Skip to main content

Advertisement

Log in

Apelin receptor antagonist boosts dendritic cell vaccine efficacy in controlling angiogenic, metastatic and apoptotic-related factors in 4T1 breast tumor-bearing mice

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Apelin/APJ axis plays a critical role in cancer progression, thus its targeting inhibits tumor growth. However, blocking of Apelin/APJ axis in combination with immunotherapeutic approaches may be more effective. This study aimed to investigate the effects of APJ antagonist ML221 in combination with a DC vaccine on angiogenic, metastatic and apoptotic-related factors in a breast cancer (BC) model. Four groups of female BALB/c mice with 4T1-induced BC were treated with PBS, APJ antagonist ML221, DC vaccine, and “ML221 + DC vaccine”. After completion of the treatment, the mice were sacrificed and the serum levels of IL-9 and IL-35 as well as the mRNA expression of angiogenesis (including VEGF, FGF-2, and TGF-β), metastasis (including MMP-2, MMP-9, CXCR4) and apoptosis-related markers (Bcl-2, Bax, Caspase-3) in tumor tissues were determined using ELISA and real-time PCR, respectively. Angiogenesis was also evaluated by co-immunostaining of tumor tissues with CD31 and DAPI. Primary tumor metastasis to the liver was analyzed using hematoxylin–eosin staining. The efficiency of combination therapy with “ML221 + DC vaccine” was remarkably higher than single therapies in preventing liver metastasis compared to the control group. In comparison with the control group, combination therapy could significantly reduce the expression of MMP-2, MMP-9, CXCR4, VEGF, FGF-2, and TGF-β in tumor tissues (P < 0.05). It also decreased the serum level of IL-9 and IL-35 compared with the control group (P < 0.0001). Moreover, vascular density and vessel diameter were significantly reduced in the combination therapy group compared with the control group (P < 0.0001). Overall, our findings demonstrate that combination therapy using a blocker of the apelin/APJ axis and DC vaccine can be considered a promising therapeutic program in cancers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Peart O. Metastatic breast cancer. Radiol Technol. 2017;88(5):519m-m539.

    PubMed  Google Scholar 

  3. Emens LA. Breast cancer immunotherapy: facts and hopes. Clin Cancer Res. 2018;24(3):511–20.

    Article  CAS  PubMed  Google Scholar 

  4. Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL, et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell. 2020;37(3):289-307.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, et al. Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 2020;13(1):107.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saxena M, Bhardwaj N. Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer. 2018;4(2):119–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Willigen WW, Bloemendal M, Gerritsen WR, Schreibelt G, de Vries IJM, Bol KF. Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front Immunol. 2018;9:2265.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hao L, Zhang C, Qiu Y, Wang L, Luo Y, Jin M, et al. Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. Cancer Lett. 2007;253(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  10. Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med. 2019;9(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77(9):1745–70.

    Article  CAS  PubMed  Google Scholar 

  12. He J, Wang L, Zhang C, Shen W, Zhang Y, Liu T, et al. Interleukin-9 promotes tumorigenesis through augmenting angiogenesis in non-small cell lung cancer. Int Immunopharmacol. 2019;75:105766.

    Article  CAS  PubMed  Google Scholar 

  13. Lu D, Qin Q, Lei R, Hu B, Qin S. Targeted blockade of interleukin 9 inhibits tumor growth in murine model of pancreatic cancer. Adv Clin Exp Med. 2019;28(10):1285–92.

    Article  PubMed  Google Scholar 

  14. Cai L, Zhang Y, Zhang Y, Chen H, Hu J. Effect of Th9/IL-9 on the growth of gastric cancer in nude mice. Onco Targets Ther. 2019;12:2225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Liu JQ, Liu Z, Shen R, Zhang G, Xu J, et al. Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis. J Immunol. 2013;190(5):2415–23.

    Article  CAS  PubMed  Google Scholar 

  16. Gan W, Zhang M-X, Huang J-L, Zhou P-Y, Zhou C, Liu G, et al. Interleukin 35 activates intratumor neovascularization via enhanced secretion of FGF2 in hepatocellular carcinoma through the recruitment of neutrophils, and blocking it could facilitate the efficacy of the PD-1 antibody. Res Square. 2020. https://doi.org/10.21203/rs.3.rs-130889/v1.

    Article  Google Scholar 

  17. Fulda S. Tumor resistance to apoptosis. Int J Cancer. 2009;124(3):511–5.

    Article  CAS  PubMed  Google Scholar 

  18. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251(2):471–6.

    Article  CAS  PubMed  Google Scholar 

  19. Masoumi J, Jafarzadeh A, Khorramdelazad H, Abbasloui M, Abdolalizadeh J, Jamali N. Role of Apelin/APJ axis in cancer development and progression. Adv Med Sci. 2020;65(1):202–13.

    Article  PubMed  Google Scholar 

  20. Antushevich H, Wójcik M. Review: Apelin in disease. Clin Chim Acta. 2018;483:241–8.

    Article  CAS  PubMed  Google Scholar 

  21. Castan-Laurell I, Masri B, Valet P. The apelin/APJ system as a therapeutic target in metabolic diseases. Expert Opin Ther Targets. 2019;23(3):215–25.

    Article  CAS  PubMed  Google Scholar 

  22. Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S, et al. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta. 1999;1452(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  23. Leeper NJ, Tedesco MM, Kojima Y, Schultz GM, Kundu RK, Ashley EA, et al. Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am J Physiol Heart Circ Physiol. 2009;296(5):H1329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo Q, Liu G, Chen G, Guo D, Xu L, Hang M, et al. Apelin protects against sepsis-induced cardiomyopathy by inhibiting the TLR4 and NLRP3 signaling pathways. Int J Mol Med. 2018;42(2):1161–7.

    CAS  PubMed  Google Scholar 

  25. Uribesalgo I, Hoffmann D, Zhang Y, Kavirayani A, Lazovic J, Berta J, et al. Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy. EMBO Mol Med. 2019;11(8):e9266.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Berta J, Kenessey I, Dobos J, Tovari J, Klepetko W, Jan Ankersmit H, et al. Apelin expression in human non-small cell lung cancer: role in angiogenesis and prognosis. J Thorac Oncol. 2010;5(8):1120–9.

    Article  PubMed  Google Scholar 

  27. Hall C, Ehrlich L, Venter J, O’Brien A, White T, Zhou T, et al. Inhibition of the apelin/apelin receptor axis decreases cholangiocarcinoma growth. Cancer Lett. 2017;386:179–88.

    Article  CAS  PubMed  Google Scholar 

  28. Muto J, Shirabe K, Yoshizumi T, Ikegami T, Aishima S, Ishigami K, et al. The apelin-APJ system induces tumor arteriogenesis in hepatocellular carcinoma. Anticancer Res. 2014;34(10):5313–20.

    PubMed  Google Scholar 

  29. Frisch A, Kälin S, Monk R, Radke J, Heppner FL, Kälin RE. Apelin controls angiogenesis-dependent glioblastoma growth. Int J Mol Sci. 2020;21(11):4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Podgórska M, Pietraszek-Gremplewicz K, Nowak D. Apelin effects migration and invasion abilities of colon cancer cells. Cells. 2018;7(8):113.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hao YZ, Li ML, Ning FL, Wang XW. APJ Is associated with treatment response in gastric cancer patients receiving concurrent chemoradiotherapy and endostar therapy. Cancer Biother Radiopharm. 2017;32(4):133–8.

    CAS  PubMed  Google Scholar 

  32. Berta J, Török S, Tárnoki-Zách J, Drozdovszky O, Tóvári J, Paku S, et al. Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. Sci Rep. 2021;11(1):5798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Picault FX, Chaves-Almagro C, Projetti F, Prats H, Masri B, Audigier Y. Tumour co-expression of apelin and its receptor is the basis of an autocrine loop involved in the growth of colon adenocarcinomas. Eur J Cancer. 2014;50(3):663–74.

    Article  CAS  PubMed  Google Scholar 

  34. Tian L, Liu H-Z, Zhang Q, Geng D-Z, Yang J, Geng H-T, et al. Regulation of apelin is associated with proliferation and angiogenesis in gastric cancer. Res Square. 2020. https://doi.org/10.21203/rs.3.rs-104563/v1.

    Article  Google Scholar 

  35. Harford-Wright E, Andre-Gregoire G, Jacobs KA, Treps L, Le Gonidec S, Leclair HM, et al. Pharmacological targeting of apelin impairs glioblastoma growth. Brain. 2017;140(11):2939–54.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 1992;176(6):1693–702.

    Article  CAS  PubMed  Google Scholar 

  37. Masoumi J, et al. Inhibition of apelin/APJ axis enhances the potential of dendritic cell-based vaccination to modulate TH1 and TH2 cell-related immune responses in an animal model of metastatic breast cancer. Adv Med Sci. 2022;67(1):170–8.

    Article  CAS  PubMed  Google Scholar 

  38. Sorli SC, Le Gonidec S, Knibiehler B, Audigier Y. Apelin is a potent activator of tumour neoangiogenesis. Oncogene. 2007;26(55):7692–9.

    Article  CAS  PubMed  Google Scholar 

  39. Cui RR, Mao DA, Yi L, Wang C, Zhang XX, Xie H, et al. Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3-K/Akt signaling pathways. Amino Acids. 2010;39(5):1193–200.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Zhang X, Cui H, Zhang C, Zhu C, Li L. Apelin-13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways. Neurosci Lett. 2014;568:44–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by a Grant (No. 97408) from Rafsanjan University of Medical Sciences, Rafsanjan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Jafarzadeh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoumi, J., Zainodini, N., Basirjafar, P. et al. Apelin receptor antagonist boosts dendritic cell vaccine efficacy in controlling angiogenic, metastatic and apoptotic-related factors in 4T1 breast tumor-bearing mice. Med Oncol 40, 179 (2023). https://doi.org/10.1007/s12032-023-02030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02030-9

Keywords

Navigation