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Abstract
Gliomas are the most prevalent neurological cancer in the USA and care modalities are not able to effectively combat these 
aggressive malignancies. Identifying new, more effective treatments require a deep understanding of the complex genetic 
variations and relevant pathway associations behind these cancers. Drawing connections between gene mutations with a 
responsive genetic target can help drive therapy selections to enhance patient survival. We have performed extensive molecu-
lar profiling of the Capicua gene (CIC), a tumor and transcriptional suppressor gene, and its mutation prevalence in reference 
to MAPK activation within clinical glioma tissue. CIC mutations occur far more frequently in oligodendroglioma (52.1%) 
than in low-grade astrocytoma or glioblastoma. CIC-associated mutations were observed across all glioma subtypes, and 
MAPK-associated mutations were most prevalent in CIC wild-type tissue regardless of the glioma subtype. MAPK activation, 
however, was enhanced in CIC-mutated oligodendroglioma. The totality of our observations reported supports the use of CIC 
as a relevant genetic marker for MAPK activation. Identification of CIC mutations, or lack thereof, can assist in selecting, 
implementing, and developing MEK/MAPK-inhibitory trials to improve patient outcomes potentially.
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Background

In 2022, neurological cancers were estimated to exceed 
25,000 cases and result in over 18,000 deaths in the USA 
[1]. Around 80% of these deaths were due to malignant 

gliomas, the most common primary brain cancer in adults 
[2]. Diffuse adult gliomas are primarily categorized as either 
astrocytomas or oligodendrogliomas. Lower-grade (WHO 
2–3) astrocytomas encompass nearly 10% of gliomas, while 
Grade 4 astrocytomas, also known as glioblastoma multi-
forme (GBM), account for 55% of all gliomas. These highly 
aggressive tumors exhibit one of the lowest survival rates of 
all cancers, with a 10-year survival of just 2.6% [3, 4]. Five-
year survival rates for grades 2 and 3 astrocytomas range 
between 30 and 50%, respectively [5]. Oligodendrogliomas, 
defined by the presence of IDH1/2 mutation and co-occur-
ring loss of chromosomes 1p and 19q, make up < 7% of adult 
diffuse glioma diagnoses. They are relatively slow-growing 
tumors, with a much better prognosis if discovered at an 
early age [5–7].

The Capicua (CIC) gene is a negative regulator of the 
mitogen-activated protein kinase (MAPK) signaling path-
way [8]. Originally studied in Drosophila, CIC has been 
recognized as a prospective tumor suppressor gene that 
mediates cell proliferation and mobility [9]. Located on 
chromosome 19q, CIC is mutated in nearly 70% of oligo-
dendrogliomas, contributing to poor patient prognosis [10, 
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11]. CIC knockout, deletion, and mutations have been shown 
to influence the formation of other cancers, including T-cell 
lymphoblastic lymphoma, Ewing sarcoma, and metastasis of 
epidermal growth factor receptor (EGFR) inhibitor-resistant 
lung adenocarcinoma [8, 12–14]. With respect to glioma, 
studies have shown frequent mutation of CIC in oligoden-
droglioma but very low mutation frequency in GBM and 
lower-grade astrocytoma [9]. However, studies performed 
in Drosophila suggest a relationship between CIC muta-
tions and enhanced MAPK pathway signaling [15]. Nearly 
88% of gliomas exhibit MAPK pathway alterations, affect-
ing gene-regulated cell processes, including invasion and 
proliferation, and playing a role in growth and invasion [16]. 
Relationships between CIC and its expression levels, MAPK 
activation, and mutations within both genes can modulate 
apoptotic activity in malignant cells and enhance survival 
under hypoxic conditions [17]. Our work seeks to establish 
a relationship between CIC and MAPK in glioma, as well 
as generate an understanding of the implications of CIC and 
MAPK gene expression and mutation levels as they pertain 
to patient survival and response to current standards of care, 
possibly introducing CIC as a novel gene target for MAPK-
directed therapies.

Methods

Next‑generation sequencing (NGS)

NGS was performed on genomic DNA isolated from 
formalin-fixed paraffin-embedded (FFPE) tumor sam-
ples by a commercial CAP/CLIA lab using the NextSeq 
or NovaSeq 6000 platforms (Illumina, Inc., San Diego, 
CA). For NextSeq-sequenced tumors, a custom-designed 
SureSelect XT assay was used to enrich 592 whole-gene 
targets (Agilent Technologies, Santa Clara, CA). For 
NovaSeq-sequenced tumors, a panel of more than 700 
clinically relevant genes was sequenced at high coverage 
and high read-depth, along with another panel designed to 
enrich for additional > 20,000 genes at a lower depth. All 
variants were detected with > 99% confidence based on 
allele frequency and amplicon coverage, with an average 
sequencing depth of coverage of > 500 × and an analytic 
sensitivity of 5%. Variant testing included single-nucleo-
tide variants (SNV) and insertions and deletions (INDEL) 
on a panel of 720 genes. Copy number alteration (CNA) 
analysis was performed on over 400 genes and a 592-
gene panel was used for all mutations. Prior to molecu-
lar testing, tumor enrichment was achieved by harvesting 
targeted tissue using manual microdissection techniques. 
For DNA sequencing, 20% of minimum tumor content 
was required. Genetic variants identified were interpreted 
by board-certified molecular geneticists and categorized 

as ‘pathogenic,’ ‘likely pathogenic,’ ‘variant of unknown 
significance,’ ‘likely benign,’ or ‘benign,’ according to 
the American College of Medical Genetics and Genomics 
(ACMG) standards. When assessing mutation frequencies 
of individual genes, ‘pathogenic’ and ‘likely pathogenic’ 
were counted as mutations [18]. The copy number altera-
tion (CNA) of each exon is determined by calculating the 
average depth of the sample along with the sequencing 
depth of each exon and comparing this calculated result 
to a pre-calibrated value.

TMB was measured by counting all non-synonymous 
missense, nonsense, in-frame insertion/deletion, and 
frameshift mutations found per tumor that had not been 
previously described as germline alterations in dbSNP151, 
Genome Aggregation Database (gnomAD) databases or 
benign variants identified by Caris geneticists. A cutoff 
point of ≥ 10 mutations per MB was used based on the KEY-
NOTE-158 pembrolizumab trial which showed that patients 
with a TMB of ≥ 10 mt/MB across several tumor types had 
higher response rates than patients with a TMB of < 10 mt/
MB [19].

Whole‑transcriptome sequencing

Gene fusion detection was performed on mRNA isolated 
from a formalin-fixed paraffin-embedded tumor sample 
using the Illumina NovaSeq platform (Illumina, Inc., San 
Diego, CA) and Agilent SureSelect Human All Exon V7 bait 
panel (Agilent Technologies, Santa Clara, CA). FFPE speci-
mens underwent pathology review to diagnose percent tumor 
content and tumor size; a minimum of 10% of tumor content 
in the area for microdissection was required to enable enrich-
ment and extraction of tumor-specific RNA. A Qiagen RNA 
FFPE tissue extraction kit, was used for extraction, and the 
RNA quality and quantity were determined using the Agilent 
TapeStation. Biotinylated RNA baits were hybridized to the 
synthesized and purified cDNA targets and the bait-target 
complexes were amplified in a post-capture PCR. The result-
ant libraries were quantified and normalized, and the pooled 
libraries are denatured, diluted, and sequenced; the reference 
genome used was GRCh37/hg19 and analytical validation 
of this test demonstrated ≥ 97% Positive Percent Agreement 
(PPA), ≥ 99% Negative Percent Agreement (NPA) and ≥ 99% 
Overall Percent Agreement (OPA) with a validated compara-
tor method. For gene expression, the whole transcriptome 
from patients was sequenced to an average of 60-M reads. 
Raw data were demultiplexed by Illumina Dragen BioIT 
accelerator, trimmed, counted, PCR duplicates removed, and 
aligned to human reference genome hg19 by STAR aligner. 
For transcript counting, transcripts per million numbers 
was generated using the Salmon expression pipeline [20]. 
Immune cell fraction was calculated by quanTIseq [21].
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PyroSeq

MGMT promoter methylation was evaluated by pyrose-
quencing. DNA extraction from paraffin-embedded tumor 
samples was performed for subsequent pyrosequencer-
based analysis of 5 CpG sites (CpGs 74–78). All DNA 
samples underwent a bisulfite treatment and were PCR 
amplified with primers specific for exon 1 of MGMT 
(GRCh37/hgl9—chr10: 131,265,448- 131,265,560). The 
methylation status of PCR-amplified products is deter-
mined using the PyroMark system (Qiagen, Germantown, 
MD). Samples with ≥ 7% and < 9% methylation are con-
sidered to be equivocal or gray zone results.

Immunohistochemistry

Immunohistochemistry (IHC) of MLH1, M1 antibody; 
MSH2, G2191129 antibody; MSH6, 44 antibody; and 
PMS2, EPR3947 antibody were performed on FFPE sec-
tions of glass slides. Slides were stained using automated 
staining techniques, per the manufacturer’s instructions 
(Ventana Medical Systems, Inc. Tucson, AZ) and were 
optimized and validated per CLIA/CAP and ISO require-
ments. Staining was scored for intensity (0 = no staining; 
1 + = weak staining; 2 + = moderate staining; 3 + = strong 
staining) and staining percentage (0–100%). The com-
plete absence of protein expression of any of the 4 pro-
teins tested (0 + in 100% of cells) was considered deficient 
MMR. A board-certified pathologist evaluated all IHC 
results independently.

MSI/MMR status

A combination of multiple test platforms was used to 
determine the MSI or MMR status of the tumors profiled, 
including fragment analysis (FA, Promega, Madison, WI), 
IHC (see IHC method), and NGS (7000 target microsat-
ellite loci were examined and compared to the reference 
genome hg19 from the University of California). The three 
platforms generated highly concordant results, as previ-
ously reported. In the rare cases of discordant results, the 
MSI or MMR status of the tumor was determined in the 
order of IHC, FA, and NGS [22].

MPAS

MAPK activation score (MPAS) score was calculated 
based on the TPM values of RNA expression of 10 genes 
(SPRY2, SPRY4, ETV4, ETV5, DUSP4, DUSP6, CCND1, 
PHLDA1, EPHA2, and EPHA4) using a previously 

reported algorithm as a transcriptomic indicator of MAPK 
pathway activation [23].

CODEai

Real-world overall survival (rwOS) information was 
obtained from insurance claims data and calculated from 
first of treatment time to last of treatment time (TOT). 
Kaplan–Meier estimates were calculated for molecularly 
defined patient cohorts. Significance was determined as p 
values of < 0.05.

Results

CIC demographic and mutation rates in glioma 
subtypes

A total of 7341 glioma tumor samples were classified based 
on histology subtypes and characterized for CIC muta-
tion status (Table 1). In total, 296 (4.0%) of gliomas were 
CIC- mutated, including glioblastoma (0.6%), astrocytoma 
(1.7%), oligodendroglioma (52.1%), and mixed/unclear typ-
ing (10.3%). Of the 19 CIC-mutated astrocytoma samples, 
10 were grade 3 and 9 were grade 2. None of the pilocytic/
grade 1 astrocytomas were CIC mutated. Of the 202 CIC-
mutated oligodendroglioma samples, 93 were grade 3 and 
109 were grade 2 (Table 2). In all gliomas analyzed together, 
CIC mutations were associated with younger age (46 yrs. vs. 
58 yrs.) and female gender (50% vs. 41%). These differences 
were significant, however, only in GBM tumors (median age 
49 yrs. vs. 60 yrs., p ≤ 0.00019; female prevalence 58% vs. 
40%, p ≤ 0.037; Table 1). Additionally, the association with 
age was reversed in the oligodendroglioma subset, with CIC-
mutated tumors being found in significantly older patients 
(median age 45.5 yrs. vs. 42 yrs., p ≤ 0.014).

CIC mutations are associated with increased 
alteration rates of glioma‑relevant genes but Not 
MAPK‑associated genes

Whole-Transcriptome Sequencing (WTS), Next-Generation 
Sequencing (NGS), and immunohistochemistry (IHC) were 
performed on FFPE tissue samples to identify any molecular 
alterations associated with CIC mutation status. As shown in 
Fig. 1A, CIC-mutated tumor samples in all gliomas exhib-
ited significant increases in mutation rates of oncogenic driv-
ers, including FUBP1, NOTCH1, ARID1A, IDH2, MLH1, 
TET2, KMT2C, and CDKN1B. In addition, increased rates 
of 1p19q codeletion, TERT promoter mutations, MGMT 
promoter methylation, and dMMR/MSI were observed in 
CIC-mutated samples.
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Conversely, only MAPK pathway-activating alterations 
were increased in wild-type CIC tumors compared to CIC-
mutated tumors. Significant increases of EGFR alterations 
(including activating mutations, fusions, and the EGFRvIII 
variant) and NF1 and BRAF mutations were observed in CIC 
wild-type samples (Fig. 1B). The only significant increase 
in gene mutation associated with CIC mutation compared 
to CIC wild-type was MAP2K4 (Fig. 1B). Further genetic 

alterations associated with CIC mutation status is shown 
in the OncoPrint in Fig. 1C. Significant genetic alterations, 
shown in green, were observed in CIC wild-type samples, 
while few alterations were observed in CIC-mutant samples, 
confirming the largely mutually exclusive pattern of CIC 
mutation with other MAPK pathway changes.

Our data across GBM (Fig. 1D), astrocytoma (Fig. 1E), 
and oligodendroglioma (Fig. 1F) show MAPK-associated 
gene alterations between CIC-mutated glioma and CIC 
wild-type tumors. Specifically, CIC wild-type tissue exhib-
its higher mutation rates of MAPK-associated genes across 
all glioma subtypes, including more valent EGFR mutation, 
amplification, EGFRvIII variant, and EGFR fusion. When 
the relative relationship of MAPK-associated alterations and 
CIC mutations are examined on OncoPrints (Fig. 2A–C), 
GBM MAPK-associated gene alterations (Fig. 2A) were 
shown to be quite prominent in CIC wild-type tumor sam-
ples, while CIC-mutated tumors had few alterations in NF1, 
KRAS, and EGFR. Similarly, astrocytoma (Fig. 2B) and oli-
godendroglioma (Fig. 2C) exhibited a much higher rate of 
MAPK-relevant genetic alterations in CIC wild-type tumors 
where CIC-mutant tumors only displayed few alterations in 
EGFR, NF1, and KRAS.

Quantitatively capturing the MAPK pathway association 
with CIC mutation status via the MAPK Pathway Activity 
Score (MPAS) scoring method may assist in prognostic eval-
uations and biomarker associations in various cancer types 
[23]. Current literature has not yet described MPAS scoring 

Table 1   Demographic patient 
data by Capicua (CIC) mutation 
status and glioma subtype

CIC Mut CIC WT p-value

All Gliomas
Count (N) 296 7169
Median age [range] (N) 46 [20—78] (296) 58 [0—89] (7169) 5.84E-22
Male 49.7% (147/296) 59.4% (4257/7169) 0.000863927
Female 50.3% (149/296) 40.6% (2912/7169)
Oligodendroglioma
Count (N) 202 186
Median age [range] (N) 45.5 [21—77] (202) 42 [5—78] (186) 0.014423866
Median TMB [range] (N) 4.0 [1.0—272.0] (197) 3.0 [0.0—95.0] (181) 0.000753571
Male 50.0% (101/202) 58.1% (108/186) 0.111398203
Female 50.0% (101/202) 41.9% (78/186)
Astrocytoma
Count (N) 19 1094
Median age [range] (N) 41 [24—75] (19) 41 [0—89] (1094) 0.516739491
Female 42.1% (8/19) 41.7% (456/1094) 0.970399172
Male 57.9% (11/19) 58.3% (638/1094)
GBM
Count (N) 33 5310
Median age [range] (N) 49 [20—78] (33) 60 [2— 89] (5310) 0.000197057
Male 42.4% (14/33) 60.2% (3197/5310) 0.03755952
Female 57.6% (19/33) 39.8% (2113/5310)

Table 2   CIC mutation rates within each glioma subtype

Tumor type Mut WT Total Mut %

Astrocytoma 19 1094 1113 1.7
Anaplastic/grade 3/high grade 10 551 561 1.8
Diffuse/grade2/low grade 9 447 456 2.0
Pilocytic/grade 1 0 96 96 0.0
Ependymoma 0 13 13 0.0
Ganglioglioma 0 37 37 0.0
GBM 33 5310 5343 0.6
Gliosarcoma 0 124 124 0.0
Glioneuronal 0 11 11 0.0
Oligodendroglioma 202 186 388 52.1
Anaplastic/grade 3/high grade 93 93 186 50.0
Diffuse/grade2/low grade 109 93 202 54.0
Pleomorphic xanthoastrocytoma 0 29 29 0.0
Unclear 42 365 407 10.3
Total 296 7169 7341 4.0
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in glioma in association with CIC mutation status. As shown 
in Fig. 2D–G, significant differences in MAPK activation in 
CIC-mutant tumors as compared to wild-type only appear in 
oligodendroglioma, but is not seen in GBM, astrocytoma, or 
when all three histological subtypes are combined.

GBM, astrocytoma, and oligodendroglioma 
oncogenic profiles are enhanced in CIC‑mutated 
samples versus CIC wild‑type samples

The most prominent glioma subtypes, GBM, astrocytoma, and 
oligodendroglioma, were individually analyzed to character-
ize molecular differences between CIC mutants and their CIC 
wild-type counter parts. As shown in Fig. 3, a majority of 
oncogenic driver-related genetic alterations were observed in 
CIC-mutant tumors in GBM (Fig. 3A), astrocytoma (Fig. 3B), 
and oligodendroglioma (Fig. 3C). Two similarities among the 

three subtypes were characterized: high prevalence of MGMT 
promoter methylation, FUBP1 mutation, and IDH1 mutation 
associated with CIC mutants. Numerous differences, however, 
were apparent, including increased TMB-high and dMMR/
MSI-H prevalence in GBM, and a high rate of TERT promoter 
mutation and 1p19q codeletion in oligodendroglioma. An 
increased TP53 mutation rate was observed in CIC wild-type 
oligodendrogliomas. These results confirm previous reports of 
significant genetic differences between glioma subtypes and 
reveal tumor type-specific molecular associations with CIC 
[24].

Fig. 1   Gene mutation rates are higher in CIC-mutant tissue except for 
MAPK-related gene in all glioma and all glioma subtypes. A selec-
tion of genes and signatures from the array of analysis techniques 
relevant to tumorigenesis exhibiting mutation relative to CIC muta-
tion or wild-type status (a). Similarly, MAPK-relevant gene mutation 
status was also characterized (b) and quantified by CIC mutation sta-
tus; Red = CIC MUT, Blue = CIC WT. MAPK-relevant genes shown 

via oncoprint by CIC mutation status as CIC mutant (light blue), 
CIC wild-type (orange), genetic alteration (green), no genetic change 
(gray), or no data available (white) (c). Mutation rates of MAPK-
associated genes in GBM (d), astrocytoma (e), and oligodendro-
glioma (f) by CIC mutation status; Red = CIC MUT, Blue = CIC WT. 
*q < 0.05, **q < 0.01, and ***q < 0.001
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CIC mutation is positively correlated with patient 
survival in oligodendroglioma and temozolomide 
(TMZ)‑treated glioma

Patients harboring both CIC mutation and CIC wild-type 
oligodendroglioma, astrocytoma, and GBM were moni-
tored for over one year following diagnosis to last con-
tact. In oligodendroglioma (Fig. 4A), patients with CIC 
mutations (90) survived a median 3751 days, while CIC 

wild-type patients had a median survival of 1911 days. 
The hazard ratio (HR) between the two groups was 1.758 
and a statistically significant difference of median survival 
of 1840 days yielding p ≤ 0.025. Similarly,  as shown in 
Fig. 4B, patients with either astrocytoma or GBM and CIC 
wild-type status were grouped into cohort 1 and patients 
with either astrocytoma or GBM and CIC mutations were 
grouped into cohort 2. Cohort 1 was followed to a median 
536-day survival and cohort 2 did not show a quantifiable 

Fig. 2   MAPK-relevant genetic alterations are more frequently 
observed in CIC-mutated GBM and astrocytoma with MAPK Acti-
vation Score (MPAS) significantly lower for CIC wild-type oligoden-
droglioma. Oncoplot projections depict MAPK-relevant gene altera-
tions (green), no gene alterations (gray), or no data (white) for GBM 
(a), astrocytoma (b), and oligodendroglioma (c) by CIC mutation 

status. Quantification of MAPK activation was calculated via expres-
sion profiles of 10 MAPK-associated genes, yielding the MPAS. No 
significant activation differences were observed between CIC-mutant 
(red) and CIC wild-type (blue) tissues in all glioma (d), GBM (e), 
or astrocytoma (f). Oligodendroglioma (g) exhibited lower MPAS in 
CIC wild-type tissue. ****q < 0.0001
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end survival date. Because of this, the median difference 
between the two cohorts was characterized as ‘infinite’ 
and a p ≤ 0.0001. Additionally, patients who were treated 
with a TMZ regimen were monitored from first dose of 
TMZ until last contact. Similar to patients who were not 
undergoing TMZ treatment, both the oligodendroglioma 
and combined GBM + astrocytoma cohorts with mutated 
CIC exhibited longer survival periods (Supp. Figure 1). 
Specifically, oligodendroglioma patients currently on 

TMZ therapy with CIC mutation survived a median of 
2296  days, while patients with wild-type CIC treated 
with TMZ survived a median of 907  days (p = 0.002, 
HR = 2.865) (Supp. Figure  1). In GBM + astrocytoma 
patients, those with mutated CIC currently on TMZ ther-
apy survived for a median of 1874 days and those patients 
without CIC mutation survived a median of 602 days 
(p ≤ 0.001, HR = 2.688) (Supp. Figure 1).

Fig. 3   Genetic alterations in glioma subtypes are more prevalent in 
CIC-mutant tissue. Mutation rates of oncologic-related genes and 
signatures quantified by NGS, Whole-Exome Sequencing (WES) and 

WTS for GBM (a), astrocytoma (b), and oligodendroglioma (c) by 
CIC mutation status. *q < 0.05, **q < 0.01, and ***q < 0.001

Fig. 4   Glioma patient survival is enhanced with the presence of CIC mutation in comparison to CIC wild-type. CODEai survival analysis on oli-
godendroglioma (a) and astrocytoma and GBM patients (grouped) (b) by mutated CIC (red) status and wild-type CIC (blue) status
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Discussion

Gliomas are difficult to treat and usually result in patient 
demise within five years of diagnosis [1]. Identification 
of novel biomarkers to provide clarity on possible patient 
prognosis and therapeutic response can help create a set of 
reliable indicators for selecting appropriate therapies [25]. 
Our study analyzed the prospect of using the CIC gene as 
an indication of MAPK upregulation within glioma sub-
types as well as exploring the underlying genetic land-
scape that coincides with CIC mutations. This work has 
shown that the mutation of CIC in glioma was mutually 
exclusive to MAPK genomic driver alterations, specifi-
cally NF1, BRAF, and KRAS. Further, characterization of 
MAPK activation via MPAS revealed higher activation for 
mutated CIC in comparison to wild-type CIC. This obser-
vation is in line with other studies that discuss the negative 
correlation between unaltered CIC, MAPK activation, and 
MAPK driver expression [8, 13, 14, 26].

The current standard of care for all glioma subtypes 
is tumor resection, if possible [27]. Further decisions on 
therapeutic modalities are then based on the biomark-
ers of the tumor and, according to the 5th Edition of the 
World Health Organization Classification of Tumors of the 
Central Nervous System (WHO CNS5), particularly the 
mutational status of isocitrate dehydrogenase (IDH) and 
the methylation status of methylguanine methyltransferase 
(MGMT) gene [28]. The National Comprehensive Cancer 
Network (NCCN) utilizes the status of IDH1 and IDH2, 
MGMT methylation, codeletion of 1p/19q, and ATRX 
mutation to drive therapeutic decisions [29]. Low-grade 
gliomas are commonly treated with radiotherapy and a 
combination of concurrent or adjuvant TMZ chemother-
apy and/or procarbazine and vincristine dependent on the 
patient-specific molecular markers [28–30]. Patients with 
high-grade glioma, specifically GBM, are usually treated 
with local radiotherapy and combinatorial TMZ chemo-
therapy [28, 31]. Unfortunately, most patients receiving 
these therapies either do not respond or experience recur-
rence, commonly resulting in death. Numerous clinical 
trials have been introduced attempting to improve the 
treatment of glioma, including growth factor receptor 
inhibition, both EGFR and fibroblast (FGFR); apoptotic 
pathway regulation; angiogenic targets; and several immu-
notherapeutic approaches [32–39]. Though some trials 
have had success in improving overall survival [32–35, 
39], limitations arise in matching targeted therapies to the 
molecular profile of glioma subtypes.

Here, we describe the prospect of the CIC gene as a 
target to evaluating tumorigenesis and predicting MAPK-
associated therapeutic selections. Previous literature has 
reported CIC expression and mutation patterns in gliomas 

with nearly 40% of oligodendroglioma tumors harboring 
CIC alterations [10, 40]. Further, these alterations in oligo-
dendroglioma along with loss of FUBP1 expression have 
been shown to be potential markers of rapid recurrence 
[10]. We have confirmed these observations by showing 
50.2% mutation rate in oligodendroglioma, 51.4% muta-
tion rate in anaplastic, high-grade oligodendroglioma, and 
49.0% mutation rate in diffuse, low-grade oligodendro-
glioma. Glioblastoma and astrocytoma both exhibited very 
low mutation rates at 0.6% and 1.9%, respectively. Though 
mutation rates vary significantly across histological sub-
types, each subtype exhibited fewer MAPK-associated 
gene mutations in concordance with CIC mutation. Addi-
tionally, mutation of CIC resulted in increased alterations 
of genes and cell signals related to tumorigenesis and 
MAPK activation. Because of this, mutated CIC can pos-
sibly be a predictor of MAPK mutation rate, pathway acti-
vation, and heightened tumorigenesis. Characterizing this 
relationship with MAPK through MPAS, mutant CIC, spe-
cifically, drove higher trending MAPK activation scores in 
GBM and astrocytoma, with significant increases shown 
in oligodendroglioma. Interestingly, the survival analy-
ses via CODEai algorithm reported enhanced survival in 
patients with CIC mutations over patients with CIC wild-
type. Across oligodendroglioma, astrocytoma, and GBM, 
patients with identified CIC mutations survived longer, 
on average, than patients without mutations. This was the 
case for all CODEai analyses, including those patients 
treated with TMZ (Supp. Figure 1) and those treated with 
TMZ harboring IDH mutations and MGMT methylation 
(Supp. Figure 2).

Utilizing inhibitory agents to block oncogenic molecular 
cascades from occurring have shown the most promise in 
glioma therapies. Four MEK/MAPK inhibitors have been 
approved for use in solid tumors: trametinib, binimetinib, 
selumetinib, and cobimetinib [41–43]. Each have been eval-
uated in clinical cohorts and have yielded results support-
ing use in both pediatric and adult populations with MAPK 
aberrations, adding to the repertoire of available therapies 
outside of TMZ [43–46]. These results exemplify the abil-
ity of these therapeutics to penetrate the blood brain barrier 
effectively and should be further studied to evaluate response 
variation in patients with MAPK-related genetic variation.

Though the findings mentioned do lend insight into the 
difficulties that are seen with treatment of glioma, it was 
describing the relationship between CIC and MAPK that 
elucidate on treatment efficacy and survivability concerns 
that drive the significance home. While a significant amount 
of attention is being given toward immunotherapies in many 
other solid tumors, the ‘cold’ TME of glioma, with no cor-
relative relationship to CIC status (Supp. Figure 1), renders 
many immunotherapies ineffective. We have shown that 
mutated CIC, a MAPK-relevant marker, causes an increased 
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rate of oncogenic mutations, possibly driving tumorigenesis. 
In addition, mutated CIC created increased MAPK activa-
tion significantly in oligodendroglioma. Because the largest 
percentage of glioma subtype CIC mutations are found in 
oligodendroglioma, this observation may help in selecting 
MAPK inhibitors as a therapeutic option for these patients 
in addition to the ability of MAPK inhibitors to cross the 
blood–brain barrier, overcoming a major challenge that 
significantly reduces the efficacy of most therapeutics [47]. 
Even though few significant shifts in the immune landscape 
were shown with CIC mutations, this work contributes to the 
understanding of genetic mutations that can harbor signifi-
cant consequences of tumor progression. Future work on the 
CIC–MAPK relationship should include in vivo studies to 
examine the efficacy of MAPK inhibition on glioma tumors 
harboring CIC mutation, preferably using the four MAPK 
inhibitors currently approved for clinical use.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12032-​023-​02071-0.
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