Skip to main content

Advertisement

Log in

Current advances in microbial-based cancer therapies

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Microbes have an immense metabolic capability and can adapt to a wide variety of environments; as a result, they share complicated relationships with cancer. The goal of microbial-based cancer therapy is to treat patients with cancers that are not easily treatable, by using tumor-specific infectious microorganisms. Nevertheless, a number of difficulties have been encountered as a result of the harmful effects of chemotherapy, radiotherapy, and alternative cancer therapies, such as the toxicity to non-cancerous cells, the inability of medicines to penetrate deep tumor tissue, and the ongoing problem of rising drug resistance in tumor cells. Due to these difficulties, there is now a larger need for designing alternative strategies that are more effective and selective when targeting tumor cells. The fight against cancer has advanced significantly owing to cancer immunotherapy. The researchers have greatly benefited from their understanding of tumor-invading immune cells as well as the immune responses that are specifically targeted against cancer. Application of bacterial and viral cancer therapeutics offers promising potential to be employed as cancer treatments among immunotherapies. As a novel therapeutic strategy, microbial targeting of tumors has been created to address the persisting hurdles of cancer treatment. This review outlines the mechanisms by which both bacteria and viruses target and inhibit the proliferation of tumor cells. Their ongoing clinical trials and possible modifications that can be made in the future have also been addressed in the following sections. These microbial-based cancer medicines have the ability to suppress cancer that builds up and multiplies in the tumor microenvironment and triggers antitumor immune responses, in contrast to other cancer medications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article  PubMed  Google Scholar 

  2. Bernardes N, Seruca R, Chakrabarty AM, Fialho AM. Microbial-based therapy of cancer: current progress and future prospects. Bioeng Bugs. 2010;1(3):178–90. https://doi.org/10.4161/bbug.1.3.10903.

    Article  PubMed  Google Scholar 

  3. McCance KL, Huether SE. Pathophysiology-e-book: the biologic basis for disease in adults and children. Amsterdam: Elsevier Health Sciences; 2018.

    Google Scholar 

  4. White SC, Pharoah MJ. Oral radiology-e-book: principles and interpretation. Amsterdam: Elsevier Health Sciences; 2014.

    Google Scholar 

  5. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Jemal A. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.

    Article  PubMed  Google Scholar 

  6. Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017;67(4):326–44. https://doi.org/10.3322/caac.21398.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ji H, Yang X. Microbial-based cancer therapy—bugs as drugs: history & the essential role of medical imaging. Cancer Treat Res Commun. 2021;28:100436.

    Article  PubMed  Google Scholar 

  8. Ganai S, et al. In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther. 2011;18(7):457–66. https://doi.org/10.1038/cgt.2011.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–47.

    Article  CAS  PubMed  Google Scholar 

  10. Bazett M, et al. Harnessing innate lung anti-cancer effector functions with a novel bacterial-derived immunotherapy. Oncoimmunology. 2018;7(3):e1398875. https://doi.org/10.1080/2162402X.2017.1398875.

    Article  PubMed  Google Scholar 

  11. Fu L-Q, et al. Recent advances in oncolytic virus-based cancer therapy. Virus Res. 2019;270:197675. https://doi.org/10.1016/j.virusres.2019.197675.

    Article  CAS  PubMed  Google Scholar 

  12. Leber MF, et al. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev. 2020;56:39–48. https://doi.org/10.1016/j.cytogfr.2020.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Forbes NS, et al. White paper on microbial anti-cancer therapy and prevention. J Immunother Cancer. 2018;6(1):1–24. https://doi.org/10.1186/s40425-018-0381-3.

    Article  Google Scholar 

  14. Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80–6. https://doi.org/10.1126/science.aaa4972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–12. https://doi.org/10.1038/nrc3610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vogtmann E, Goedert JJ. Epidemiologic studies of the human microbiome and cancer. Br J Cancer. 2016;114(3):237–42. https://doi.org/10.1038/bjc.2015.465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bultman SJ. The microbiome and its potential as a cancer preventive intervention. Semin Oncol. 2016. https://doi.org/10.1053/j.seminoncol.2015.09.001.

    Article  PubMed  Google Scholar 

  18. Ambalam P, et al. Probiotics, prebiotics and colorectal cancer prevention. Best Prac Res Clin Gastroenterol. 2016;30(1):119–31. https://doi.org/10.1016/j.bpg.2016.02.009.

    Article  Google Scholar 

  19. Zitvogel L, et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15(8):465–78. https://doi.org/10.1038/nrmicro.2017.44.

    Article  CAS  PubMed  Google Scholar 

  20. Routy B, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7. https://doi.org/10.1126/science.aan3706.

    Article  CAS  PubMed  Google Scholar 

  21. Kaimala S, et al. Attenuated bacteria as immunotherapeutic tools for cancer treatment. Front Oncol. 2018;8:136. https://doi.org/10.3389/fonc.2018.00136.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Malik SS, et al. Anticarcinogenecity of microbiota and probiotics in breast cancer. Int J Food Prop. 2018;21(1):655–66. https://doi.org/10.1080/10942912.2018.1448994.

    Article  CAS  Google Scholar 

  23. Elinav E, et al. The cancer microbiome. Nat Rev Cancer. 2019;19(7):371–6. https://doi.org/10.1038/s41568-019-0155-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cann SH, Van Netten J, Van Netten C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad Med J. 2003;79(938):672–80.

    Article  Google Scholar 

  25. Luginbuehl V, et al. Intracellular drug delivery: potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnol Adv. 2018;36(3):613–23. https://doi.org/10.1016/j.biotechadv.2018.02.005.

    Article  CAS  PubMed  Google Scholar 

  26. Hosseinidoust Z, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016;106:27–44. https://doi.org/10.1016/j.addr.2016.09.007.

    Article  CAS  PubMed  Google Scholar 

  27. Nallar SC, Xu D-Q, Kalvakolanu DV. Bacteria and genetically modified bacteria as cancer therapeutics: current advances and challenges. Cytokine. 2017;89:160–72. https://doi.org/10.1016/j.cyto.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  28. Kensler TW, et al. Transforming cancer prevention through precision medicine and immune-oncology. Cancer Prev Res. 2016;9(1):2–10. https://doi.org/10.1158/1940-6207.CAPR-15-0406.

    Article  CAS  Google Scholar 

  29. Yu B, et al. Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella typhimurium strain. Sci Rep. 2012;2(1):1–10. https://doi.org/10.1038/srep00436.

    Article  CAS  Google Scholar 

  30. Zhao M, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Nat Acad Sci. 2005;102(3):755–60. https://doi.org/10.1073/pnas.0408422102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng JH, Min J-J. Targeted cancer therapy using engineered Salmonella typhimurium. Chonnam Med J. 2016;52(3):173–84. https://doi.org/10.4068/cmj.2016.52.3.173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Broadway KM, Scharf BE. Salmonella typhimurium as an anticancer therapy: recent advances and perspectives. Curr Clin Microbiol Rep. 2019;6:225–39. https://doi.org/10.1007/s40588-019-00132-5.

    Article  Google Scholar 

  33. Ahmed SG, et al. Intratumoral injection of schwannoma with attenuated Salmonella typhimurium induces antitumor immunity and controls tumor growth. Proc Nat Acad Sci. 2022;119(24):e2202719119. https://doi.org/10.1073/pnas.2202719119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sorenson BS, et al. Attenuated Salmonella typhimurium with IL-2 gene reduces pulmonary metastases in murine osteosarcoma. Clin Orthop Relat Res. 2008;466:1285–91. https://doi.org/10.1007/s11999-008-0243-2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jellbauer S, et al. CD8 T-cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma. PLoS ONE. 2012;7(4):e34214. https://doi.org/10.1371/journal.pone.0034214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mesa-Pereira B, et al. Improved cytotoxic effects of Salmonella-producing cytosine deaminase in tumour cells. Microb Biotechnol. 2015;8(1):169–76. https://doi.org/10.1111/1751-7915.12153.

    Article  CAS  PubMed  Google Scholar 

  37. Zheng JH, et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 2017;9(376):aak9537. https://doi.org/10.1126/scitranslmed.aak9537.

    Article  CAS  Google Scholar 

  38. Carvalho F, Sousa S, Cabanes D. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol. 2014;4:48. https://doi.org/10.3389/fcimb.2014.00048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang Z, et al. Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity for synergistic cancer treatment. Biomaterials. 2022;281:121332. https://doi.org/10.1016/j.biomaterials.2021.121332.

    Article  CAS  PubMed  Google Scholar 

  40. Sewell DA, et al. Recombinant listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res. 2004;64(24):8821–5. https://doi.org/10.1158/0008-5472.CAN-04-1958.

    Article  CAS  PubMed  Google Scholar 

  41. Brockstedt DG, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Nat Aca Sci. 2004;101(38):13832–7. https://doi.org/10.1073/pnas.0406035101.

    Article  CAS  Google Scholar 

  42. Roberts NJ, et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med. 2014;6(249):249ra111. https://doi.org/10.1126/scitranslmed.3008982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohta N, et al. Treatments of various otolaryngological cystic diseases by OK-432 1: its indications and limitations. Laryngoscope. 2010;120(11):2193–6. https://doi.org/10.1002/lary.21141.

    Article  CAS  PubMed  Google Scholar 

  44. Ohta N, et al. Effects and mechanism of OK-432 therapy in various neck cystic lesions. Acta Oto-laryngol. 2010;130(11):1287–92. https://doi.org/10.3109/00016489.2010.483480.

    Article  CAS  Google Scholar 

  45. Karabay O, et al. Investigation of the frequency of COVID-19 in patients treated with intravesical BCG. Rev Assoc Med Bras. 2020;66:91–5. https://doi.org/10.1590/1806-9282.66.S2.91.

    Article  Google Scholar 

  46. Glomski IJ, Decatur AL, Portnoy DA. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun. 2003;71(12):6754–65. https://doi.org/10.1128/IAI.71.12.6754-6765.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang L, et al. Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo. Gene Ther. 2017;24(11):699–705. https://doi.org/10.1038/gt.2017.74.

    Article  CAS  PubMed  Google Scholar 

  48. Asoudeh-Fard A, et al. Lactobacillus plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways. Bioimpacts. 2017;7(3):193. https://doi.org/10.15171/bi.2017.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimizu Y, et al. Anti-tumor effect of a recombinant Bifidobacterium strain secreting a claudin-targeting molecule in a mouse breast cancer model. Eur J Pharmacol. 2020;887:173596. https://doi.org/10.1016/j.ejphar.2020.173596.

    Article  CAS  PubMed  Google Scholar 

  50. Cai J, Yan G. The identification and development of a novel oncolytic virus: alphavirus M1. Hum Gene Ther. 2021;32(3–4):138–49. https://doi.org/10.1089/hum.2020.271.

    Article  CAS  PubMed  Google Scholar 

  51. Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and immunotherapy: advancing cancer treatment by combination. Cancers (Basel). 2020;12(5):1295. https://doi.org/10.3390/cancers12051295.

    Article  CAS  PubMed  Google Scholar 

  52. Haviv YS, et al. Adenoviral gene therapy for renal cancer requires retargeting to alternative cellular receptors. Cancer Res. 2002;62(15):4273–81.

    CAS  PubMed  Google Scholar 

  53. Davison E, et al. Adenovirus type 5 uptake by lung adenocarcinoma cells in culture correlates with Ad5 fibre binding is mediated by αvβ1 integrin and can be modulated by changes in β1 integrin function. J Gene Med. 2001;3(6):550–9. https://doi.org/10.1002/jgm.223.

    Article  CAS  PubMed  Google Scholar 

  54. MacKie RM, Stewart B, Brown SM. Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet. 2001;357(9255):525–6. https://doi.org/10.1016/S0140-6736(00)04048-4.

    Article  CAS  PubMed  Google Scholar 

  55. Mineta T, et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1(9):938–43. https://doi.org/10.1038/nm0995-938.

    Article  CAS  PubMed  Google Scholar 

  56. Fong Y, et al. A herpes oncolytic virus can be delivered via the vasculature to produce biologic changes in human colorectal cancer. Mol Ther. 2009;17(2):389–94. https://doi.org/10.1038/mt.2008.240.

    Article  CAS  PubMed  Google Scholar 

  57. Nair S, et al. Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.144619.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Engeland CE, Ungerechts G. Measles virus as an oncolytic immunotherapy. Cancers. 2021;13(3):544. https://doi.org/10.3390/cancers13030544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mader EK, et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy modelvirotherapy in immune mice using MSC cell carriers. Clin Cancer Res. 2009;15(23):7246–55. https://doi.org/10.1158/1078-0432.CCR-09-1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Raihan J, et al. Regression of solid breast tumours in mice by Newcastle disease virus is associated with production of apoptosis related-cytokines. BMC Cancer. 2019;19(1):1–13. https://doi.org/10.1186/s12885-019-5516-5.

    Article  Google Scholar 

  61. Ye T, et al. Oncolytic Newcastle disease virus induces autophagy-dependent immunogenic cell death in lung cancer cells. Am J Cancer Res. 2018;8(8):1514.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen L, et al. Oncolytic activity of wild-type Newcastle disease virus HK84 against hepatocellular carcinoma associated with activation of type I interferon signaling. J Clin Transl Hepatol. 2022;10(2):284. https://doi.org/10.14218/JCTH.2021.00284.

    Article  PubMed  Google Scholar 

  63. Tian L, et al. Oncolytic Newcastle disease virus expressing the co-stimulator OX40L as immunopotentiator for colorectal cancer therapy. Gene Ther. 2023;30(1–2):64–74. https://doi.org/10.1038/s41434-021-00256-8.

    Article  CAS  PubMed  Google Scholar 

  64. Ali SM, et al. In vivo oncolytic activity of non-virulent newcastle disease virus Iraqi strain against mouse mammary adenocarcinoma. In AIP Conference proceedings. 2021. https://doi.org/10.1063/5.0067194

  65. Al-Ziaydi AG, et al. Newcastle disease virus suppress glycolysis pathway and induce breast cancer cells death. Virusdisease. 2020;31:341–8. https://doi.org/10.1007/s13337-020-00612-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sei S, et al. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells. Mol Cancer. 2009;8:1–15. https://doi.org/10.1186/1476-4598-8-47.

    Article  CAS  Google Scholar 

  67. Hsu C-Y, et al. Oncolytic avian reovirus σA-modulated upregulation of the HIF-1α/C-myc/glut1 pathway to produce more energy in different cancer cell lines benefiting virus replication. Viruses. 2023;15(2):523. https://doi.org/10.3390/v15020523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo ZS, et al. The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2. Cancer Res. 2005;65(21):9991–8. https://doi.org/10.1158/0008-5472.CAN-05-1630.

    Article  CAS  PubMed  Google Scholar 

  69. Gupta KH, Nowicki C, Giurini EF, Marzo AL, Zloza A. Bacterial-based cancer therapy (BBCT): recent advances, current challenges, and future prospects for cancer immunotherapy. Vaccines 2021;9(12):1497

    Article  Google Scholar 

  70. Wei MQ, et al. Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours. Eur J cancer. 2007;43(3):490–6. https://doi.org/10.1016/j.ejca.2006.10.005.

    Article  PubMed  Google Scholar 

  71. Martinez-Outschoorn UE, et al. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(1):11–31. https://doi.org/10.1038/nrclinonc.2016.60.

    Article  CAS  PubMed  Google Scholar 

  72. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785–94. https://doi.org/10.1038/nrc2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sedighi M, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019;8(6):3167–81. https://doi.org/10.1002/cam4.2148.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jain RK, Forbes NS. Can engineered bacteria help control cancer? Proc Nat Acad Sci. 2001;98(26):14748–50. https://doi.org/10.1073/pnas.261606598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carlisle R, Coussios C-C. Mechanical approaches to oncological drug delivery. Ther Deliv. 2013;4(10):1213–5. https://doi.org/10.4155/tde.13.94.

    Article  CAS  PubMed  Google Scholar 

  76. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58(7):1408–16.

    CAS  PubMed  Google Scholar 

  77. Ryan R, et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 2009;16(3):329–39. https://doi.org/10.1038/gt.2008.188.

    Article  CAS  PubMed  Google Scholar 

  78. Cheong I, Zhou S. Tumor-specific liposomal drug release mediated by liposomase. Meth Enzymol. 2009;465:251–65. https://doi.org/10.1016/S0076-6879(09)65013-8.

    Article  CAS  Google Scholar 

  79. Chakrabarty A. Microorganisms and cancer: quest for a therapy. J Bacteriol. 2003;185(9):2683–6. https://doi.org/10.1128/JB.185.9.2683-2686.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy–enemies in the past, but allies at present. Infect Agents Cancer. 2018;13(1):1–7. https://doi.org/10.1186/s13027-018-0180-y.

    Article  CAS  Google Scholar 

  81. Park SJ, et al. New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep. 2013;3(1):1–8. https://doi.org/10.1038/srep03394.

    Article  CAS  Google Scholar 

  82. Han J-W, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella typhimurium). Sens Actuators B Chem. 2016;224:217–24. https://doi.org/10.1016/j.snb.2015.09.034.

    Article  CAS  Google Scholar 

  83. Park D, et al. Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber. Biotechnol Bioeng. 2014;111(1):134–43. https://doi.org/10.1002/bit.25007.

    Article  CAS  PubMed  Google Scholar 

  84. Cross AS. What is a virulence factor? J Crit Care. 2008;12(6):1–2. https://doi.org/10.1186/cc7127.

    Article  Google Scholar 

  85. Casadevall A, Pirofski L-A. Virulence factors and their mechanisms of action: the view from a damage–response framework. J Water Health. 2009;7(S1):S2–18. https://doi.org/10.2166/wh.2009.036.

    Article  PubMed  Google Scholar 

  86. Lee C, et al. Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway. Gene Ther. 2014;21(3):309–16. https://doi.org/10.1038/gt.2013.86.

    Article  CAS  PubMed  Google Scholar 

  87. Frahm M, et al. Efficiency of conditionally attenuated Salmonella enterica serovar typhimurium in bacterium-mediated tumor therapy. MBio. 2015;6(2):e00254-e315. https://doi.org/10.1128/mbio.00254-15.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Na HS, et al. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine. 2006;24(12):2027–34. https://doi.org/10.1016/j.vaccine.2005.11.031. (Epub 2005 Dec 1).

    Article  CAS  PubMed  Google Scholar 

  89. Glomski IJ, et al. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol. 2002;156(6):1029–38. https://doi.org/10.1083/jcb.200201081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Decatur AL, Portnoy DA. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science. 2000;290(5493):992–5. https://doi.org/10.1126/science.290.5493.992.

    Article  CAS  PubMed  Google Scholar 

  91. Camilli A, Tilney LG, Portnoy DA. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol. 1993;8(1):143–57. https://doi.org/10.1111/j.1365-2958.1993.tb01211.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bakardjiev AI, et al. Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect Immun. 2004;72(1):489–97. https://doi.org/10.1128/IAI.72.1.489-497.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cheong I, et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science. 2006;314(5803):1308–11. https://doi.org/10.1126/science.1130651.

    Article  CAS  PubMed  Google Scholar 

  94. Chagnon A, et al. Cytotoxicity and reduction of animal cell growth by clostridium M-55 spores and their extracts. Cancer. 1972;29(2):431–4. https://doi.org/10.1002/1097-0142(197202)29:2%3C431::AID-CNCR2820290226%3E3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  95. Felgner S, et al. Bacteria in cancer therapy: renaissance of an old concept. Int J microbiol. 2016. https://doi.org/10.1155/2016/8451728.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fronzes R, Christie PJ, Waksman G. The structural biology of type IV secretion systems. Nat Rev Microbiol. 2009;7(10):703–14. https://doi.org/10.1038/nrmicro2218.

    Article  CAS  PubMed  Google Scholar 

  97. Farley MM, et al. Minicells, back in fashion. J Bacteriol. 2016;198(8):1186–95. https://doi.org/10.1128/JB.00901-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fensterle J, Bergmann B, Yone C, et al. Cancer immunotherapy based on recombinant Salmonella enterica serovar typhimurium aroA strains secreting prostate-specific antigen and cholera toxin subunit B. Cancer Gene Ther. 2008;15:85–93. https://doi.org/10.1038/sj.cgt.7701109.

    Article  CAS  PubMed  Google Scholar 

  99. Roider E, Jellbauer S, Köhn B, et al. Invasion and destruction of a murine fibrosarcoma by Salmonella-induced effector CD8 T cells as a therapeutic intervention against cancer. Cancer Immunol Immunother. 2011;60:371–80. https://doi.org/10.1007/s00262-010-0950-x.

    Article  PubMed  Google Scholar 

  100. Epaulard O, et al. Anti-tumor immunotherapy via antigen delivery from a live attenuated genetically engineered Pseudomonas aeruginosa type III secretion system-based vector. Mol Ther. 2006;14(5):656–61. https://doi.org/10.1016/j.ymthe.2006.06.011.

    Article  CAS  PubMed  Google Scholar 

  101. Kim S-J, Chang W, Oh M-K. Escherichia coli minicells with targeted enzymes as bioreactors for producing toxic compounds. Metab Eng. 2022;73:214–24. https://doi.org/10.1016/j.ymben.2022.08.006.

    Article  CAS  PubMed  Google Scholar 

  102. Paton AW, Morona R, Paton JC. Bioengineered microbes in disease therapy. Trends Mol Med. 2012;18(7):417–25. https://doi.org/10.1016/j.molmed.2012.05.006.

    Article  CAS  PubMed  Google Scholar 

  103. Grillot-Courvalin C, Goussard S, Courvalin P. Wild-type intracellular bacteria deliver DNA into mammalian cells. Cell Microbiol. 2002;4(3):177–86. https://doi.org/10.1046/j.1462-5822.2002.00184.x.

    Article  CAS  PubMed  Google Scholar 

  104. Felgner S, et al. aroA-deficient Salmonella enterica serovar typhimurium is more than a metabolically attenuated mutant. MBio. 2016;7(5):e01220-e1316. https://doi.org/10.1128/mbio.01220-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ginn SL, et al. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med. 2018;20(5):e3015. https://doi.org/10.1002/jgm.3015.

    Article  PubMed  Google Scholar 

  106. Zhang S, et al. Role of nontoxigenic Clostridium novyi in solid tumor therapy. Rev Med Microbiol. 2014;25(3):71–6. https://doi.org/10.1097/MRM.0000000000000005.

    Article  Google Scholar 

  107. Zhou S, et al. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018;18(12):727–43. https://doi.org/10.1038/s41568-018-0070-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu X, et al. Radiotherapy combined with an engineered of Salmonella typhimurium inhibits tumor growth in a mouse model of colon cancer. Exp Anim. 2016;65:413–8. https://doi.org/10.1538/expanim.16-0033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Felgner S, et al. Tumour-targeting bacteria-based cancer therapies for increased specificity and improved outcome. Microb Biotechnol. 2017;10(5):1074–8. https://doi.org/10.1111/1751-7915.12787.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Theys J, et al. Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 2001;8(4):294–7. https://doi.org/10.1038/sj.cgt.7700303.

    Article  CAS  PubMed  Google Scholar 

  111. Jahanban-Esfahlan R, et al. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2018;233(3):2019–31. https://doi.org/10.1002/jcp.25859.

    Article  CAS  PubMed  Google Scholar 

  112. Flentie K, et al. A bioluminescent transposon reporter-trap identifies tumor-specific microenvironment-induced promoters in salmonella for conditional bacterial-based tumor therapycancer cell-induced transcriptional response of Salmonella. Cancer Discov. 2012;2(7):624–37. https://doi.org/10.1158/2159-8290.CD-11-0201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Avner BS, Fialho AM, Chakrabarty AM. Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework. Bioengineered. 2012;3(5):262–70. https://doi.org/10.4161/bioe.21130.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Naffouje S, Goto M, Ryoo I, Green A, Das Gupta TK, Yamada T. A Method of tumor in vivo imaging with a new peptide-based fluorescent probe. Methods Mol Biol. 2022;2394:857–65. https://doi.org/10.1007/978-1-0716-1811-0_45.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Warso M, et al. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br J Cancer. 2013;108(5):1061–70. https://doi.org/10.1038/bjc.2013.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fialho AM, Chakrabarty AM. Patent controversies and court cases: cancer diagnosis, therapy and prevention. Cancer Biol Ther. 2012;13(13):1229–34. https://doi.org/10.4161/cbt.21958.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lulla RR, et al. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: a pediatric brain tumor consortium study. Neuro Oncol. 2016;18(9):1319–25. https://doi.org/10.1093/neuonc/now047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. de Gruijl TD, Janssen AB, van Beusechem VW. Arming oncolytic viruses to leverage antitumor immunity. Expert Opin Biol Ther. 2015;15(7):959–71. https://doi.org/10.1517/14712598.2015.1044433.

    Article  CAS  PubMed  Google Scholar 

  119. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2017;3(6):841–9. https://doi.org/10.1001/jamaoncol.2016.2064.

    Article  PubMed  Google Scholar 

  120. Russell SJ, Peng K-W, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30(7):658–70. https://doi.org/10.1038/nbt.2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Desjardins A, Vlahovic G, Friedman HS. Vaccine therapy, oncolytic viruses, and gliomas. Oncology (Williston Park). 2016;30(3):211–8.

    PubMed  Google Scholar 

  122. Vinay DS, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015. https://doi.org/10.1016/j.semcancer.2015.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Current Opin Immunol. 2016;39:1–6. https://doi.org/10.1016/j.coi.2015.10.009.

    Article  CAS  Google Scholar 

  124. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974. https://doi.org/10.1200/JCO.2014.59.4358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ugel S, et al. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin investig. 2015;125(9):3365–76.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Rosewell Shaw A, Suzuki M. Oncolytic viruses partner with T-cell therapy for solid tumor treatment. Front Immunol. 2018;9:2103. https://doi.org/10.3389/fimmu.2018.02103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Thorne SH, et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J Clin Investig. 2007;117(11):3350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li L, et al. Delivery and biosafety of oncolytic virotherapy. Front Oncol. 2020;10:475. https://doi.org/10.3389/fonc.2020.00475.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62. https://doi.org/10.1038/nrd4663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2(4):295–300. https://doi.org/10.1158/2326-6066.CIR-14-0015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Marchini A, et al. Immune conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-1PV case study. Front Immunol. 2019;10:1848. https://doi.org/10.3389/fimmu.2019.01848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gatti-Mays ME, et al. If we build it they will come: targeting the immune response to breast cancer. NPJ Breast Cancer. 2019;5(1):1–13. https://doi.org/10.1038/s41523-019-0133-7.

    Article  CAS  Google Scholar 

  133. Shen J, et al. Anti-cancer therapy with TNF α and IFN γ: a comprehensive review. Cell Prolif. 2018;51(4):e12441. https://doi.org/10.1111/cpr.12441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim J-H, Lee K-J, Lee S-W. Cancer immunotherapy with T-cell targeting cytokines: IL-2 and IL-7. BMB Rep. 2021;54(1):21. https://doi.org/10.5483/BMBRep.2021.54.1.257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rajani K, et al. Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol Ther. 2016;24(1):166–74. https://doi.org/10.1038/mt.2015.156.

    Article  CAS  PubMed  Google Scholar 

  136. Zamarin D, et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 2014;6(226):226ra32. https://doi.org/10.1126/scitranslmed.3008095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Khare R, et al. Generation of a Kupffer cell-evading adenovirus for systemic and liver-directed gene transfer. Mol Ther. 2011;19(7):1254–62. https://doi.org/10.1038/mt.2011.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lasswitz L, et al. Glycomics and proteomics approaches to investigate early adenovirus–host cell interactions. J Mol Biol. 2018;430(13):1863–82. https://doi.org/10.1016/j.jmb.2018.04.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Uusi-Kerttula H, et al. Oncolytic adenovirus: strategies and insights for vector design and immuno-oncolytic applications. Viruses. 2015;7(11):6009–42. https://doi.org/10.3390/v7112923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hendrickx R, et al. Innate immunity to adenovirus. Human Gene Ther. 2014;25(4):265–84. https://doi.org/10.1089/hum.2014.001.

    Article  CAS  Google Scholar 

  141. Tazawa H, et al. Impact of autophagy in oncolytic adenoviral therapy for cancer. Int J Mol Sci. 2017;18(7):1479. https://doi.org/10.3390/ijms18071479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rodriguez-Rocha H, et al. Adenoviruses induce autophagy to promote virus replication and oncolysis. Virology. 2011;416(1–2):9–15. https://doi.org/10.1016/j.virol.2011.04.017.

    Article  CAS  PubMed  Google Scholar 

  143. Ros C, et al. Protoparvovirus cell entry. Viruses. 2017;9(11):313. https://doi.org/10.3390/v9110313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Marchini A, et al. Oncolytic parvoviruses: from basic virology to clinical applications. Virol J. 2015;12(1):1–16. https://doi.org/10.1186/s12985-014-0223-y.

    Article  CAS  Google Scholar 

  145. Smith GL, et al. Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol. 2013;94(11):2367–92. https://doi.org/10.1099/vir.0.055921-0.

    Article  CAS  PubMed  Google Scholar 

  146. Chon HJ, et al. Tumor microenvironment remodeling by intratumoral oncolytic vaccinia virus enhances the efficacy of immune-checkpoint blockade potentiation of immunotherapy by oncolytic vaccinia virus. Clin Cancer Res. 2019;25(5):1612–23. https://doi.org/10.1158/1078-0432.CCR-18-1932.

    Article  CAS  PubMed  Google Scholar 

  147. Deng L, et al. An oncolytic vaccinia virus armed with GM-CSF and IL-24 double genes for cancer targeted therapy. OncoTargets Ther. 2020;13:3535. https://doi.org/10.2147/OTT.S249816.

    Article  Google Scholar 

  148. Steyer A, et al. High similarity of novel orthoreovirus detected in a child hospitalized with acute gastroenteritis to mammalian orthoreoviruses found in bats in Europe. J clin Microbiol. 2013;51(11):3818–25. https://doi.org/10.1128/JCM.01531-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Day JM. The diversity of the orthoreoviruses: molecular taxonomy and phylogentic divides. Infect Genet and Evol. 2009;9(4):390–400. https://doi.org/10.1016/j.meegid.2009.01.011.

    Article  CAS  Google Scholar 

  150. Rosen L, Hovis JF, Mastrota FM, Bell JA, Huebner R. Observations on a newly recognized virus (Abney) of the reovirus family. Am J Epidemiol. 1960;71:258–65. https://doi.org/10.1093/oxfordjournals.aje.a120109.

    Article  CAS  Google Scholar 

  151. Sabin AB. Reoviruses. A new group of respiratory and enteric viruses formerly classified as ECHO type 10 is described. Science. 1959;130(3386):1387–9. https://doi.org/10.1126/science.130.3386.1387.

    Article  CAS  PubMed  Google Scholar 

  152. Hashiro G, Loh PC, Yau JT. The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch Virol. 1977;54(4):307–15. https://doi.org/10.1007/BF01314776.

    Article  CAS  PubMed  Google Scholar 

  153. Ma W, He H, Wang H. Oncolytic herpes simplex virus and immunotherapy. BMC immunol. 2018;19(1):1–11. https://doi.org/10.1186/s12865-018-0281-9.

    Article  CAS  Google Scholar 

  154. Watson G, et al. Sequence and comparative analysis of the genome of HSV-1 strain McKrae. Virology. 2012;433(2):528–37. https://doi.org/10.1016/j.virol.2012.08.043.

    Article  CAS  PubMed  Google Scholar 

  155. Watanabe D, Goshima F. Oncolytic virotherapy by HSV. Adv Exp Med Biol. 2018;1045:63–84. https://doi.org/10.1007/978-981-10-7230-7_4.

    Article  CAS  PubMed  Google Scholar 

  156. Tanaka R, et al. The efficacy of combination therapy with oncolytic herpes simplex virus HF10 and dacarbazine in a mouse melanoma model. Am J Cancer Res. 2017;7(8):1693.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Shafren DR, Au GG, Nguyen T, Newcombe NG, Haley ES, Beagley L, Johansson ES, Hersey P, Barry RD. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res. 2004;10(1 Pt 1):53–60. https://doi.org/10.1158/1078-0432.ccr-0690-3.

    Article  CAS  PubMed  Google Scholar 

  158. Andtbacka RHI, et al. CALM study: a phase II study of intratumoral coxsackievirus A21 in patients with stage IIIc and stage IV malignant melanoma. Am Soc Clin Oncol. 2013. https://doi.org/10.1200/jco.2013.31.15_suppl.tps3128.

    Article  Google Scholar 

  159. De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I. Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients. 2019;11(7):1514. https://doi.org/10.3390/nu11071514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Armstrong N, et al. A systematic review of the international prevalence of BRCA mutation in breast cancer. J Clin Epidemiol. 2019;11:543. https://doi.org/10.2147/CLEP.S206949.

    Article  Google Scholar 

  161. Yedjou CG, Sims JN, Miele L, Noubissi F, Lowe L, Fonseca DD, et al. Health and racial disparity in breast cancer. In: Breast cancer metastasis and drug resistance: challenges and progress, 2019, pp. 31–49.

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AS prepared the first draft of the manuscript. MUJ and TM revised the manuscript and prepared the figures. BHA conceived the idea, and reviewed the manuscript.

Corresponding author

Correspondence to Bilal Haider Abbasi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbaz, A., Mahmood, T., Javed, M.U. et al. Current advances in microbial-based cancer therapies. Med Oncol 40, 207 (2023). https://doi.org/10.1007/s12032-023-02074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02074-x

Keywords

Navigation