Skip to main content

Advertisement

Log in

Upregulation of CELSR1 expression promotes ovarian cancer cell proliferation, migration, and invasion

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cadherin epidermal growth factor and laminin-G seven-pass G-type receptor 1 (CELSR1) is a planar cell polarity protein involved in the transmission of directional cues to align either individual cells within an epithelial sheet or multicellular clusters. CELSR1 has been suggested to play a role in glioma, breast cancer, and chronic lymphocytic leukemia development; however, whether it has a role in the pathogenesis of ovarian cancer remains unknown. The aim of this study was to determine the role of CELSR1 in ovarian cancer and elucidate its underlying molecular mechanisms. By analyzing gene expression data downloaded from the Cancer Genome Atlas database, we found that CELSR1 expression was upregulated in ovarian cancer tissues compared to that in normal ovarian tissues. High CELSR1 expression levels were associated with poor prognosis in patients with ovarian cancer. Cell proliferation, scratch, and transwell assays revealed that CELSR1 promoted the proliferation, migration, and invasion of ovarian cancer cells in vitro. In addition, transcriptome sequencing analysis revealed that CELSR1 knockdown in T29H cells resulted in the dysregulation of the expression of 1320 genes. Further analysis revealed that genes involved in proliferation- and migration-associated signaling pathways were regulated by CELSR1. Our study demonstrates that CELSR1 is highly expressed in ovarian cancer cells and regulates their proliferation and migration, suggesting its potential as a diagnostic marker and therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are contained within the article. All data generated or analysed during this study are included in this published article.

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-86. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  2. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68:284–96. https://doi.org/10.3322/caac.21456.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nebgen DR, Lu KH, Bast RC Jr. Novel approaches to ovarian cancer screening. Curr Oncol Rep. 2019;21:75. https://doi.org/10.1007/s11912-019-0816-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morice P, Gouy S, Leary A. Mucinous ovarian carcinoma. N Engl J Med. 2019;380:1256–66. https://doi.org/10.1056/NEJMra1813254.

    Article  CAS  PubMed  Google Scholar 

  5. Roett MA, Evans P. Ovarian cancer: an overview. Am Fam Physician. 2009;80:609–16.

    PubMed  Google Scholar 

  6. Peres LC, Cushing-Haugen KL, Köbel M, Harris HR, Berchuck A, Rossing MA, Schildkraut JM, Doherty JA. Invasive epithelial ovarian cancer survival by histotype and disease stage. J Natl Cancer Inst. 2019;111:60–8. https://doi.org/10.1093/jnci/djy071.

    Article  PubMed  Google Scholar 

  7. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061. https://doi.org/10.1038/nrdp.2016.61.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rooth C. Ovarian cancer: risk factors, treatment and management. Br J Nurs. 2013;22:S23-30. https://doi.org/10.12968/bjon.2013.22.Sup17.S23.

    Article  PubMed  Google Scholar 

  9. Formstone CJ, Moxon C, Murdoch J, Little P, Mason I. Basal enrichment within neuroepithelia suggests novel function(s) for Celsr1 protein. Mol Cell Neurosci. 2010;44:210–22. https://doi.org/10.1016/j.mcn.2010.03.008.

    Article  CAS  Google Scholar 

  10. Crompton LA, Du Roure C, Rodriguez TA. Early embryonic expression patterns of the mouse Flamingo and Prickle orthologues. Dev Dyn. 2007;236:3137–43. https://doi.org/10.1002/dvdy.21338.

    Article  CAS  PubMed  Google Scholar 

  11. Yates LL, Papakrivopoulou J, Long DA, Goggolidou P, Connolly JO, Woolf AS, Dean CH. The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum Mol Genet. 2010;19:4663–76. https://doi.org/10.1093/hmg/ddq397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhan YH, Luo QC, Zhang XR, Xiao NA, Lu CX, Yue C, Wang N, Ma QL. CELSR1 Is a positive regulator of endothelial cell migration and angiogenesis. Biochemistry (Mosc). 2016;81:591–9. https://doi.org/10.1134/s0006297916060055.

    Article  CAS  PubMed  Google Scholar 

  13. Wang G, Li Y, Zhang D, Zhao S, Zhang Q, Luo C, Sun X, Zhang B. CELSR1 acts as an oncogene regulated by miR-199a-5p in glioma. Cancer Manag Res. 2020;12:8857–65. https://doi.org/10.2147/cmar.S258835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liao S, Desouki MM, Gaile DP, Shepherd L, Nowak NJ, Conroy J, Barry WT, Geradts J. Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosomes Cancer. 2012;51:1067–78. https://doi.org/10.1002/gcc.21991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaucká M, Plevová K, Pavlová S, Janovská P, Mishra A, Verner J, Procházková J, Krejcí P, Kotasková J, Ovesná P, Tichy B, Brychtová Y, Doubek M, Kozubík A, Mayer J, Pospísilová S, Bryja V. The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. Cancer Res. 2013;73:1491–501. https://doi.org/10.1158/0008-5472.Can-12-1752.

    Article  PubMed  Google Scholar 

  16. Young T, Mei F, Liu J, Bast RC Jr, Kurosky A, Cheng X. Proteomics analysis of H-RAS-mediated oncogenic transformation in a genetically defined human ovarian cancer model. Oncogene. 2005;24:6174–84. https://doi.org/10.1038/sj.onc.1208753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, Marquez RT, Auersperg N, Yu Y, Hahn WC, Mills GB, Bast RC Jr. A genetically defined model for human ovarian cancer. Cancer Res. 2004;64:1655–63. https://doi.org/10.1158/0008-5472.can-03-3380.

    Article  CAS  PubMed  Google Scholar 

  18. Hu MZ, Dai ZZ, Ji HY, Zheng AQ, Liang H, Shen MM, Liu JN, Tang KF, Zhu SJ, Wang KJ. Upregulation of FAM50A promotes cancer development. Med Oncol. 2023;40:217. https://doi.org/10.1007/s12032-023-02072-z.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Y, Tao F, Jiang J, Chen L, Du J, Cheng X, He Q, Zhong S, Chen W, Wu X, Ou R, Xu Y, Tang KF. Tryptophan 2, 3-dioxygenase promotes proliferation, migration and invasion of ovarian cancer cells. Mol Med Rep. 2021. https://doi.org/10.3892/mmr.2021.12084.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin J, Zhang X, Meng F, Zeng F, Liu W, He X. PNMA5 accelerated cellular proliferation, invasion and migration in colorectal cancer. Am J Transl Res. 2022;14:2231–43.

    CAS  PubMed Central  Google Scholar 

  21. Chen L, Yang J, Wang Y, Wu N, Li X, Li J, Huang Y, Cheng J. ATOH8 overexpression inhibits the tumor progression and monocyte chemotaxis in hepatocellular carcinoma. Int J Clin Exp Pathol. 2020;13:2534–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Yu X, Yu H, Liu B, Zhang Z, Kong C, Li Z. Knockdown of MAPK14 inhibits the proliferation and migration of clear cell renal cell carcinoma by downregulating the expression of CDC25B. Cancer Med. 2020;9:1183–95. https://doi.org/10.1002/cam4.2795.

    Article  CAS  Google Scholar 

  23. Naranjo AI, González-Gómez MJ, Baladrón V, Laborda J, Nueda ML. Different expression levels of DLK2 Inhibit NOTCH signaling and inversely modulate MDA-MB-231 breast cancer tumor growth in vivo. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23031554.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhou RJ, Lv HZ. Knockdown of ACTA2-AS1 promotes liver cancer cell proliferation, migration and invasion. Mol Med Rep. 2019;19:2263–70. https://doi.org/10.3892/mmr.2019.9856.

    Article  CAS  Google Scholar 

  25. Chang JM, Tsai AC, Huang WR, Tseng RC. The alteration of CTNNBIP1 in lung cancer. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20225684.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang M, Liu J, Zhao Y, He R, Xu X, Guo X, Li X, Xu S, Miao J, Guo J, Zhang H, Gong J, Zhu F, Tian R, Shi C, Peng F, Feng Y, Yu S, Xie Y, Jiang J, Li M, Wei W, He C, Qin R. Upregulation of METTL14 mediates the elevation of PERP mRNA N(6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020;19:130. https://doi.org/10.1186/s12943-020-01249-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang H, Wang Q, Du T, Lin C, Lai Y, Zhu D, Wu W, Ma X, Bai S, Li Z, Liu L, Li Q. Matrine inhibits the progression of prostate cancer by promoting expression of GADD45B. Prostate. 2018;78:327–35. https://doi.org/10.1002/pros.23469.

    Article  CAS  PubMed  Google Scholar 

  28. Wu C, Ying J, Dai M, Peng J, Zhang D. Co-expression of DDR2 and IFITM1 promotes breast cancer cell proliferation, migration and invasion and inhibits apoptosis. J Cancer Res Clin Oncol. 2022;148:3385–98. https://doi.org/10.1007/s00432-022-04110-1.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang C, Hua Y, Qiu H, Liu T, Long Q, Liao W, Qiu J, Wang N, Chen M, Shi D, Yan Y, Xie C, Deng W, Li T, Li Y. KMT2A regulates cervical cancer cell growth through targeting VDAC1. Aging (Albany NY). 2020;12:9604–20. https://doi.org/10.18632/aging.103229.

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Li X, Wu H, Wang H, Yao L, Deng Z, Zhou Y. EMP1 regulates cell proliferation, migration, and stemness in gliomas through PI3K-AKT signaling and CD44. J Cell Biochem. 2019;120:17142–50. https://doi.org/10.1002/jcb.28974.

    Article  CAS  PubMed  Google Scholar 

  31. Liu W, Zhan Z, Zhang M, Sun B, Shi Q, Luo F, Zhang M, Zhang W, Hou Y, Xiao X, Li Y, Feng H. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 2021;11:6278–92. https://doi.org/10.7150/thno.57455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. Febs J. 2021;288:6850–912. https://doi.org/10.1111/febs.15776.

    Article  CAS  PubMed  Google Scholar 

  33. Chen CL, Loy A, Cen L, Chan C, Hsieh FC, Cheng G, Wu B, Qualman SJ, Kunisada K, Yamauchi-Takihara K, Lin J. Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells. BMC Cancer. 2007;7:111. https://doi.org/10.1186/1471-2407-7-111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen F, Zong ZH, Liu Y, Chen S, Sheng XJ, Zhao Y. CEMIP promotes ovarian cancer development and progression via the PI3K/AKT signaling pathway. Biomed Pharmacother. 2019;114: 108787. https://doi.org/10.1016/j.biopha.2019.108787.

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Tong X, Li C, Jin E, Su Z, Sun Z, Zhang W, Lei Z, Zhang HT. Quaking 5 suppresses TGF-β-induced EMT and cell invasion in lung adenocarcinoma. EMBO Rep. 2021;22:e52079. https://doi.org/10.15252/embr.202052079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res. 2005;15:483–94. https://doi.org/10.1038/sj.cr.7290318.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng Y, Sun H, Wu L, Wu F, Tang W, Wang X, Lv C. VUp-Regulation of VCAN promotes the proliferation, invasion and migration and serves as a biomarker in gastric cancer. Onco Targets Ther. 2020;13:8665–75. https://doi.org/10.2147/ott.S262613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang L, Wang L, Yang Z, Jin H, Zou Q, Zhan Q, Tang Y, Tao Y, Lei L, Jing Y, Jiang X, Zhang L. Up-regulation of EMT-related gene VCAN by NPM1 mutant-driven TGF-β/cPML signalling promotes leukemia cell invasion. J Cancer. 2019;10:6570–83. https://doi.org/10.7150/jca.30223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qin E, Gu S, Guo Y, Wang L, Pu G. MiRNA-30a-5p/VCAN arrests tumor metastasis via modulating the adhesion of lung adenocarcinoma cells. Appl Biochem Biotechnol. 2023. https://doi.org/10.1007/s12010-023-04444-7.

    Article  PubMed  Google Scholar 

  40. Sun H, Wang X, Zhang Y, Che X, Liu Z, Zhang L, Qiu C, Lv Q, Jiang J. Biglycan enhances the ability of migration and invasion in endometrial cancer. Arch Gynecol Obstet. 2016;293:429–38. https://doi.org/10.1007/s00404-015-3844-5.

    Article  CAS  PubMed  Google Scholar 

  41. Xing X, Gu X, Ma T. Knockdown of biglycan expression by RNA interference inhibits the proliferation and invasion of, and induces apoptosis in, the HCT116 colon cancer cell line. Mol Med Rep. 2015;12:7538–44. https://doi.org/10.3892/mmr.2015.4383.

    Article  CAS  PubMed  Google Scholar 

  42. Wang ZQ, Sun XL, Wang YL, Miao YL. Agrin promotes the proliferation, invasion and migration of rectal cancer cells via the WNT signaling pathway to contribute to rectal cancer progression. J Recept Signal Transduct Res. 2021;41:363–70. https://doi.org/10.1080/10799893.2020.1811325.

    Article  CAS  PubMed  Google Scholar 

  43. Li X, Lu Y, Wen P, Yuan Y, Xiao Z, Shi H, Feng E. Matrine restrains the development of colorectal cancer through regulating the AGRN/Wnt/β-catenin pathway. Environ Toxicol. 2023;38:809–19. https://doi.org/10.1002/tox.23730.

    Article  CAS  Google Scholar 

  44. Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol. 2001;239:79–94. https://doi.org/10.1006/dbio.2001.0416.

    Article  CAS  PubMed  Google Scholar 

  45. Pratap A, Li A, Westbrook L, Gergen AK, Mitra S, Chauhan A, Cheng L, Weyant MJ, McCarter M, Wani S, Meguid RA, Mitchell JD, Cohen M, Fullerton D, Meng X. Glypican 1 promotes proliferation and migration in esophagogastric adenocarcinoma via activating AKT/GSK/β-catenin pathway. J Gastrointest Oncol. 2022;13:2082–104. https://doi.org/10.21037/jgo-22-240.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None

Funding

This work was supported by the National Natural Science Foundation of China (Grant numbers 81972648, 82172915).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. K-FT and XD conceived and devised the study. JZ, AZ, XW, ZL, YC, XC, YZ, and XZ performed the experiments and analyzed the data. JZ drafted the manuscript. K-FT and XD reviewed the manuscript. K-FT and XD supervised the research. All authors read and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Kai-Fu Tang or Xing Du.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

We declare no relevant information regarding the ethical conduct in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, J., Zheng, A., Wang, X. et al. Upregulation of CELSR1 expression promotes ovarian cancer cell proliferation, migration, and invasion. Med Oncol 41, 10 (2024). https://doi.org/10.1007/s12032-023-02232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02232-1

Keywords

Navigation