Skip to main content

Advertisement

Log in

A review of recent advances in the novel therapeutic targets and immunotherapy for lung cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Lung cancer is amongst the most pervasive malignancies having high mortality rates. It is broadly grouped into non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). The concept of personalized medicine has overshadowed the conventional chemotherapy given to all patients with lung cancer. The targeted therapy is given to a particular population having specific mutations to help in the better management of lung cancer. The targeting pathways for NSCLC include the epidermal growth factor receptor, vascular endothelial growth factor receptor, MET (Mesenchymal epithelial transition factor) oncogene, Kirsten rat sarcoma viral oncogene (KRAS), and anaplastic lymphoma kinase (ALK). SCLC targeting pathway includes Poly (ADP-ribose) polymerases (PARP) inhibitors, checkpoint kinase 1 (CHK 1) pathway, WEE1 pathway, Ataxia Telangiectasia and Rad3-related (ATR)/Ataxia telangiectasia mutated (ATM), and Delta‐like canonical Notch ligand 3 (DLL-Immune checkpoint inhibitors like programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) inhibitors and Cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade are also utilized in the management of lung cancer. Many of the targeted therapies are still under development and require clinical trials to establish their safety and efficacy. This review summarizes the mechanism of molecular targets and immune-mediated targets, recently approved drugs, and their clinical trials for lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–49.

    Article  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–89.

    Article  CAS  Google Scholar 

  3. Cao W, Chen H-D, Yu Y-W, Li N, Chen W-Q. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J. 2021;134(07):783–91.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao H, Ren D, Liu H, Chen J. Comparison and discussion of the treatment guidelines for small cell lung cancer. Thoracic cancer. 2018;9(7):769–74.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carbone DP, Morgensztern D, Le Moulec S, Santana-Davila R, Ready N, Hann CL, et al. Efficacy and safety of rovalpituzumab tesirine in patients With DLL3-expressing,≥ 3rd line small cell lung cancer: Results from the phase 2 TRINITY study. American Society of Clinical Oncology; 2018.

  7. Chang JT, Anic GM, Rostron BL, Tanwar M, Chang CM. Cigarette smoking reduction and health risks: a systematic review and meta-analysis. Nicotine Tob Res. 2021;23(4):635–42.

    Article  PubMed  Google Scholar 

  8. Wang C, Yang T, Guo X-f, Li D. The associations of fruit and vegetable intake with lung cancer risk in participants with different smoking status: a meta-analysis of prospective cohort studies. Nutrients. 2019. https://doi.org/10.3390/nu11081791.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact. 2019;309: 108720.

    Article  CAS  PubMed  Google Scholar 

  10. Vendrell JA, Mau-Them FT, Béganton B, Godreuil S, Coopman P, Solassol J. Circulating cell free tumor dna detection as a routine tool forlung cancer patient management. Int J Mol Sci. 2017;18(2):264.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Relli V, Trerotola M, Guerra E, Alberti S. Abandoning the notion of non-small cell lung cancer. Trends Mol Med. 2019;25(7):585–94.

    Article  PubMed  Google Scholar 

  12. Indini A, Rijavec E, Bareggi C, Grossi F. Novel treatment strategies for early-stage lung cancer: the oncologist’s perspective. J Thorac Dis. 2020;12(6):3390.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, et al. Non-small-cell lung cancer. The Lancet. 2011;378(9804):1727–40.

    Article  Google Scholar 

  14. Van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. The Lancet. 2011;378(9804):1741–55.

    Article  Google Scholar 

  15. Kerr KM, Bibeau F, Thunnissen E, Botling J, Ryška A, Wolf J, et al. The evolving landscape of biomarker testing for non-small cell lung cancer in Europe. Lung Cancer. 2021;154:161–75.

    Article  CAS  PubMed  Google Scholar 

  16. Tsoukalas N, Aravantinou-Fatorou E, Baxevanos P, Tolia M, Tsapakidis K, Galanopoulos M, et al. Advanced small cell lung cancer (SCLC): new challenges and new expectations. Ann Transl Med. 2018. https://doi.org/10.21037/atm.2018.03.31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24(28):4539–44.

    Article  PubMed  Google Scholar 

  18. Singh A, Bhatia S, Rana V. Inhalable nanostructures for lung cancer treatment: progress and challenges. Curr Nanomed. 2019;9(1):4–29.

    Article  CAS  Google Scholar 

  19. Attili I, Passaro A, Pavan A, Conte P, De Marinis F, Bonanno L. Combination immunotherapy strategies in advanced non-small cell lung cancer (NSCLC): does biological rationale meet clinical needs? Crit Rev Oncol Hematol. 2017;119:30–9.

    Article  PubMed  Google Scholar 

  20. Chang Y-L, Yang C-Y, Lin M-W, Wu C-T, Yang P-C. PD-L1 is highly expressed in lung lymphoepithelioma-like carcinoma: a potential rationale for immunotherapy. Lung Cancer. 2015;88(3):254–9.

    Article  PubMed  Google Scholar 

  21. Calles A, Aguado G, Sandoval C, Álvarez R. The role of immunotherapy in small cell lung cancer. Clin Transl Oncol. 2019;21(8):961–76.

    Article  CAS  PubMed  Google Scholar 

  22. Cho JH. Immunotherapy for non-small-cell lung cancer: current status and future obstacles. Immun Netw. 2017;17(6):378–91.

    Article  Google Scholar 

  23. Iams WT, Porter J, Horn L. Immunotherapeutic approaches for small-cell lung cancer. Nat Rev Clin Oncol. 2020;17(5):300–12.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular determinants of response to anti–programmed cell death (PD)-1 and anti–programmed death-ligand 1 (PD-L1) blockade in patients with non–small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khunger M, Hernandez AV, Pasupuleti V, Rakshit S, Pennell NA, Stevenson J, et al. Programmed cell death 1 (PD-1) ligand (PD-L1) expression in solid tumors as a predictive biomarker of benefit from PD-1/PD-L1 axis inhibitors: a systematic review and meta-analysis. JCO Precis Oncol. 2017;1:1–15.

    PubMed  Google Scholar 

  26. Shroff GS, de Groot PM, Papadimitrakopoulou VA, Truong MT, Carter BW. Targeted therapy and immunotherapy in the treatment of non-small cell lung cancer. Radiol Clin North Am. 2018;56(3):485–95.

    Article  PubMed  Google Scholar 

  27. Dong J, Li B, Lin D, Zhou Q, Huang D. Advances in targeted therapy and immunotherapy for non-small cell lung cancer based on accurate molecular typing. Front Pharmacol. 2019;10:230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pinto JA, Vallejos CS, Raez LE, Mas LA, Ruiz R, Torres-Roman JS, et al. Gender and outcomes in non-small cell lung cancer: an old prognostic variable comes back for targeted therapy and immunotherapy? ESMO open. 2018;3(3): e000344.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Janku F, Garrido-Laguna I, Petruzelka LB, Stewart DJ, Kurzrock R. Novel therapeutic targets in non-small cell lung cancer. J Thorac Oncol. 2011. https://doi.org/10.1097/JTO.0b013e31822944b3.

    Article  PubMed  Google Scholar 

  30. Relli V, Trerotola M, Guerra E, Alberti S. Abandoning the notion of non-small cell lung cancer. Trends Mol Med. 2019. https://doi.org/10.1016/j.molmed.2019.04.012.

    Article  PubMed  Google Scholar 

  31. Metro G, Crinò L. Advances on EGFR mutation for lung cancer. Transl Lung Cancer Res. 2012;1(1):5.

    PubMed  PubMed Central  Google Scholar 

  32. Giulio Metro LC. Advances on EGFR mutation for lung cancer. Translational lung cancer research. 2012:5–13.

  33. Ramalingam S, Belani C. Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist. 2008;13(S1):5–13.

    Article  CAS  PubMed  Google Scholar 

  34. Janjigian Y, Groen H, Horn L, Smit E, Fu Y, Wang F, et al. Activity and tolerability of afatinib (BIBW 2992) and cetuximab in NSCLC patients with acquired resistance to erlotinib or gefitinib. J Clin Oncol. 2011. https://doi.org/10.1200/jco.2011.29.15_suppl.7525.

    Article  Google Scholar 

  35. Pirker R. EGFR-directed monoclonal antibodies in non-small cell lung cancer: how to predict efficacy? Transl Lung Cancer Res. 2012;1(4):269.

    PubMed  PubMed Central  Google Scholar 

  36. Steuer CE, Ramalingam SS. Targeting EGFR in lung cancer: Lessons learned and future perspectives. Mol Aspects Med. 2015;45:67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han H, Silverman JF, Santucci TS, Macherey RS, dAmato TA, Tung MY, et al. Vascular endothelial growth factor expression in stage I non-small cell lung cancer correlates with neoangiogenesis and a poor prognosis. Ann Surg Oncol. 2001. https://doi.org/10.1007/s10434-001-0072-y.

    Article  PubMed  Google Scholar 

  38. Verheul KJGHMW. Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action? Angiogenesis. 2010:1–14.

  39. Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res. 2006;12(17):5018–22.

    Article  CAS  PubMed  Google Scholar 

  40. Lind JS, Smit EF. Angiogenesis inhibitors in the treatment of non-small cell lung cancer. Ther Adv Med Oncol. 2009;1(2):95–107.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6(4):273–86.

    Article  CAS  PubMed  Google Scholar 

  42. Smi jSWLaEF. Angiogenesis inhibitors in the treatment of non-small cell lung cancer. therapeutic Advances in Medical Oncology. 209:95–107.

  43. Finocchiaro G, Toschi L, Gianoncelli L, Baretti M, Santoro A. Prognostic and predictive value of MET deregulation in non-small cell lung cancer. Ann Transl Med. 2015. https://doi.org/10.3978/j.issn.2305-5839.2015.03.43.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.

    Article  CAS  PubMed  Google Scholar 

  45. Paik PK, Drilon A, Fan P-D, Yu H, Rekhtman N, Ginsberg MS, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring met mutations causing exon 14 skippingMET inhibitors in met exon 14 splice variant lung cancer. Cancer Discov. 2015;5(8):842–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liang HWM. MET oncogene in non-small cell lung cancer: mechanism of MET dysregulation and agents targeting the HGF/c-Met axis. Oncol Targets Ther. 2020. https://doi.org/10.2147/OTT.S231257.

    Article  Google Scholar 

  47. Liang H, Wang M. MET oncogene in non-small cell lung cancer: mechanism of MET dysregulation and agents targeting the HGF/c-Met axis. Onco Targets Ther. 2020;13:2491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caparica R, Yen CT, Coudry R, Ou S-HI, Varella-Garcia M, Camidge DR, et al. Responses to crizotinib can occur in high-level MET-amplified non–small cell lung cancer independent of MET exon 14 alterations. J Thorac Oncol. 2017. https://doi.org/10.1016/j.jtho.2016.09.116.

    Article  PubMed  Google Scholar 

  49. Helen Adderley FHB, Colin R. Lindsay. KRAS-mutant non-small cell lung cancer: Converging small molecules and immune checkpoint inhibition. EBioMedicine. 2019:711–6.

  50. Vasan N, Boyer JL, Herbst RS. A RAS renaissance: emerging targeted therapies for KRAS-mutated non–small cell lung cancer. Clin Cancer Res. 2014;20(15):3921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nat Commun. 2007;448(7153):561–6.

    Article  CAS  Google Scholar 

  52. Jin G, Jeon H-S, Lee EB, Kang H-G, Yoo SS, Lee SY, et al. EML4-ALK fusion gene in Korean non-small cell lung cancer. J Korean Med Sci. 2012;27(2):228–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sullivan IPD. ALK inhibitors in non-small cell lung cancer: The latest evidence and developments. Ther Adv Med Oncol. 2016. https://doi.org/10.1177/1758834015617355.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Janku F, Garrido-Laguna I, Petruzelka LB, Stewart DJ, Kurzrock R. Novel therapeutic targets in non-small cell lung cancer. J Thorac Oncol. 2011;6(9):1601–12.

    Article  PubMed  Google Scholar 

  55. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  56. Kaneda H, Yoshida T, Okamoto I. Molecularly targeted approaches herald a new era of non-small-cell lung cancer treatment. Cancer Manag Res. 2013;5:91.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tomizawa K, Suda K, Onozato R, Kosaka T, Endoh H, Sekido Y, et al. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer. 2011;74(1):139–44.

    Article  PubMed  Google Scholar 

  58. Arcila ME, Chaft JE, Nafa K, Roy-Chowdhuri S, Lau C, Zaidinski M, et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomasERBB2 (HER2) mutations in lung carcinoma. Clin Cancer Res. 2012;18(18):4910–8.

    Article  CAS  PubMed  Google Scholar 

  59. Fang W, Zhao S, Liang Y, Yang Y, Yang L, Dong X, et al. Mutation variants and co-mutations as genomic modifiers of response to Afatinib in HER2-mutant lung adenocarcinoma. Oncologist. 2020;25(3):e545–54.

    Article  CAS  PubMed  Google Scholar 

  60. Kalemkerian G. Trastuzumab in the treatment of advanced non–small-cell lung cancer: is there a role? J Clin Oncol. 2005;23(6):1325–6.

    Article  PubMed  Google Scholar 

  61. Zeng J, Ma W, Young RB, Li T. Targeting HER2 genomic alterations in non-small cell lung cancer. J Nat Cancer Center. 2021. https://doi.org/10.1016/j.jncc.2021.04.001.

    Article  Google Scholar 

  62. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.

    Article  CAS  PubMed  Google Scholar 

  63. Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem. 1998;67:481.

    Article  CAS  PubMed  Google Scholar 

  64. Jean S, Kiger AA. Classes of phosphoinositide 3-kinases at a glance. J Cell Sci. 2014;127(5):923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tan AC. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer. 2020. https://doi.org/10.1111/1759-7714.13328.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol. 2014;90(3):197–207.

    Article  CAS  PubMed  Google Scholar 

  67. Scheffler M, Bos M, Gardizi M, König K, Michels S, Fassunke J, et al. PIK3CA mutations in non-small cell lung cancer (NSCLC): genetic heterogeneity, prognostic impact and incidence of prior malignancies. Oncotarget. 2015;6(2):1315.

    Article  PubMed  Google Scholar 

  68. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448(7152):439–44.

    Article  CAS  PubMed  Google Scholar 

  69. Tan AC. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thoracic cancer. 2020;11(3):511–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Litvak AM, Paik PK, Woo KM, Sima CS, Hellmann MD, Arcila ME, et al. Clinical characteristics and course of 63 patients with BRAF mutant lung cancers. J Thorac Oncol. 2014;9(11):1669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baik CS, Myall NJ, Wakelee HA. Targeting BRAF-mutant non-small cell lung cancer: from molecular profiling to rationally designed therapy. Oncologist. 2017;22(7):786–96.

    Article  PubMed  PubMed Central  Google Scholar 

  72. CHRISTINAS. BAIK NM, HEATHERA. WAKELEE. Targeting BRAF -Mutant Non-Small Cell Lung Cancer: From Molecular Profiling to Rationally Designed Therapy The Oncologist. 2017:786-96

  73. Tissot C, Couraud S, Tanguy R, Bringuier P-P, Girard N, Souquet P-J. Clinical characteristics and outcome of patients with lung cancer harboring BRAF mutations. Lung Cancer. 2016;91:23–8.

    Article  PubMed  Google Scholar 

  74. Subbiah V, Gervais R, Riely G, Hollebecque A, Blay J-Y, Felip E, et al. Efficacy of vemurafenib in patients with non–small-cell lung cancer with BRAF V600 mutation: an open-label, single-arm cohort of the histology-independent VE-BASKET study. JCO Precis Oncol. 2019;3:1–9.

    PubMed  Google Scholar 

  75. Kinno T, Tsuta K, Shiraishi K, Mizukami T, Suzuki M, Yoshida A, et al. Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations. Ann Oncol. 2014;25(1):138–42.

    Article  CAS  PubMed  Google Scholar 

  76. Anguera G, Majem M. BRAF inhibitors in metastatic non-small cell lung cancer. J Thorac Dis. 2018;10(2):589.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schulze AB, Evers G, Kerkhoff A, Mohr M, Schliemann C, Berdel WE, et al. Future options of molecular-targeted therapy in small cell lung cancer. Cancers. 2019;11(5):690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Karachaliou N, Pilotto S, Lazzari C, Bria E, de Marinis F, Rosell R. Cellular and molecular biology of small cell lung cancer: an overview. Transl Lung Cancer Res. 2016;5(1):2.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sutherland KD, Proost N, Brouns I, Adriaensen D, Song J-Y, Berns A. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell. 2011;19(6):754–64.

    Article  CAS  PubMed  Google Scholar 

  80. Guo H, Li L, Cui JJCJoCR. Advances and challenges in immunotherapy of small cell lung cancer. 2020;32(1):115

  81. Esposito G, Palumbo G, Carillio G, Manzo A, Montanino A, Sforza V, et al. Immunotherapy in small cell lung cancer. Cancers. 2020;12(9):2522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Knelson EH, Patel SA, Sands JM. PARP inhibitors in small-cell lung cancer: rational combinations to improve responses. Cancers. 2021;13(4):727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li J, Zhao W, Akbani R, Liu W, Ju Z, Ling S, et al. Characterization of human cancer cell lines by reverse-phase protein arrays. Cancer Cell. 2017;31(2):225–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2012;2(9):798–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Slade D. PARP and PARG inhibitors in cancer treatment. Genes Dev. 2020. https://doi.org/10.1101/gad.334516.119.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  88. Pietanza MC, Waqar SN, Krug LM, Dowlati A, Hann CL, Chiappori A, et al. Randomized, double-blind, phase II study of temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. J Clin Oncol. 2018;36(23):2386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barayan R, Ran X, Lok BH. PARP inhibitors for small cell lung cancer and their potential for integration into current treatment approaches. J Thorac Dis. 2020;12(10):6240.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhao X, Kim IK, Kallakury B, Chahine JJ, Iwama E, Pierobon M, et al. Acquired small cell lung cancer resistance to Chk1 inhibitors involves Wee1 up-regulation. Mol Oncol. 2021;15(4):1130–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sen T, Tong P, Stewart CA, Cristea S, Valliani A, Shames DS, et al. CHK1 inhibition in small-cell lung cancer produces single-agent activity in biomarker-defined disease subsets and combination activity with cisplatin or olaparibtargeting CHK1 in small-cell lung cancer. Can Res. 2017;77(14):3870–84.

    Article  CAS  Google Scholar 

  92. Grabauskiene S, Bergeron EJ, Chen G, Chang AC, Lin J, Thomas DG, et al. CHK1 levels correlate with sensitization to pemetrexed by CHK1 inhibitors in non-small cell lung cancer cells. Lung Cancer. 2013;82(3):477–84.

    Article  PubMed  Google Scholar 

  93. Doerr F, George J, Schmitt A, Beleggia F, Rehkämper T, Hermann S, et al. Targeting a non-oncogene addiction to the ATR/CHK1 axis for the treatment of small cell lung cancer. Sci Rep. 2017;7(1):1–16.

    Article  CAS  Google Scholar 

  94. Lallo A, Frese KK, Morrow CJ, Sloane R, Gulati S, Schenk MW, et al. The combination of the PARP Inhibitor olaparib and the WEE1 Inhibitor AZD1775 as a new therapeutic option for small cell lung CancerPARP and WEE1 inhibition in patient-derived models of SCLC. Clin Cancer Res. 2018;24(20):5153–64.

    Article  CAS  PubMed  Google Scholar 

  95. Mollaoglu G, Guthrie MR, Böhm S, Brägelmann J, Can I, Ballieu PM, et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell. 2017;31(2):270–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tanaka K, Isse K, Fujihira T, Takenoyama M, Saunders L, Bheddah S, et al. Prevalence of delta-like protein 3 expression in patients with small cell lung cancer. Lung Cancer. 2018;115:116–20.

    Article  PubMed  Google Scholar 

  97. Sharma SK, Pourat J, Abdel-Atti D, Carlin SD, Piersigilli A, Bankovich AJ, et al. Noninvasive interrogation of DLL3 expression in metastatic small cell lung cancer. Can Res. 2017;77(14):3931–41.

    Article  CAS  Google Scholar 

  98. Huang RS, Holmes BF, Powell C, Marati RV, Tyree D, Admire B, et al. Delta-like protein 3 prevalence in small cell lung cancer and DLL3 (SP347) assay characteristics. Arch Pathol Lab Med. 2019;143(11):1373–7.

    Article  CAS  PubMed  Google Scholar 

  99. William WN, Glisson BS. Novel strategies for the treatment of small-cell lung carcinoma. Nat Rev Clin Oncol. 2011;8(10):611–9.

    Article  CAS  PubMed  Google Scholar 

  100. Yang S, Zhang Z, Wang Q. Emerging therapies for small cell lung cancer. J Hematol Oncol. 2019;12(1):1–11.

    Article  Google Scholar 

  101. Yang L, Zhu W, Yao Y, Xie M, Lv S, Cheng J, et al. Hypocrellin A exerts antitumor effects by inhibiting the FGFR1 signaling pathway in non-small cell lung cancer. Phytomedicine. 2022;97: 153924.

    Article  CAS  PubMed  Google Scholar 

  102. Desai A, Adjei AA. FGFR signaling as a target for lung cancer therapy. J Thorac Oncol. 2016;11(1):9–20.

    Article  PubMed  Google Scholar 

  103. Pardo OE, Latigo J, Jeffery RE, Nye E, Poulsom R, Spencer-Dene B, et al. The fibroblast growth factor receptor inhibitor PD173074 blocks small cell lung cancer growth in vitro and In vivoFGFR inhibitor blocks small cell lung cancer growth in vivo. Can Res. 2009;69(22):8645–51.

    Article  CAS  Google Scholar 

  104. Schultheis AM, Bos M, Schmitz K, Wilsberg L, Binot E, Wolf J, et al. Fibroblast growth factor receptor 1 (FGFR1) amplification is a potential therapeutic target in small-cell lung cancer. Mod Pathol. 2014;27(2):214–21.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang J, Zhang L, Su X, Li M, Xie L, Malchers F, et al. Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft ModelsAZD4547 is active in FGFR1-amplified squamous NSCLC PDTX models. Clin Cancer Res. 2012;18(24):6658–67.

    Article  CAS  PubMed  Google Scholar 

  106. Rolfo C, Raez LE, Bronte G, Santos ES, Papadimitriou K, Buffoni L, et al. BIBF 1120/nintedanib: a new triple angiokinase inhibitor-directed therapy in patients with non-small cell lung cancer. Expert Opin Investig Drugs. 2013;22(8):1081–8.

    Article  CAS  PubMed  Google Scholar 

  107. Fumarola C, Bozza N, Castelli R, Ferlenghi F, Marseglia G, Lodola A, et al. Expanding the arsenal of FGFR inhibitors: a novel chloroacetamide derivative as a new irreversible agent with anti-proliferative activity against FGFR1-amplified lung cancer cell lines. Front Oncol. 2019;9:179.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tiseo M, Gelsomino F, Alfieri R, Cavazzoni A, Bozzetti C, De Giorgi AM, et al. FGFR as potential target in the treatment of squamous non small cell lung cancer. Cancer Treat Rev. 2015;41(6):527–39.

    Article  CAS  PubMed  Google Scholar 

  109. Coe BP, Thu KL, Aviel-Ronen S, Vucic EA, Gazdar AF, Lam S, et al. Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer. PLoS ONE. 2013;8(8): e71670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Geng J, Li X, Zhou Z, Wu C-L, Bai X, Dai M. EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer. Cancer Lett. 2015;359(2):275–87.

    Article  CAS  PubMed  Google Scholar 

  111. Coe B, Lockwood W, Girard L, Chari R, Macaulay C, Lam S, et al. Differential disruption of cell cycle pathways in small cell and non-small cell lung cancer. Br J Cancer. 2006;94(12):1927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Saito M, Saito K, Shiraishi K, Maeda D, Suzuki H, Minamiya Y, et al. Identification of candidate responders for anti-PD-L1/PD-1 immunotherapy, Rova-T therapy, or EZH2 inhibitory therapy in small-cell lung cancer. Mol Clin Oncol. 2018;8(2):310–4.

    CAS  PubMed  Google Scholar 

  113. Stewart CA, Byers LA. Altering the course of small cell lung cancer: targeting cancer stem cells via LSD1 inhibition. Cancer Cell. 2015;28(1):4–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, Van Aller GS, et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell. 2015;28(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  115. Yan W, Chung CY, Xie T, Ozeck M, Nichols TC, Frey J, et al. Intrinsic and acquired drug resistance to LSD1 inhibitors in small cell lung cancer occurs through a TEAD4-driven transcriptional state. Mol Oncol. 2022;16(6):1309–28.

    Article  CAS  PubMed  Google Scholar 

  116. Christensen CL, Kwiatkowski N, Abraham BJ, Carretero J, Al-Shahrour F, Zhang T, et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell. 2014;26(6):909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang H, Christensen CL, Dries R, Oser MG, Deng J, Diskin B, et al. CDK7 inhibition potentiates genome instability triggering anti-tumor immunity in small cell lung cancer. Cancer Cell. 2020;37(1):37–54.

    Article  CAS  PubMed  Google Scholar 

  118. Choi YJ, Lee H, Kim D-S, Kim DH, Kang M-H, Cho Y-H, et al. Discovery of a novel CDK7 inhibitor YPN-005 in small cell lung cancer. Eur J Pharmacol. 2021;907: 174298.

    Article  CAS  PubMed  Google Scholar 

  119. Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature. 2014;511(7511):616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19(6):1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell. 2018;33(4):547–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Khadela A, Chavda VP, Postwala H, Ephraim R, Apostolopoulos V, Shah Y. Configuring therapeutic aspects of immune checkpoints in lung cancer. Cancers. 2023. https://doi.org/10.3390/cancers15020543.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Pawelczyk K, Piotrowska A, Ciesielska U, Jablonska K, Gletzel-Plucinska N, Grzegrzolka J, et al. Role of PD-L1 expression in non-small cell lung cancer and their prognostic significance according to clinicopathological factors and diagnostic markers. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20040824.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355(6332):1428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu Y, Wan B, Chen X, Zhan P, Zhao Y, Zhang T, et al. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: a meta-analysis of randomized controlled trials. Transl Lung Cancer Res. 2019;8(4):413–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol : Off J Am Soc Clin Oncol. 2019;37(7):537–46.

    Article  CAS  Google Scholar 

  128. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379(4):341–51.

    Article  CAS  PubMed  Google Scholar 

  130. Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios CH, et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med. 2020;383(14):1328–39.

    Article  CAS  PubMed  Google Scholar 

  131. Armstrong SA, Liu SV. Dashing decades of defeat: long anticipated advances in the first-line treatment of extensive-stage small cell lung cancer. Curr Oncol Rep. 2020;22(2):20.

    Article  PubMed  Google Scholar 

  132. Paz-Ares L, Dvorkin M, Chen Y, Reinmuth N, Hotta K, Trukhin D, et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet (London, England). 2019;394(10212):1929–39.

    Article  CAS  PubMed  Google Scholar 

  133. Apolo AB, Ellerton JA, Infante JR, Agrawal M, Gordon MS, Aljumaily R, et al. Avelumab as second-line therapy for metastatic, platinum-treated urothelial carcinoma in the phase Ib JAVELIN Solid Tumor study: 2-year updated efficacy and safety analysis. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-001246.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Graziani G, Lisi L, Tentori L, Navarra P. Monoclonal antibodies to CTLA-4 with focus on ipilimumab. Experientia Suppl. 2012;2022(113):295–350.

    Google Scholar 

  135. Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 control of T-cell motility and migration: implications for tumor immunotherapy. Front Immunol. 2018;9:2737.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  137. Vellanki PJ, Mulkey F, Jaigirdar AA, Rodriguez L, Wang Y, Xu Y, et al. FDA approval summary: nivolumab with ipilimumab and chemotherapy for metastatic non–small cell lung cancer, a collaborative project orbis review. Clin Cancer Res. 2021;27(13):3522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. U. S. Food and Drug Administtration [Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-plus-ipilimumab-first-line-mnsclc-pd-l1-tumor-expression-1.

  139. Perets R, Bar J, Rasco DW, Ahn MJ, Yoh K, Kim DW, et al. Safety and efficacy of quavonlimab, a novel anti-CTLA-4 antibody (MK-1308), in combination with pembrolizumab in first-line advanced non-small-cell lung cancer. Ann Oncol: Off J Eur Soc Med Oncol. 2021;32(3):395–403.

    Article  CAS  Google Scholar 

  140. Antonia S, Goldberg SB, Balmanoukian A, Chaft JE, Sanborn RE, Gupta A, et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol. 2016;17(3):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Torphy RJ, Schulick RD, Zhu Y. Newly emerging immune checkpoints: promises for future cancer therapy. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18122642.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Huo JL, Wang YT, Fu WJ, Lu N, Liu ZS. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front Immunol. 2022;13: 956090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chocarro L, Bocanegra A, Blanco E, Fernández-Rubio L, Arasanz H, Echaide M, et al. Cutting-edge: preclinical and clinical development of the first approved lag-3 inhibitor. Cells. 2022. https://doi.org/10.3390/cells11152351.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sharma S, Moore K, Mettu N, Garrido-Laguna I, Ulahannan S, Khemka V. Initial results from a phase 1a/b study of etigilimab (OMP-313M32), an anti-T cell immunoreceptor with Ig and ITIM domains (TIGIT) antibody, in advanced solid tumors. J Immunother Cancer. 2018;6(Suppl 1):114.

    Google Scholar 

  145. Yang L, Wang L, Zhang Y. Immunotherapy for lung cancer: advances and prospects. Am J Clin Exp Immunol. 2016;5(1):1.

    PubMed  PubMed Central  Google Scholar 

  146. Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N, et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res. 2006;12(3):878–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

AK: Conceptualization, Supervision, Writing—original draft, Writing—review & editing. HP:Writing—original draft, Writing—review & editing. DR:Writing—original draft, Writing – editing. HD:Writing—original draft, Writing—editing. KR:Writing—review & editing. SHSB:Supervision, Writing—original draft, Writing—review & editing.

Corresponding author

Correspondence to Avinash Khadela.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadela, A., Postwala, H., Rana, D. et al. A review of recent advances in the novel therapeutic targets and immunotherapy for lung cancer. Med Oncol 40, 152 (2023). https://doi.org/10.1007/s12032-023-02005-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02005-w

Keywords

Navigation