AKT/FOXO signaling pathway and suggest that SUV39H2 could be a potential target for PCa diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data for this study are included in this article.

References

  1. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32:1105–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao K, Li D, Xu W, Ding J, Jiang W, Li M, et al. Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials. 2017;116:82–94.

    Article  CAS  PubMed  Google Scholar 

  3. Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harbor Persp Med. 2018;8:a030361.

    Article  Google Scholar 

  4. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA: Cancer J Clin. 2020;70:145–64.

    PubMed  Google Scholar 

  5. Hariri L, Rehman A. Estradiol. Treasure Island: Stat-Pearls Publishing LLC; 2022.

    Google Scholar 

  6. Peng Y, Dong S, Yang Z, Song Y, Ding J, Hou D, et al. Identification of docetaxel-related biomarkers for prostate cancer. Andrologia. 2021;53:e14079.

    Article  CAS  PubMed  Google Scholar 

  7. Pérez G, López-Moncada F, Indo S, Torres MJ, Castellón EA, Contreras HR. Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells. Oncol Rep. 2021;45:1–12.

    Article  Google Scholar 

  8. Püschel J, Dubrovska A, Gorodetska I. The multifaceted role of aldehyde dehydrogenases in prostate cancer stem cells. Cancers. 2021;13:4703.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schwarz FM, Schniewind I, Besso MJ, Lange S, Linge A, Patil SG, et al. Plasticity within aldehyde dehydrogenase-positive cells determines prostate cancer radiosensitivity. Mol Cancer Res. 2022;20:794–809.

    Article  CAS  PubMed  Google Scholar 

  10. Lee SI, Roney MSI, Park JH, Baek JY, Park J, Kim SK, et al. Dopamine receptor antagonists induce differentiation of PC-3 human prostate cancer cell-derived cancer stem cell-like cells. Prostate. 2019;79:720–31.

    Article  CAS  PubMed  Google Scholar 

  11. Ren W, Wang D, Li C, Shu T, Zhang W, Fu X. Capn4 expression is modulated by microRNA-520b and exerts an oncogenic role in prostate cancer cells by promoting Wnt/β-catenin signaling. Biomed Pharmacother. 2018;108:467–75.

    Article  CAS  PubMed  Google Scholar 

  12. Xu P, Cai F, Liu X, Guo L. LKB1 suppresses proliferation and invasion of prostate cancer through hedgehog signaling pathway. Int J Clin Exp Pathol. 2014;7:8480.

    PubMed  PubMed Central  Google Scholar 

  13. Xiao L, Peng H, Yan M, Chen S. Silencing ACTG1 expression induces prostate cancer epithelial mesenchymal transition through MAPK/ERK signaling pathway. DNA Cell Biol. 2021;40:1445–55.

    Article  CAS  PubMed  Google Scholar 

  14. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang J-Y, Hung M-C. A new fork for clinical application: targeting forkhead transcription factors in cancer. Clin Cancer Res. 2009;15:752–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haflidadóttir BS, Larne O, Martin M, Persson M, Edsjö A, Bjartell A, et al. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PLoS ONE. 2013;8:e72400.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, et al. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene. 2007;26:7647–55.

    Article  CAS  PubMed  Google Scholar 

  18. Yan Y, Huang H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv Exp Med Biol. 2019;1210:319–31.

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y, Sarkissyan M, Vadgama JV. Epigenetics in breast and prostate cancer. In: Cancer epigenetics: risk assessment, diagnosis, treatment, and prognosis. Springer; 2015. p. 425–66.

    Chapter  Google Scholar 

  20. Vieira FQ, Costa-Pinheiro P, Ramalho-Carvalho J, Pereira A, Menezes FD, Antunes L, et al. Deregulated expression of selected histone methylases and demethylases in prostate carcinoma. Endocr Relat Cancer. 2014;21:51–61.

    Article  CAS  PubMed  Google Scholar 

  21. Li B, Zheng Y, Yang L. The oncogenic potential of SUV39H2: a comprehensive and perspective view. J Cancer. 2019;10:721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Piao L, Nakakido M, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. Automethylation of SUV39H2, an oncogenic histone lysine methyltransferase, regulates its binding affinity to substrate proteins. Oncotarget. 2016;7:22846.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Askew EB, Bai S, Parris AB, Minges JT, Wilson EM. Androgen receptor regulation by histone methyltransferase suppressor of variegation 3–9 homolog 2 and Melanoma antigen-A11. Mol Cell Endocrinol. 2017;443:42–51.

    Article  CAS  PubMed  Google Scholar 

  24. Baratchian M, Tiwari R, Khalighi S, Chakravarthy A, Yuan W, Berk M, et al. H3K9 methylation drives resistance to androgen receptor–antagonist therapy in prostate cancer. Proc Natl Acad Sci. 2022;119:e2114324119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hung S-Y, Lin H-H, Yeh K-T, Chang J-G. Histone-modifying genes as biomarkers in hepatocellular carcinoma. Int J Clin Exp Pathol. 2014;7:2496.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Miao Y, Liu G, Liu L. Histone methyltransferase SUV39H2 regulates LSD1-dependent CDH1 expression and promotes epithelial mesenchymal transition of osteosarcoma. Cancer Cell Int. 2021;21:1–12.

    Article  Google Scholar 

  27. Reyes DA, Sarría VMS, Salazar-Viedma M, D’Afonseca V. Histone methyltransferases useful in gastric cancer research. Cancer Informatics. 2021;20:11769351211039862.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shuai W, Wu J, Chen S, Liu R, Ye Z, Kuang C, et al. SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter. Cancer Lett. 2018;422:56–69.

    Article  CAS  PubMed  Google Scholar 

  29. Yoon K-A, Hwangbo B, Kim I-J, Park S, Kim HS, Kee HJ, et al. Novel polymorphisms in the SUV39H2 histone methyltransferase and the risk of lung cancer. Carcinogenesis. 2006;27:2217–22.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Y, Li B, Wang J, Xiong Y, Wang K, Qi Y, et al. Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma. Clin Epigenetics. 2018;10:1–11.

    Article  CAS  Google Scholar 

  31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  32. Hu Y, Zhang H, Xie N, Liu D, Jiang Y, Liu Z, et al. Bcl-3 promotes TNF-induced hepatocyte apoptosis by regulating the deubiquitination of RIP1. Cell Death Differ. 2022;29:1176–86.

    Article  CAS  PubMed  Google Scholar 

  33. Lu X, Yang F, Chen D, Zhao Q, Chen D, Ping H, et al. Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int J Biol Sci. 2020;16:1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ye D, Liu H, Zhao G, Chen A, Jiang Y, Hu Y, et al. LncGMDS-AS1 promotes the tumorigenesis of colorectal cancer through HuR-STAT3/Wnt axis. Cell Death Dis. 2023;14:165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jia G, Wang X, Wu W, Zhang Y, Chen S, Zhao J, et al. LXA4 enhances prostate cancer progression by facilitating M2 macrophage polarization via inhibition of METTL3. Int Immunopharmacol. 2022;107:108586.

    Article  CAS  PubMed  Google Scholar 

  36. Tsirmoula S, Dimas K, Hatziapostolou M, Lamprou M, Ravazoula P, Papadimitriou E. Implications of pleiotrophin in human PC 3 prostate cancer cell growth in vivo. Cancer Sci. 2012;103:1826–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang K, Waxman DJ. PC3 prostate tumor-initiating cells with molecular profile FAM65Bhigh/MFI2low/LEF1low increase tumor angiogenesis. Mol Cancer. 2010;9:1–13.

    Article  Google Scholar 

  38. Jaworska D, Król W, Szliszka E. Prostate cancer stem cells: research advances. Int J Mol Sci. 2015;16:27433–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Skvortsov S, Skvortsova I-I, Tang DG, Dubrovska A. Concise review: prostate cancer stem cells: current understanding. Stem Cells. 2018;36:1457–74.

    Article  PubMed  Google Scholar 

  40. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090.

    Article  PubMed  Google Scholar 

  41. Angeles AK, Heckmann D, Flosdorf N, Duensing S, Sültmann H. The ERG-regulated LINC00920 promotes prostate cancer cell survival via the 14-3-3ϵ–FOXO pathway. Mol Cancer Res. 2020;18:1545–59.

    Article  CAS  PubMed  Google Scholar 

  42. Wang S, Xu G, Chao F, Zhang C, Han D, Chen G. HNRNPC promotes proliferation, metastasis and predicts prognosis in prostate cancer. Cancer Manag Res. 2021;13:7263–76.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Holliday R. Epigenetics: an overview. Dev Genet. 1994;15:453–7.

    Article  CAS  PubMed  Google Scholar 

  44. García-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet. 2004;36:94–9.

    Article  PubMed  Google Scholar 

  45. Nielsen SJ, Schneider R, Bauer U-M, Bannister AJ, Morrison A, O’Carroll D, et al. Rb targets histone H3 methylation and HP1 to promoters. Nature. 2001;412:561–5.

    Article  CAS  PubMed  Google Scholar 

  46. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435:1262–6.

    Article  CAS  PubMed  Google Scholar 

  47. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dobosy JR, Roberts JLW, Fu VX, Jarrard DF. The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J Urol. 2007;177:822–31.

    Article  CAS  PubMed  Google Scholar 

  49. Perry AS, Watson RWG, Lawler M, Hollywood D. The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol. 2010;7:668–80.

    Article  CAS  PubMed  Google Scholar 

  50. Leão R, Domingos C, Figueiredo A, Hamilton R, Tabori U, Castelo-Branco P. Cancer stem cells in prostate cancer: implications for targeted therapy. Urol Int. 2017;99:125–36.

    Article  PubMed  Google Scholar 

  51. Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349:366–81.

    Article  CAS  PubMed  Google Scholar 

  52. Obeng E. Apoptosis (programmed cell death) and its signals—a review. Braz J Biol. 2020;81:1133–43.

    Article  Google Scholar 

  53. Li X, Liu K, Zhou W, Jiang Z. MiR-155 targeting FoxO3a regulates oral cancer cell proliferation, apoptosis, and DDP resistance through targeting FoxO3a. Cancer Biomark. 2020;27:105–11.

    Article  PubMed  Google Scholar 

  54. Emre Kızıl H, Gür C, Ayna A, Darendelioğlu E, Küçükler S, Sağ S. Contribution of oxidative stress, apoptosis, endoplasmic reticulum stress and autophagy pathways to the ameliorative effects of hesperidin in NaF-induced testicular toxicity. Chem Biodivers. 2023;20:e202200982.

    Article  PubMed  Google Scholar 

  55. Kızıl HE, Caglayan C, Darendelioğlu E, Ayna A, Gür C, Kandemir FM, et al. Morin ameliorates methotrexate-induced hepatotoxicity via targeting Nrf2/HO-1 and Bax/Bcl2/caspase-3 signaling pathways. Mol Biol Rep. 2023;50:3479–88.

    Article  PubMed  Google Scholar 

  56. Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett. 2022;540:215724.

    Article  CAS  PubMed  Google Scholar 

  57. Varışlı B, Darendelioğlu E, Caglayan C, Kandemir FM, Ayna A, Genç A, et al. Hesperidin attenuates oxidative stress, inflammation, apoptosis, and cardiac dysfunction in sodium fluoride-Induced cardiotoxicity in rats. Cardiovasc Toxicol. 2022;22:727–35.

    Article  PubMed  Google Scholar 

  58. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Crumbaker M, Khoja L, Joshua AM. AR signaling and the PI3K pathway in prostate cancer. Cancers. 2017;9:34.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, et al. Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with Pten loss to accelerate progression and castration-resistant growth. Cancer Discov. 2018;8:764–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by Shenzhen Fundamental Research Program (Grant No. JCYJ20190808095615389).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: DS, XC, and LW; Administrative support: JG, XC, and WL; Provision of study materials or patients: XC; Collection and assembly of data: DS and XC; Data analysis and interpretation: SL, QL, QL, and YC; Manuscript writing: XC, YS, SY, and AL; Final approval of manuscript: All authors.

Corresponding authors

Correspondence to Li Wang or Xiangqiu Chen.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare.

Ethical approval

PCa and paracancerous tissue specimens were taken after informed and written consent and the study was approved by the Ethics Committee of Shenzhen Hospital, Southern Medical University (Shenzhen, China). All animal procedures were conducted in compliance with the Guide for the Care and Use of Laboratory Animals (NIH Publications No.8023, revised 1978) and approved by the Institutional Biomedical Research Ethics Committee of Qingyuan People’s Hospital, and the study is reported in accordance with ARRIVE guidelines.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1

The Relationship between SUV39H2 Expression Level and Prognosis of Tumor Patients. a Forest plot of hazard ratios of SUV39H2 in 27 types of tumors. b Univariate and Multivariate Cox regression analyses regarding OS in prostate cancer. c The curve of risk score and Survival status of the patients. A higher risk score is associated with more deaths. Heatmap of the expression profiles of SUV39H2 prognostic genes in low- and high-risk group. d Kaplan–Meier survival analysis of SUV39H2. e Time-dependent ROC analysis

Supplementary file1 (TIF 104787 KB)

Supplementary Figure 2

Pan-cancer analysis of the correlation between SUV39H2 expression and immune checkpoint genes and immune regulators TMB and MSI. a Pan-cancer analysis of the correlation between SUV39H2 expression and immune checkpoint genes. b and c. Pan-cancer analysis of the correlation between SUV39H2 expression and immunomodulators TMB and MSI. *p <0.05, **p <0.01, and ***p <0.001

Supplementary file2 (PDF 466 KB)

Supplementary Figure 3 A–D

The correlation of SUV39H2 with infiltration of immune cells in the TCGA database

Supplementary file3 (TIF 5791 KB)

Supplementary file4 (DOCX 10 KB)

Supplementary file5 (DOCX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Guo, J., Liang, W. et al. Histone methyltransferase SUV39H2 regulates apoptosis and chemosensitivity in prostate cancer through AKT/FOXO signaling pathway. Med Oncol 41, 44 (2024). https://doi.org/10.1007/s12032-023-02252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02252-x

Keywords

Navigation