Skip to main content

Advertisement

Log in

Role of epigenetics in OSCC: an understanding above genetics

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Oral cavity cancer is categorized under head and neck cancer that frequently develops from squamous cells hence also known as oral squamous cell carcinoma (OSCC). Although molecular markers for oral cavity cancer are already known, epigenetic signatures for the same haven’t been explored much. Epigenetic and genetic alterations were initially thought to be discrete mechanisms driving the tumour but the whole exome sequencing of various cancers has revealed the interdependency of epigenetics and genetic alterations. The reversible nature of these epigenetic changes makes them an alluring target for cancer therapeutics. The primary epigenetic alterations in cancer include DNA methylation and histone modifications. These alterations are useful for patient early detection and prognostication. This review summarizes the epigenetic perspective to understand the etiology, epigenetic biomarkers, and epi-drugs for better predictive diagnosis and treatment of OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

OSCC:

Oral squamous cell carcinoma

TSG:

Tumour suppressor gene

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  CAS  Google Scholar 

  2. Montero PH, Patel SG. Cancer of the oral cavity. Surg Oncol Clin N Am. 2015;24(3):491–508. https://doi.org/10.1016/j.soc.2015.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yete S, Saranath D. MicroRNAs in oral cancer: biomarkers with clinical potential. Oral Oncol. 2020;110:105002. https://doi.org/10.1016/j.oraloncology.2020.105002.

    Article  CAS  PubMed  Google Scholar 

  4. Shrestha AD, Vedsted P, Kallestrup P, Neupane D. Prevalence and incidence of oral cancer in low- and middle-income countries: a scoping review. Eur J Cancer Care (Engl). 2020;29(2):1–7. https://doi.org/10.1111/ecc.13207.

    Article  Google Scholar 

  5. Chamoli A, Gosavi AS, Shirwadkar UP, et al. Overview of oral cavity squamous cell carcinoma: risk factors, mechanisms, and diagnostics. Oral Oncol. 2021;121:105451. https://doi.org/10.1016/j.oraloncology.2021.105451.

    Article  PubMed  Google Scholar 

  6. Farsi NJ, Rousseau MC, Schlecht N, et al. Aetiological heterogeneity of head and neck squamous cell carcinomas: the role of human papillomavirus infections, smoking and alcohol. Carcinogenesis. 2017;38(12):1188–95. https://doi.org/10.1093/carcin/bgx106.

    Article  CAS  PubMed  Google Scholar 

  7. Vanshika S, Preeti A, Sumaira Q, et al. Incidence OF HPV and EBV in oral cancer and their clinico-pathological correlation– a pilot study of 108 cases. J Oral Biol Craniofac Res. 2021;11(2):180–4. https://doi.org/10.1016/j.jobcr.2021.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020. https://doi.org/10.1038/s41572-020-00224-3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. 2015;8(9):11884–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, Wang Y. Role of epigenetic regulation in plasticity of tumor immune microenvironment. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.640369.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sim YC, Hwang JH, Ahn KM. Overall and disease-specific survival outcomes following primary surgery for oral squamous cell carcinoma: analysis of consecutive 67 patients. J Korean Assoc Oral Maxillofac Surg. 2019;45(2):83–90. https://doi.org/10.5125/jkaoms.2019.45.2.83.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Irimie AI, Ciocan C, Gulei D, et al. Current insights into oral cancer epigenetics. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19030670.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Castilho RM, Squarize CH, Almeida LO. Epigenetic modifications and head and neck cancer: implications for tumor progression and resistance to therapy. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071506.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Demetriadou C, Koufaris C, Kirmizis A. Histone N-alpha terminal modifications: genome regulation at the tip of the tail. Epigenetics Chromatin. 2020;13(1):29. https://doi.org/10.1186/s13072-020-00352-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones PA, Issa J, pierre J, Baylin S. Targeting the cancer epigenome for therapy. Nat Publ Group. 2016;17(10):630–41. https://doi.org/10.1038/nrg.2016.93.

    Article  CAS  Google Scholar 

  16. Romanowska K, Sobecka A, Rawłuszko-Wieczorek AA, Suchorska WM, Golusiński W. Head and neck squamous cell carcinoma: epigenetic landscape. Diagnostics (Basel). 2020;11(1):34. https://doi.org/10.3390/diagnostics11010034.

    Article  CAS  PubMed  Google Scholar 

  17. Martin D, Abba MC, Molinolo AA, et al. The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies. Oncotarget. 2014;5(19):8906–23. https://doi.org/10.18632/oncotarget.2417.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol. 2019;3(1):7. https://doi.org/10.1038/s41698-019-0079-0.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Seo JY, Park YJ, Yi YA, et al. Epigenetics: general characteristics and implications for oral health. Restor Dent Endod. 2015;40(1):14–22. https://doi.org/10.5395/rde.2015.40.1.14.

    Article  PubMed  Google Scholar 

  20. Wallace EVB, Stoddart D, Heron AJ, et al. Identification of epigenetic DNA modifications with a protein nanopore. Chem Commun (Camb). 2010;46(43):8195–7. https://doi.org/10.1039/c0cc02864a.

    Article  CAS  PubMed  Google Scholar 

  21. Caiafa P, Zampieri M. DNA methylation and chromatin structure: the puzzling CpG islands. J Cell Biochem. 2005;94(2):257–65. https://doi.org/10.1002/jcb.20325.

    Article  CAS  PubMed  Google Scholar 

  22. Krishnan NM, Dhas K, Nair J, et al. A minimal DNA methylation signature in oral tongue squamous cell carcinoma links altered methylation with tumor attributes. Mol Cancer Res. 2016;14(9):805–19. https://doi.org/10.1158/1541-7786.MCR-15-0395.

    Article  CAS  PubMed  Google Scholar 

  23. Dumache R, Rogobete AF, Andreescu N, Puiu M. Genetic and epigenetic biomarkers of molecular alterations in oral carcinogenesis. Clin Lab. 2015;61(10):1373–81. https://doi.org/10.7754/clin.lab.2015.150327.

    Article  CAS  PubMed  Google Scholar 

  24. Das D, Ghosh S, Maitra A, et al. Epigenomic dysregulation-mediated alterations of key biological pathways and tumor immune evasion are hallmarks of gingivo-buccal oral cancer. Clin Epigenetics. 2019;11(1):178. https://doi.org/10.1186/s13148-019-0782-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019. https://doi.org/10.1038/s41392-019-0095-0.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mascolo M, Siano M, Ilardi G, et al. Epigenetic disregulation in oral cancer. Int J Mol Sci. 2012. https://doi.org/10.3390/ijms13022331.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boscolo-Rizzo P, Furlan C, Lupato V, Polesel J, Fratta E. Novel insights into epigenetic drivers of oropharyngeal squamous cell carcinoma: role of HPV and lifestyle factors. Clin Epigenetics. 2017;9:124. https://doi.org/10.1186/s13148-017-0424-5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gasche JA, Goel A. Epigenetic mechanisms in oral carcinogenesis. Future Oncol. 2012;8(11):1407–25. https://doi.org/10.2217/fon.12.138.

    Article  CAS  PubMed  Google Scholar 

  29. Al-Kaabi A, van Bockel LW, Pothen AJ, Willems SM. p16INK4A and p14ARF gene promoter hypermethylation as prognostic biomarker in oral and oropharyngeal squamous cell carcinoma: a review. Dis Markers. 2014. https://doi.org/10.1155/2014/260549.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bhatia V, Goel MM, Makker A, et al. Promoter region hypermethylation and mRNA expression of MGMT and p16 genes in tissue and blood samples of human premalignant oral lesions and oral squamous cell carcinoma. Biomed Res Int. 2014. https://doi.org/10.1155/2014/248419.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim SY, Han YK, Song JM, et al. Aberrantly hypermethylated tumor suppressor genes were identified in oral squamous cell carcinoma (OSCC). Clin Epigenetics. 2019;11(1):116. https://doi.org/10.1186/s13148-019-0715-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liyanage C, Wathupola A, Muraleetharan S, Perera K, Punyadeera C, Udagama P. Promoter hypermethylation of tumor-suppressor genes p16(INK4a), RASSF1A, TIMP3, and PCQAP/MED15 in salivary DNA as a quadruple biomarker panel for early detection of oral and oropharyngeal cancers. Biomolecules. 2019. https://doi.org/10.3390/biom9040148.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Viet CT, Jordan RCK, Schmidt BL. DNA promoter hypermethylation in saliva for the early diagnosis of oral cancer. J Calif Dent Assoc. 2007;35(12):844–9.

    CAS  PubMed  Google Scholar 

  34. Misawa K, Imai A, Mochizuki D, et al. Association of TET3 epigenetic inactivation with head and neck cancer. Oncotarget. 2018;9(36):24480–93. https://doi.org/10.18632/oncotarget.25333.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Basu B, Chakraborty J, Chandra A, et al. Genome-wide DNA methylation profile identified a unique set of differentially methylated immune genes in oral squamous cell carcinoma patients in India. Clin Epigenetics. 2017;9(1):1–15. https://doi.org/10.1186/s13148-017-0314-x.

    Article  CAS  Google Scholar 

  36. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713. https://doi.org/10.1101/cshperspect.a018713.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chang CC, Lin BR, Chen ST, Hsieh TH, Li YJ, Kuo MYP. HDAC2 promotes cell migration/invasion abilities through HIF-1α stabilization in human oral squamous cell carcinoma. J Oral Pathol Med. 2011;40(7):567–75. https://doi.org/10.1111/j.1600-0714.2011.01009.x.

    Article  CAS  PubMed  Google Scholar 

  38. D’Souza W, Saranath D. Clinical implications of epigenetic regulation in oral cancer. Oral Oncol. 2015;51(12):1061–8. https://doi.org/10.1016/j.oraloncology.2015.09.006.

    Article  CAS  PubMed  Google Scholar 

  39. Webber LP, Wagner VP, Curra M, et al. Hypoacetylation of acetyl-histone H3 (H3K9ac) as marker of poor prognosis in oral cancer. Histopathology. 2017;71(2):278–86. https://doi.org/10.1111/his.13218.

    Article  PubMed  Google Scholar 

  40. Sakuma T, Uzawa K, Onda T, et al. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int J Oncol. 2006;29(1):117–24.

    CAS  PubMed  Google Scholar 

  41. Yang H, Jin X, Dan H, Chen Q. Histone modifications in oral squamous cell carcinoma and oral potentially malignant disorders. Oral Dis. 2020;26(4):719–32.

    Article  PubMed  Google Scholar 

  42. Le JM, Squarize CH, Castilho RM. Histone modifications: targeting head and neck cancer stem cells. World J Stem Cells. 2014;6(5):511–25. https://doi.org/10.4252/wjsc.v6.i5.511.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao Z, Shilatifard A. Epigenetic modifications of histones in cancer. Genome Biol. 2019;20(1):245. https://doi.org/10.1186/s13059-019-1870-5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z. Epigenetic modifications in head and neck cancer. Biochem Genet. 2020;58(2):213–44. https://doi.org/10.1007/s10528-019-09941-1.

    Article  CAS  PubMed  Google Scholar 

  45. Špilak A, Brachner A, Kegler U, Neuhaus W, Noehammer C. Implications and pitfalls for cancer diagnostics exploiting extracellular vesicles. Adv Drug Deliv Rev. 2021;175:113819. https://doi.org/10.1016/j.addr.2021.05.029.

    Article  CAS  PubMed  Google Scholar 

  46. Arantes LMRB, de Carvalho AC, Melendez ME, et al. Validation of methylation markers for diagnosis of oral cavity cancer. Eur J Cancer. 2015;51(5):632–41. https://doi.org/10.1016/j.ejca.2015.01.060.

    Article  CAS  PubMed  Google Scholar 

  47. Cristaldi M, Mauceri R, di Fede O, Giuliana G, Campisi G, Panzarella V. Salivary biomarkers for oral squamous cell carcinoma diagnosis and follow-up: current status and perspectives. Front Physiol. 2019;10:1476. https://doi.org/10.3389/fphys.2019.01476.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016. https://doi.org/10.1101/cshperspect.a019505.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kusumoto T, Hamada T, Yamada N, et al. Comprehensive epigenetic analysis using oral rinse samples: A pilot study. J Oral Maxillofac Surg. 2012;70(6):1486–94. https://doi.org/10.1016/j.joms.2011.04.021.

    Article  PubMed  Google Scholar 

  50. Ferlazzo N, Currò M, Zinellu A, et al. Influence of MTHFR genetic background on p16 and MGMT methylation in oral squamous cell cancer. Int J Mol Sci. 2017;18(4):1–10. https://doi.org/10.3390/ijms18040724.

    Article  CAS  Google Scholar 

  51. Nagata S, et al. Aberrant DNA methylation of tumor-related genes in oral rinse. Cancer. 2012. https://doi.org/10.1002/cncr.27417.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Surgery M, Unit MS. Analysis of salivary detection of P16INK4A and RASSF1A promoter gene methylation and its association with oral squamous cell carcinoma in a Colombian population. J Clin Exp. 2020. https://doi.org/10.4317/jced.56647.

    Article  Google Scholar 

  53. Jaffe A. NID2 and HOXA9 promoter hypermethylation as biomarkers for prevention and early detection in oral cavity squamous cell carcinoma tissues and saliva. Cancer Prev Res. 2011. https://doi.org/10.1158/1940-6207.CAPR-11-0006.

    Article  Google Scholar 

  54. Liu Y, He Z, tong ZQ bo. DAPK promoter hypermethylation in tissues and body fluids of oral precancer patients. Med Oncol. 2012. https://doi.org/10.1007/s12032-011-9953-5.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cheng SJ, Chang CF, Ko HH, et al. Hypermethylated ZNF582 and PAX1 genes in mouth rinse samples as biomarkers for oral dysplasia and oral cancer detection. Head Neck. 2018;40(2):355–68. https://doi.org/10.1002/hed.24958.

    Article  PubMed  Google Scholar 

  56. Sun Y, wan, Chen K Ming, Kawasawa YI, et al. Hypomethylated Fgf3 is a potential biomarker for early detection of oral cancer in mice treated with the tobacco carcinogen dibenzo [def, p ] chrysene. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0186873.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Righini CA, de Fraipont F, Timsit JF, et al. Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin Cancer Res. 2007;13(4):1179–85. https://doi.org/10.1158/1078-0432.CCR-06-2027.

    Article  CAS  PubMed  Google Scholar 

  58. Rapado-González Ó, López-Cedrún JL, López-López R, Rodríguez-Ces AM, Suárez-Cunqueiro MM. Saliva gene promoter hypermethylation as a biomarker in oral cancer. J Clin Med. 2021. https://doi.org/10.3390/jcm10091931.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kaliyaperumal S, Sankarapandian S. Evaluation of p16 hypermethylation in oral submucous fibrosis: a quantitative and comparative analysis in buccal cells and saliva using real-time methylation-specific polymerase chain reaction. South Asian J Cancer. 2016;5(2):73–9. https://doi.org/10.4103/2278-330X.181645.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang Y, Lu T, Li Z, Lu S. FGFR1 regulates proliferation and metastasis by targeting CCND1 in FGFR1 amplified lung cancer. Cell Adh Migr. 2020;14(1):82–95. https://doi.org/10.1080/19336918.2020.1766308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dubot C, Bernard V, Sablin MP, et al. Comprehensive genomic profiling of head and neck squamous cell carcinoma reveals <em>FGFR1</em> amplifications and tumour genomic alterations burden as prognostic biomarkers of survival. Eur J Cancer. 2018;91:47–55. https://doi.org/10.1016/j.ejca.2017.12.016.

    Article  CAS  PubMed  Google Scholar 

  62. Bogatyrova O, Mattsson JSM, Ross EM, et al. FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response. Eur J Cancer. 2021;151:136–49. https://doi.org/10.1016/j.ejca.2021.04.005.

    Article  CAS  PubMed  Google Scholar 

  63. Ribeiro IP, Caramelo F, Esteves L, et al. Genomic and epigenetic signatures associated with survival rate in oral squamous cell carcinoma patients. J Cancer. 2018;9(11):1885–95. https://doi.org/10.7150/jca.23239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meng RW, Li YC, Chen X, et al. Aberrant methylation of RASSF1A closely associated with HNSCC, a meta-analysis. Sci Rep. 2016;6:20756. https://doi.org/10.1038/srep20756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wen G, Wang H, Zhong Z. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk: a PRISMA-compliant meta-analysis. Medicine. 2018;97(11):e9971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu Y, Hu H, Zhang W, et al. SUZ12 is a novel putative oncogene promoting tumorigenesis in head and neck squamous cell carcinoma. J Cell Mol Med. 2018;22(7):3582–94. https://doi.org/10.1111/jcmm.13638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gan L, Yang Y, Li Q, Feng Y, Liu T, Guo W. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark Res. 2018;6(1):10. https://doi.org/10.1186/s40364-018-0122-2.

    Article  PubMed  PubMed Central  Google Scholar 

  68. li Z, Wang Y, Qiu J, et al. The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer. Oncotarget. 2013;4(12):2532.

    Article  Google Scholar 

  69. Guerrero-Preston R, Soudry E, Acero J, et al. NID2 and HOXA9 promoter hypermethylation as biomarkers for prevention and early detection in oral cavity squamous cell carcinoma tissues and saliva. Cancer Prev Res (Phila). 2011;4(7):1061–72. https://doi.org/10.1158/1940-6207.CAPR-11-0006.

    Article  CAS  PubMed  Google Scholar 

  70. Xie SL, Fan S, Zhang SY, et al. SOX8 regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β-catenin pathway. Int J Cancer. 2018;142(6):1252–65. https://doi.org/10.1002/ijc.31134.

    Article  CAS  PubMed  Google Scholar 

  71. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20. https://doi.org/10.1016/j.ccr.2012.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shih CH, Chang YJ, Huang WC, et al. EZH2-mediated upregulation of ROS1 oncogene promotes oral cancer metastasis. Oncogene. 2017;36(47):6542–54. https://doi.org/10.1038/onc.2017.262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shilpi G, Prabhat K, Jayant M, Harsimrut K, Bhudev C, das. Epigenetic biomarkers in head and neck cancer. J Cancer Genetics Biomarkers. 2018;1(2):41–50. https://doi.org/10.14302/issn.2572-3030.jcgb-18-2428.

    Article  Google Scholar 

  74. Bhadury J, Nilsson LM, Veppil S, Green LC, Li Z, Gesner EM. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc Natl Acad Sci USA. 2014. https://doi.org/10.1073/pnas.1406722111.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dennis MK, Field AS, Burai R, et al. Efficacy of azacitadine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study (AZA-001). Lancet Oncol. 2012;127(3):358–66. https://doi.org/10.1016/S1470-2045(09)70003-8.

    Article  CAS  Google Scholar 

  76. Yang X, Han H, de Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90. https://doi.org/10.1016/j.ccr.2014.07.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stewart DJ, Issa JP, Kurzrock R, et al. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res. 2009;15(11):3881–8. https://doi.org/10.1158/1078-0432.CCR-08-2196.

    Article  CAS  PubMed  Google Scholar 

  78. Bates SE. Epigenetic therapies for cancer. N Engl J Med. 2020;383(7):650–63. https://doi.org/10.1056/nejmra1805035.

    Article  CAS  PubMed  Google Scholar 

  79. Wong KK, Hassan R, Yaacob NS. Hypomethylating agents and immunotherapy: therapeutic synergism in acute myeloid leukemia and myelodysplastic syndromes. Front Oncol. 2021;11:1–16. https://doi.org/10.3389/fonc.2021.624742.

    Article  CAS  Google Scholar 

  80. Issa JPJ, Roboz G, Rizzieri D, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015;16(9):1099–110. https://doi.org/10.1016/S1470-2045(15)00038-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Okabe A, Huang KK, A., Huang, K. K., Matsusaka, K., Fukuyo, M., Xing, M., Ong, X., Hoshii, T., Usui, G., Seki, M., Mano, Y., Rahmutulla, B., Kanda, T., Suzuki, T., Rha, S. Y., Ushiku, T., Fukayama, M., Tan, P., & Kaneda, A. Cross-species chromatin interactions drive transcriptional rewiring in Epstein-Barr virus–positive gastric adenocarcinoma. Nat Genet. 2020;52(9):919–30. https://doi.org/10.1038/s41588-020-0665-7.

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki M, Shinohara F, Nishimura K, Echigo S, Rikiishi H. Epigenetic regulation of chemosensitivity to 5-fluorouracil and cisplatin by zebularine in oral squamous cell carcinoma. Int J Oncol. 2007;31(6):1449–56. https://doi.org/10.3892/ijo.31.6.1449.

    Article  CAS  PubMed  Google Scholar 

  83. Cheng JC, Matsen CB, Gonzales FA, et al. Inhibition of DNA methylation and reactivation of silenced genes by Zebularine. J Natl Cancer Inst. 2003;95(5):399–409. https://doi.org/10.1093/jnci/95.5.399.

    Article  CAS  PubMed  Google Scholar 

  84. Bhol CS, Mishra SR, Patil S, et al. (2022) PAX9 reactivation by inhibiting DNA methyltransferase triggers antitumor effect in oral squamous cell carcinoma. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease. 1868;9:166428. https://doi.org/10.1016/j.bbadis.2022.166428.

    Article  CAS  Google Scholar 

  85. Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours — past lessons and future promise. Nat Rev Clin Oncol. 2020;17(2):91–107. https://doi.org/10.1038/s41571-019-0267-4.

    Article  CAS  PubMed  Google Scholar 

  86. Gama RR, Arantes LMRB, Sorroche BP, et al. Evaluation of acetylation and methylation in oral rinse of patients with head and neck cancer history exposed to valproic acid. Sci Rep. 2021;11(1):16415. https://doi.org/10.1038/s41598-021-95845-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124(1):30–9. https://doi.org/10.1172/JCI69738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ma J, Guo X, Zhang S, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and promotes apoptosis of esophageal squamous cell lines. Mol Med Rep. 2015;11(6):4525–31. https://doi.org/10.3892/mmr.2015.3268.

    Article  CAS  PubMed  Google Scholar 

  89. Garcia-Manero G, Yang H, Bueso-Ramos C, et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood. 2008;111(3):1060–6. https://doi.org/10.1182/blood-2007-06-098061.

    Article  CAS  PubMed  Google Scholar 

  90. Rikiishi H, Shinohara F, Sato T, Sato Y, Suzuki M, Echigo S. Chemosensitization of oral squamous cell carcinoma cells to cisplatin by histone deacetylase inhibitor, suberoylanilide hydroxamic acid. Int J Oncol. 2007;30(5):1181–8. https://doi.org/10.3892/ijo.30.5.1181.

    Article  CAS  PubMed  Google Scholar 

  91. Sang Z, Sun Y, Ruan H, Cheng Y, Ding X, Yu Y. Anticancer effects of valproic acid on oral squamous cell carcinoma via SUMOylation in vivo and in vitro. Exp Ther Med. 2016;12(6):3979–87. https://doi.org/10.3892/etm.2016.3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marques AEM, do Nascimento Filho CH v, Marinho Bezerra TM, Guerra ENS, Castilho RM, Squarize CH. Entinostat is a novel therapeutic agent to treat oral squamous cell carcinoma. J Oral Pathol Med. 2020;49(8):771–9. https://doi.org/10.1111/jop.13039.

    Article  CAS  PubMed  Google Scholar 

  93. Mochizuki D, Misawa Y, Kawasaki H, et al. Aberrant epigenetic regulation in head and neck cancer due to distinct EZH2 overexpression and DNA hypermethylation. Int J Mol Sci. 2018;19(12):1–13. https://doi.org/10.3390/ijms19123707.

    Article  CAS  Google Scholar 

  94. de Guillebon E, Jimenez M, Mazzarella L, et al. Combining immunotherapy with an epidrug in squamous cell carcinomas of different locations: rationale and design of the PEVO basket trial. ESMO Open. 2021;6(3):100106. https://doi.org/10.1016/j.esmoop.2021.100106.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sermer D, Pasqualucci L, Wendel HG, Melnick A, Younes A. Emerging epigenetic-modulating therapies in lymphoma. Nat Rev Clin Oncol. 2019;16(8):494–507. https://doi.org/10.1038/s41571-019-0190-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lima DG, do Amaral GCLS, Planello AC, Borgato GB, Guimarães GN, de Souza AP. Combined therapy with cisplatin and 5-AZA-2CdR modifies methylation and expression of DNA repair genes in oral squamous cell carcinoma. Int J Clin Exp Pathol. 2022;15(3):131–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang Z, Zhang Y, Li H, et al. Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-κB pathway activation through RPS3. Cell Death Dis. 2019;10(12):936. https://doi.org/10.1038/s41419-019-2177-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bruzzese F, Leone A, Rocco M, et al. HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J Cell Physiol. 2011;226(9):2378–90. https://doi.org/10.1002/jcp.22574.

    Article  CAS  PubMed  Google Scholar 

  99. Caponigro F, di Gennaro E, Ionna F, et al. Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial. BMC Cancer. 2016;16(1):1–10. https://doi.org/10.1186/s12885-016-2957-y.

    Article  CAS  Google Scholar 

  100. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–24. https://doi.org/10.1093/intimm/dxm057.

    Article  CAS  PubMed  Google Scholar 

  101. Lyford-Pike S, Peng S, Young GD, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1733–41. https://doi.org/10.1158/0008-5472.CAN-12-2384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bais M, v. Impact of epigenetic regulation on head and neck squamous cell carcinoma. J Dent Res. 2019;98(3):268–76. https://doi.org/10.1177/0022034518816947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu S, Zhang T, Zheng L, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021;14(1):156. https://doi.org/10.1186/s13045-021-01164-5.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhou L, Mudianto T, Ma X, Riley R, Uppaluri R. Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents Anti-PD-1 resistance in head and neck cancer. Clin Cancer Res. 2020;26(1):290–300. https://doi.org/10.1158/1078-0432.CCR-19-1351.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Gujarat State Biotechnology Mission (GSBTM), Gandhinagar, Gujarat for the grant allocated to Dr. Amit Mandoli for research work on oral cancer and supporting Dr. Vinal Upadhaya who is a Research Associate in the project. Authors would also like to acknowledge the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, India, for supporting research on cancer at NIPER- Ahmedabad. We apologize to those whose work has not been included because of space constraints.

Funding

This work is supported by Gujarat State Biotechnology Mission (GSBTM) [Grant Number- GSBTM/JD(R&amp;D)/618/21–22/1222].

Author information

Authors and Affiliations

Authors

Contributions

AM completed the manuscript’s initial conceptualization and decision on topics. Writing of original draft was performed by PPV, YJ, JB and AC. PPV, AC, VU and AM reviewed and edited the draft. PPV and YJ, prepared all the figures and tables. All the authors further revised the final version of the manuscript. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Amit Mandoli.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatsa, P.P., Jindal, Y., Bhadwalkar, J. et al. Role of epigenetics in OSCC: an understanding above genetics. Med Oncol 40, 122 (2023). https://doi.org/10.1007/s12032-023-01992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-01992-0

Keywords

Navigation