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Abstract
In this didactic paper, we present a theoretical modeling framework, called the G-function, that integrates both the ecology 
and evolution of cancer to understand oncogenesis. The G-function has been used in evolutionary ecology, but has not been 
widely applied to problems in cancer. Here, we build the G-function framework from fundamental Darwinian principles 
and discuss how cancer can be seen through the lens of ecology, evolution, and game theory. We begin with a simple model 
of cancer growth and add on components of cancer cell competition and drug resistance. To aid in exploration of eco-
evolutionary modeling with this approach, we also present a user-friendly software tool. By the end of this paper, we hope 
that readers will be able to construct basic G function models and grasp the usefulness of the framework to understand the 
games cancer plays in a biologically mechanistic fashion.

Keywords Eco-evolutionary dynamics · Mathematical modeling · Evolutionary game theory · Resistance · Cancer 
evolution

Introduction

Traditionally, scientists have taken a gene-centric view 
towards cancer, focusing on the genetic and molecular 
mechanisms underlying oncogenesis without considera-
tion of the broader ecological and evolutionary factors at 
play. Despite the billions of dollars poured into cancer 
research over the last several decades, progress has been 
disappointing. In recent years, however, there has been a 
growing appreciation among both theorists and empiricists 
for cancer as an ecological and evolutionary process [35, 
58, 100]. This view has led to a better understanding of the 
initiation and spread of cancer [2, 12, 45, 95], innovations 

in evolutionarily informed therapies [19, 20, 47, 105], and 
a reframing of the way we think about cancer [5, 17, 51, 
76, 83, 91]. In this paper, we introduce an evolutionary 
game theoretic (EGT) approach called G functions that 
allow us to mathematically formalize notions of ecology 
and evolution in cancer. Due to the pedagogic nature of 
the exposition, we begin from first principles and guide the 
reader through how to construct basic models of cancer 
dynamics. The goal is not to elucidate previously unknown 
aspects of oncogenesis, but rather to show the reader how 
to construct G function models of cancer and convince 
them of its usefulness to understand cancer.

The G-function mathematically captures the ecologi-
cal and evolutionary dynamics that impact the fitness of 
a species, as reflected in its per capita growth rate [18, 
103]. This modeling framework, inspired by traditional 
quantitative genetics approaches, has traditionally been 
used to investigate problems in evolutionary ecology such 
as predator–prey coevolution [15] or consumer-resource 
games [87]. Recently, it has been adapted to explore prob-
lems in cancer [19–21, 27, 28, 86]. The hallmarks of can-
cer provide a useful perspective to form the basis of a 
fitness generating G-function framework for cancer [52]. 
The hallmarks of resisting programmed cell death, evading 
anti-growth signaling, and reproductive immortality state 
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the necessary conditions for any organism to be defined 
as a species and a unit of natural selection. Specifically, 
these features emphasize that the cancer cell lineage is 
a distinct species from its multicellular host. Other hall-
marks– deregulated cell metabolism, genetic instability, 
and sustained growth signaling–describe early events in 
a cancer cell’s adaptation to its environment, in which it 
ceases to serve its host and transitions towards exploit-
ing it. Finally, the hallmarks inducing new blood flow, 
tumor promoting inflammation, and avoiding immune 
responses describe the kinds of adaptations that any organ-
ism evolves via natural selection in response to resource 
limitations, competition, and threats from hazards [91]. 
Mathematically, these characteristics become the evolv-
ing heritable traits (strategies) built into a G-function that 
influence its population dynamics via replication (prolif-
eration) and deaths.

G-function models allow for the consideration of herit-
able strategies. Though not explicitly defining underly-
ing genetics and epigenetics that permit heritable pheno-
typic variation, G-function models instead focus on the 
phenotypes that directly influence an cell’s fitness. The 
cancer G-function models presented here and on the pub-
licly available website (https://lively wave-033dd4510.
azurestaticapps.net/) utilize deterministic ordinary dif-
ferential equations to capture cancer cells’ ecology and 
link their divisions and deaths to their heritable strategies 
and circumstances. This permits generality. Features such 
as space (through agent-based models, partial differen-
tial equations, or graph-based methods) [1, 10, 14, 25, 56, 
63, 75, 96, 106, 108] and stochasticity (demographic and 
environmental) [30–33], though not discussed here, can 
be developed as extensions or analogs. G-function models 
are also quite similar to those from the field of adaptive 
dynamics [57, 66, 68, 69], though the latter has not been 
widely applied to cancer [3].

This G-function framework for cancer focuses on the per-
spective of a single cancer cell (i.e., after cancer initiation 
has occurred) and its subsequent growth rate within a popu-
lation of cancer cells. A population of cancer cells is under 
selection to maximize fitness (proliferation rate minus death 
rate) given its circumstances. These circumstances include 
its physical environment, resource availability, presence of 
toxins and metabolites, normal cells (e.g., fibroblasts and 
immune cells), other cancer cells, and the strategies of these 
other cancer cells. All of these become potential components 
of a mathematical model. In particular, the model becomes 
game theoretic when the fitness of a cancer cell depends 
on its strategy, the presence of neighboring cancer cells, 
and the strategies of those cancer cells. Not only is cancer 
its own species, it is also an evolutionary game, and the 
G-function framework was developed to specifically con-
sider the kinds of evolutionary games manifested by cancer. 

Like the approach proposed here, most mathematical models 
of cancer population and evolutionary dynamics have roots 
in models of population ecology and consider the cancer 
as its own “species” distinct from the whole organism [44, 
59, 74, 89].

In this paper, we discuss how cancer is an evolutionary 
game and show how G-functions are a useful tool to under-
stand the games cancer plays, from cell-cell competition to 
the evolution of therapeutic resistance. We begin by intro-
ducing the G-function framework, starting with Darwin’s 
theory of natural selection. We then construct equations for 
ecological (population) and evolutionary (strategy) dynam-
ics. Next, we construct and simulate G-functions in the con-
text of cancer, starting with a core cancer growth model and 
adding on cancer cell competition. We end the paper with an 
example of the emergence of therapeutic resistance, show-
ing insights that can be gleaned from using the G-function 
framework. In this process, we introduce a software tool for 
modeling G-functions that allows researchers to extensively 
explore the models presented in this paper without requir-
ing a detailed understanding of the mathematics underly-
ing our models. All model simulations in this paper were 
directly generated from the tool itself. The unique power of 
G-functions to simultaneously capture ecological and evo-
lutionary dynamics in a biologically mechanistic way makes 
it a powerful tool to understand cancer. We expect in years 
to come that this approach will be adopted by mathemati-
cal modelers, experimental cancer biologists, and clinical 
oncologists to aid in hypothesis generation, testing, and 
clinical decision-making.

Methods

The cancer G-function is based on the fundamental tenets of 
Darwin’s theory of natural selection. The three core princi-
ples are: (1) there must be heritable variation such that like 
begets like with alterations, (2) there must be a struggle for 
existence that prevents populations from growing without 
bound, (3) heritable variation must influence this struggle-
some phenotypes (strategies) beat others. The first assump-
tion of heritable variation is captured by each clone in the 
population having a heritable strategy, ui . This heritable 
strategy belongs to an evolutionary strategy set, U, which 
delineates the set of plausible values this strategy can take, 
providing biologically realistic limits to evolution. These 
strategies could represent transporter expression levels or 
resistance to a drug via gene expression, for example, and 
could be bounded by the maximum number of transporters a 
cell can express or the complete resistance to a drug (i.e., the 
drug does not induce any death in the cell population). These 
bounds prevent unreasonable evolutionary outcomes such 
as evolving a near-infinite number of drug antiporters. The 
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struggle for existence is captured through the fitness gen-
erating function, G(v,u, x) , which represents how a clone’s 
per capita growth rate (the rate at which the population size 
changes per cell in the population) depends on the strategies 
(u) and population densities (x) of all clones in the popula-
tion. The impact of heritable variation is captured by the 
dependence of the fitness generating function on the clone’s 
strategy, v.

To avoid confusion, it’s worth delineating the difference 
between evolutionarily identical groups, clones, and cells. 
Cells with the same strategy set (U) and those that experi-
ence the same consequences of possessing those strategies 
are part of the same evolutionarily identical group. In other 
words, cells with the same G function can be grouped into 
an evolutionarily identical group, obviating the need to con-
struct a separate G function for each cell. Clones represent 
cells that are not only evolutionarily identical, but also pos-
sess the same strategy. Typically, populations are composed 
of multiple clones (otherwise known as morphs). However, 
in the case of a monomorphic population, describing the 
clone and describing the population are analogous. For 
expositional purposes, we will often use clones, morphs, 
and cells interchangeably.

In some biological phenomena, there is a clear time-scale 
separation between ecological (population) and evolutionary 
(strategy) dynamics: often, the ecological time scale is much 
faster than the evolutionary time scale. In these contexts, 
it may be acceptable to simply model ecological dynam-
ics and ignore the evolutionary underpinnings. However, in 
scenarios such as the evolution of drug resistance [16], the 
evolutionary trajectories of cells play a key role in the persis-
tence of the population. To formulate a complete mathemati-
cal theory of evolution by natural selection, both ecological 
and evolutionary dynamics must be considered. The power 
of G functions comes from their ability to simultaneously 
consider both these components. Here, we build simple 
ordinary differential equations for each. First, we consider 
ecological dynamics. Since the fitness generating function G 
was defined as the per capita growth rate, to determine the 
growth of the entire clone, we multiply this rate by the num-
ber of cells in the clone. Doing this gives us the following 
equation that governs the change in each clone’s population 
size over time:

Next, we construct an equation which describes evolution-
ary dynamics: how the population’s trait value changes over 
time. To do this, we must consider both in which direction 
and how fast the trait evolves. The direction is governed 
by how changes in strategy affect fitness. This is given by 
the (local) gradient of the G function, which captures how 

(1)
dx

i

dt
= x

i
G(v,u, x)|

v=ui
.

a small increase in the trait value impacts the per capita 
growth rate of a clone. The trait will evolve in the direction 
that increases fitness, i.e., if an increase in drug antiporters 
increases the per capita growth rate of the clone, it will be 
evolutionarily favored. The rate at which the trait evolves 
depends on the slope of the adaptive landscape–the steeper 
the slope, the faster the trait will evolve. In other words, if 
the selection pressure induced by a drug is extreme, cells 
will evolve resistance more quickly. The rate of evolution 
also depends on the trait’s evolvability, which captures the 
trait’s ability to respond to natural selection. Evolvability 
can be influenced by several factors including mutation rate 
and the underlying genetic architecture. The more evolvable 
the trait, the faster the rate of evolution. These ideas can be 
formalized in the following equation:

where k is a measure of the trait’s evolvability and dG
dv

 is the 
gradient of the fitness generating function. Strategy dynam-
ics are often visualized on an adaptive landscape, such as 
the one shown in Fig. 1. This landscape is produced by com-
puting the fitness (per capita growth rate) at each time step 
as a function of the focal cell’s strategy, v. As the strategies 
and population densities of clones in the population change, 
so too does the adaptive landscape.

Assume the blue diamond in Fig. 1 represents the current 
location of the cells’ trait. At each time step, cells produce 
progeny with trait values in a local neighborhood of their 
own trait value. The cells with traits that confer a higher 
fitness will persist in the population, while those with traits 
that endow a lower fitness will go extinct. In this process, 
as a mean field approximation, the clone scales the land-
scape to reach a local fitness maximizing peak, as can be 
seen in the figure by the arrows. At each time step, the trait 
changes based on the slope of the adaptive landscape ( dG

dv
 ) 

and the “step size” (k), with local and favorable alternatives 

(2)
du

i

dt
= k

dG

dv

|||v=ui
,

Fig. 1  Adapted from [18]. An adaptive landscape that plots the fitness 
(y-axis) of an cell with a given trait value (x-axis). Though depicted 
here as a single snapshot in time, in reality, adaptive landscapes 
dynamically change in response to trait frequencies and population 
sizes
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being preferred at each step. Although k may be variable 
[20, 21], changing as a function of how stressed cells are 
in their environment (e.g., via stress-induced mutagenesis 
[41]), we choose to fix k to a constant value here for expo-
sitional purposes.

Naturally, cells may get trapped on local peaks (shown 
by the purple stars) and never reach the global peak (shown 
by the red star) of the adaptive landscape. Getting out of 
local peaks requires either the adaptive landscape to change 
in such a way that it no longer remains a peak or for the 
species to produce enough genetic variation to step over the 
valley [18]. In cancer, an example of this can be seen when 
nutrient composition in the environment changes drastically. 
Though an entire rewiring of metabolic circuitry could lead 
to a global optimum with respect to resource utilization, 
this is often evolutionarily unfeasible as it requires cells to 
pass over several valleys in the process of modifying their 
metabolic networks. On the other hand, a slight shift in the 
expression levels of proteins implicated in metabolism may 
be enough to reach a local optimum—this is the strategy that 
will be evolutionarily preferred.

Table 1 summarizes the important components so far in 
the population and strategy dynamics.

Results

Basic cancer growth

Now that we have outlined the core ecological and evolu-
tionary dynamics, we are ready to build G functions in the 
context of cancer. To do this, we follow the following three 
steps: (1) create a model of the ecological dynamics, (2) 
identify relevant traits that can influence these dynamics, 
and (3) outline how the focal cell’s strategy (v) and the strat-
egies of other clones in the population (u) affect values of 
key parameters in our model.

To model the ecological dynamics of cancer cells (i.e. 
how the number of cancer cells in the population changes 
over time), we must first consider their growth rate. We may 
start by assuming that the per capita growth rate (G) is con-
stant, independent of population size. Under this assumption, 

G = r, where r is the intrinsic growth rate (division rate-
death rate per time step) and thus dx

dt
= rx . This is a model of 

exponential growth: assuming r > 0 (division rate exceeds 
death rate), the population will increase exponentially with-
out bound. Exponential growth is a good description for 
the initial phase of growth for a population under optimal 
conditions, in which resources and space are plentiful [60]. 
However, it is not a good predictor of the long-term dynam-
ics of cancer cells. Namely, the exponential growth model 
does not consider density-dependent factors such as nutrient 
depletion. which make the per capita growth rate decrease 
with population density rather than remain constant.

One way we can take this into account is to let the per 
capita growth rate decrease linearly with population size. 
Mathematically, this is represented by G = r(1 − x∕K) . Here, 
r is the intrinsic rate of increase: the maximum growth rate 
when the population size is small. Clinically and experi-
mentally, this can be calculated from the doubling time of 
a cell population with ample space and nutrients as ln(2)/D 
where D is the doubling time. K is the carrying capacity, the 
maximum number of cells the environment can support. In 
the lab, this can be detected from population counts when 
cells reach confluence and growth has stagnated. Below this 
level, the overall per capita growth rate is positive, at the 
carrying capacity no growth occurs, and above it the growth 
rate is negative. Thus, our basic ecological dynamics can be 
written as follows:

The notion of a carrying capacity is widely debated in the 
literature–after all, cancer is characterized by an unlimited 
potential for growth [29, 48, 52, 81, 101, 105]. Despite this, 
it is widely accepted that competition among cells for lim-
ited resources leads to a carrying capacity. Although this 
carrying capacity may be incredibly high, there are only so 
many cancer cells a human can host before succumbing to 
the disease. It is also worth noting that, while there are sev-
eral other growth models used in modeling cancer such as 
Gompertz and Bertalanffy growth [72, 94, 107], we choose 
to use logistic growth for expositional purposes: this is the 
most widely used growth model in the mathematical oncol-
ogy literature.

Now, we must decide what the relevant evolutionary traits 
are that are associated with cellular dynamics. Since we are 
focused on basic cancer growth here, we let our strategy rep-
resent a “growth strategy” for the cancer cells. Intentionally 
kept general, this could represent transporter production for 
nutrient uptake or the use of certain metabolic pathways for 
cell growth and division. Next, we must determine which 
parameters in our model will depend on this strategy. In 
order to see the clearest impact on population and strategy 
dynamics, we choose to let the carrying capacity, K, depend 

(3)
dx

dt
= rx

(
1 −

x

K

)
.

Table 1  Key parameters in population and strategy dynamics

Parameter Interpretation

G Per capita growth rate of a clone
v Strategy of focal cell
u Strategies of each clone in population
x Population size of each clone in population
k Trait evolvability
dG

dv

Gradient of G function
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on v. Namely, we assume that a strategy of v = 0 maximizes 
a clone’s carrying capacity. Deviations from this decrease 
the carrying capacity in a Gaussian fashion, as described 
below. For instance, over- or under-producing nutrient trans-
porters can lead to suboptimal growth at the clonal level.

Here, Km denotes the absolute carrying capacity, achieved at 
v = 0 . The breadth of the Gaussian distribution is modulated 
by �2

k
 . The smaller the value of �2

k
 is, the more sensitive the 

carrying capacity is to changes in v. In other words, if small 
perturbations from the optimal value of the relevant trait 
only modestly change the number of cells at confluence, �2

k
 

will be small. However, if minor perturbations have a major 
impact on carrying capacity �2

k
 will be large. This idea is 

illustrated in Fig. 2.
Although this formulation of carrying capacity strictly 

only holds in the monomorphic case (as we’re dealing with 
here), it can easily be extended to the case of a polymorphic 
population, either by allowing each clone to retain its own 
carrying capacity or by enforcing a population-level carrying 
capacity as the weighted average of the carrying capacities 
of all clones. Our G function can now be written as

(4)K(v) = Kmexp

[
−

v2

2�2

k

]
.

(5)G(v, x) = r

(
1 −

x

K(v)

)
.

Plugging this in for G in Eqs. 1 and 2, we derive our popula-
tion and strategy dynamics to be: 

We are now ready to simulate the eco-evolutionary 
dynamics of our cancer cells. To build an intuition for our 
model, we vary each parameter value and see how it affects 
cancer cell dynamics when compared to a control simula-
tion in Fig. 3. The base parameter values used in the control 
simulation are given in Table 2 and are the default values 
used in the G-function software tool.

In each of the panels in Fig. 3, the top graph represents 
population dynamics and the bottom graph represents strat-
egy dynamics. First, we make a few general observations. In 
all cases, the cancer cells gradually evolve towards a strategy 
of v = 0 to maximize their carrying capacity. Considering 
ecological dynamics, we see a sharp increase in population 
size at the beginning followed by a more gradual increase, 
characteristic of logistic growth. The population size tapers 
off at the absolute carrying capacity at x = 100 at the end of 
the simulation. Now, let us specifically look at the impact of 
an increase in each parameter value (tripling of the control 
value) on the eco-evolutionary dynamics of cancer cells.

First, consider Fig. 3a in which we simulate a high intrin-
sic growth rate. In this case, note that the strategy evolves 
much more quickly to the equilibrium at v = 0 . As we can 
see from Eq. 6b, this is because r directly increases the speed 
of evolution at each time step. We also see that the popula-
tion reaches the absolute carrying capacity at x = 100 much 
more quickly. The reason behind this is two-fold. Consider-
ing Eq. 6a, the two main parameters which govern popula-
tion increase are r and K(v). By default, a higher r results in 
a faster cell division rate, aiding population growth. But it 
also increases K(v) at a faster rate since v reaches its optimal 
value at 0 more quickly.

(6a)
dx

dt
= rx

(
1 −

x

K(v)

)
,

(6b)du

dt
= k

−rux ∗ exp
(

u2

2�2

k

)

Km�
2

k

.

Fig. 2  Sensitivity of Carrying Capacity to Changes in �2

k
 . A sample 

carrying capacity function is plotted here with K
m
= 100 . The blue 

curve depicts a carrying capacity with a high sensitivity to changes 
in v with �2

k
= 4 . The red curve represents a carrying capacity that is 

relatively insensitive to changes in v with �2

k
= 20 . As we can see, the 

carrying capacity of the blue curve drops off sharply if the strategy 
deviates even a little from 0. In comparison, deviances from v = 0 
impact the red curve’s carrying capacity less

Table 2  Control simulation parameter values

Parameter Interpretation Value

�
�

Initial population size of each clone 10
�
�

Initial strategy value of each clone 3
K
m

Absolute carrying capacity 100
r Intrinsic growth rate 0.25
�
2

k
Breadth of carrying capacity 12.5

k Trait evolvability 0.2
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Next, we turn our attention to Fig. 3b that depicts a high 
absolute carrying capacity. As one would expect, the can-
cer cell population now reaches a carrying capacity of 300 
instead of one at 100. The initial population burst is more 
notable, owing to the higher carrying capacity that does not 
constrain growth at low population sizes as strongly. Fur-
thermore, note that the strategy dynamics for the control 
and high carrying capacity case are nearly identical. This is 
because the higher Km is offset by a higher x in Eq. 6b.

Now, consider Fig. 3c, in which we simulated a higher 
evolvability of the trait. As expected from Eq.  6b, the 

strategy now evolves much more quickly to an equilibrium 
of v = 0 since the “step size” of evolution at each time 
step is now increased. We also notice that the population 
reaches its absolute carrying capacity more quickly. Since 
the trait evolves to more optimal levels more quickly, K(v) 
increases more rapidly, restraining population growth to a 
lesser degree.

Finally, consider Fig. 3d where we made the carrying 
capacity less sensitive to trait values that diverge from v = 0 . 
The selection pressure for the trait to evolve to 0 is now 
reduced and the adaptive landscape will correspondingly 

Fig. 3  Basic Cancer Growth Simulations: Impact of Increases in 
r,K

m
, k, or �2

k
 on Population and Strategy Dynamics. These plots 

were produced using the G-function software tool’s “Basic Growth” 
model. To recreate these plots, one must change the respective “modi-

fied species” parameter value in the advanced drop down menu to 
thrice the value of the “control species”. For example, to generate the 
“Control vs High r” plot, set r2 to 0.75 and run the model
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be less steep. This leads to a slower evolution of the trait 
value. There are two things to note in the population dynam-
ics. First, observe the more rapid growth for a less sensitive 
carrying capacity at the beginning. This is because K(v) 
remains relatively high the entire time and thus does not 
constrain population growth as much, initially. However, we 
also see that it takes longer to reach the absolute carrying 
capacity. This is because the trait evolves more slowly to 0, 
leaving the cancer cells off-peak for a longer period of time.

To summarize, we have created a simple model of cancer 
growth and found (1) a higher intrinsic growth rate not only 
increases population size more quickly, but also speeds up 
the rate of evolution, (2) a higher carrying capacity allows 
for a greater number of cells to exist in the population, lead-
ing to a higher population size at equilibrium, (3) a higher 
evolvability causes a faster rate of evolution and allows the 
population to reach carrying capacity sooner, and (4) a car-
rying capacity that is less sensitive to trait value decreases 
the selection gradient by allowing cells with trait values far 
from v = 0 to proliferate effectively: this leads to a higher 
initial population growth but a slower rate of trait evolution.

Cancer cell competition

One assumption implicit in our model is that all cells com-
pete equally with each other. However, this may not always 
be realistic. For example, cells that use similar metabolic 
pathways may experience greater competition with each 
other for nutrients than with cells that have different nutrient 

requirements. To incorporate this intraspecific competition 
into our model, we can amend our G function from Eq. 7 
as follows:

where the intraspecific competition function, a(v, ui) , scales 
how each clone diminishes the per capita growth rate of 
another depending on the strategies of the focal and com-
peting clones. These parameter values can be experimen-
tally informed via a series of competition assays. Note 
that this function can be asymmetric: if clone 1 outcom-
petes clone 2 when cultured together, we can assume that 
a(u1, u2) < a(u2, u1) , i.e., clone 1 negatively impacts clone 
2’s growth more than clone 2 impacts clone 1’s growth. We 
reintroduce the subscripts on x and u to make explicit the 
fact that we are dealing with more than one clone in our pop-
ulation. Here, we assume that like competes most with like:

Under this framework, cells of two clones will compete more 
if their trait values are similar rather than dissimilar. This 
competition function has the property that when a focal cell 
has the same trait value as that of its competitor, a(v, ui) = 1 . 
The �2

a
 term represents the breadth of the competition func-

tion. The smaller the value of �a , the more effectively cells 
of different clones can avoid competition from one another 

(7)G(v,u, x) = r

�
1 −

∑
i
a(v, u

i
)x

i

K(v)

�
,

(8)a(v, ui) = exp

[
−
(v − ui)

2

2�2
a

]
.

Fig. 4  Cancer Growth with Competition Dynamics. Impact of �2

a
 : 

Breadth of Competition Function. These plots were produced using 
the G-function software tool’s “Competition” model. To recreate the 

left plot, simply run the model as is. To recreate the right plot, change 
the value of �

a
 in the advanced drop down menu to 50 and run the 

model
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by having divergent trait values and thus occupying differ-
ent niches.

Now, we run simulations in Fig. 4 with two competing 
clones, distinguished only by their initial strategy. We let 
one clone start with v(0) = 3 and the other with v(0) = −3 . 
We use the same parameters as given in Table 1 and run two 
simulations: one with �2

a
= 2 , corresponding to clones that 

can effectively avoid competition from one another by hav-
ing divergent trait values, and one with �2

a
= 50 , capturing 

a case in which trait value divergence does not help much in 
avoiding competition.

In this case, there is a trade-off between maximizing car-
rying capacity and avoiding competition. When the breadth 
of the competition function is low, as in Fig. 4a, clones are 
effectively able to avoid competition with each other. This 
can be seen by the two clones having different strategy equi-
libria at ≈ 1.56 and −1.56. Note that the clones do not reach 
their absolute carrying capacity at 100 since they still remain 
far from the strategy which maximizes carrying capacity 
( v = 0 ). Now, consider Fig. 4b in which the breadth of the 
competition function is high. Here, having a divergent trait 
value does not help clones much in avoiding competition 
from one another. Thus, the benefit of maximizing carrying 
capacity outweighs the minimal benefit the clones may gain 
from having divergent strategies. This leads to a convergence 
in strategy values at v = 0 . Note that the population size 
of the clones is even less in this case, each at 50. This is 
because, even though the clones are at v = 0 , they are expe-
riencing maximal competition from one another. In other 
words, they are equally inhibited by their own growth as they 
are from their competitors. This is what leads them to each 
occupy half of the absolute carrying capacity of each–they 
are both functionally equal competitors coexisting in the 
same niche with a carrying capacity of 100.

Note that in these simulations, we assumed a small niche 
breadth. This promoted coexistence of clones as they were 
effectively able to avoid competition from one another. How-
ever, if this niche were to be expanded, we would notice 
competitive exclusion: the clone that starts closer to the evo-
lutionary equilibrium would outcompete the other.

Drug resistance

Now, we consider a problem of clinical relevance: the emer-
gence of drug resistance after the administration of therapy. 
First, we consider the ecological component of our problem. 
Although cancer is an incredibly complex disease involv-
ing intricate interactions among heterogeneous cancer cells, 
normal cells, immune cells, etc., we choose to just focus on 
cancer cell dynamics here. We start with logistic growth 
(Eq. 3) as our base and add on the effects of therapy. Specifi-
cally, we assume cancer cells die in a density-independent 

fashion (i.e. constant per capita death rate) due to therapy. 
Thus, our ecological dynamics are:

where x is the population of cancer cells, r is the intrinsic 
growth rate of the cancer cells, K is the carrying capacity, 
and s is the drug’s killing efficiency. Now, we must define the 
key strategies associated with cancer cell dynamics. Since 
we are trying to keep this model as general as possible, the 
exact meaning of our key strategy varies from treatment to 
treatment. In the context of glucose starvation, for example, 
it may represent an increase/decrease in GLUT1 transport-
ers or in the context of a BRAF inhibitor, it may quantify 
changes in the intracellular MAPK pathway. Now, we must 
determine which parameters in the model will vary based on 
v, u, and x. We let the carrying capacity and killing rate vary 
as a function of the focal strategy. Namely, we assume that 
when v = 0 , the clone maximizes its carrying capacity. Any 
deviation from this causes the carrying capacity to decline 
according to a Gaussian distribution:

Here, Km denotes the absolute carrying capacity and �2

k
 mod-

ulates the breadth of the Gaussian distribution (see Fig. 2). 
We use a similar form for the drug’s killing efficacy:

Here, sm is the maximal killing rate of the drug, uopt is the 
cancer cell strategy at which the drug is most effective, and 
�
2

t
 is a measure of the generality of the drug: how effec-

tive the drug is when cancer cells deviate from uopt . These 
parameters can be informed by dose-response curves that 
measure the death due to drug over time. We now have a 
fully constructed G function model. Note that, since the G 
function gives the per capita growth rate of the clone, we 
have:

We can now run some simulations to examine what hap-
pens to the population and strategy dynamics of the cancer 
cells over time. First, we consider the non-treatment control 
case. We start the cancer cell population at x(0) = 10 and 
the strategy at v(0) = 3 and simulate the model for 1500 
time steps. In addition to plots of the population and strategy 
dynamics, we create a 3D plot of the evolution of the adap-
tive landscape over time (Fig. 5).

(9)
dx

dt
= rx

(
1 −

x

K

)
− sx,

(10)K(v) = Kmexp

[
−

v2

2�2

k

]
.

(11)s(v) = smexp

[
−
(v − uopt)

2

2�2
t

]
.

(12)G(v,u, x) = r

[
1 −

x

K(v)

]
− s(v).
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There are a few things to notice here. First, as we would 
expect, the population evolves towards v = 0 , the strategy 
at which their carrying capacity is maximized. We see that 
the population does reach their maximal carrying capacity 
at 100 in a logistic fashion. When we consider the adaptive 
landscape, we see that, for the entirety of the simulation, 

there is only one peak in the population, corresponding to 
v = 0 ; the fitness of the cancer cells drops off as the cells 
deviate from this strategy. Now, let us turn our attention to 
the treatment case (Fig. 6). Here, using the same initial con-
ditions as above, we induce a treatment (maximally effective 
for cancer cells with v = 0 ) at time 600.

Fig. 5  No Treatment Simulations. These plots were produced using the G-function software tool’s “Drug Resistance” model. To recreate these 
plots, simply run the model as is using the 2D graph type (left panel) and 3D graph type (right panel)

Fig. 6  Treatment Simulations. These plots were produced using the 
G-function software tool’s “Drug Resistance” model. To recreate 
these plots, change the “Time to Start of Treatment (time_G)” param-

eter to 600 and run the model using the 2D graph type (left panel) 
and 3D graph type (right panel)
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We notice very different dynamics in this case. Just before 
treatment is applied, the population has reached its ecologi-
cal and evolutionary equilibria at x = 100 and v = 0 . The 
adaptive landscape at this time is identical to that of the no 
treatment case. After administration of the drug, we notice 
the population density initially decreases sharply. From the 
adaptive landscape, we can see that this occurs because the 
v = 0 strategy now corresponds to a valley in the adaptive 
landscape. In response to treatment, the population evolves 
a new strategy by climbing the adaptive landscape to a new 
peak, resulting in an increase in size. Notice that there are 
two peaks of equal fitness in the adaptive landscape, imply-
ing the potential for speciation to occur with cells evolving 
two different strategies to evade the effects of treatment. 
In the case of BRAF inhibitor resistance in melanoma, for 
example, this speciation event may occur through activation 
of RTKs like IGF-1R or through engagement of the PI3K 
pathway via PTEN inactivation [62, 102]. This sharp change 
in the adaptive landscape from a unimodal to bimodal distri-
bution can clearly be seen in the adaptive landscape.

The new strategy at v ≈ 2 is a balance between two oppos-
ing selective forces. On one side is the stabilizing selection 
exerted by maximizing carrying capacity, which tries to pull 
the population as close as possible to v = 0 . On the other 
side is the divergent selection exerted by treatment, which 
pushes the population as far away as possible from v = 0 . 
Note, however, that the post-treatment population equilib-
rium is much lower than the pre-treatment equilibrium. Intu-
itively, this is because, although cancer cells may use differ-
ent intracellular signaling pathways to evade the effects of 
BRAF inhibitors, these alternative pathways are inherently 
less energetically efficient, leading to a lower overall fitness 
and growth rate of the population. Although we implement a 
simple therapeutic protocol here, more intricate evolutionar-
ily informed dosing strategies can be explored by expanding 
the model to include several therapies and therapy periods. 
We refer the readers to our prior work to see how this is 
done [18, 103].

To summarize, our model demonstrates the ecological 
and evolutionary underpinnings of drug resistance. Although 
alternate strategies (e.g., metabolic pathways) may be sub-
optimal in the absence of therapy, the administration of 
an appropriate drug creates a valley at the prior optimal 
strategy. This valley leads to new peaks that may allow for 
speciation of the population. Therefore, therapy may be a 
source of diversification and heterogeneity. Although we 
have presented a simplified version of the evolution of drug 
resistance in cancer, there are many ways this model can be 
extended, depending on the question of interest. For exam-
ple, one could consider the influence of other cell types such 
as immune cells and fibroblasts, spatiotemporal variation 
and heterogeneity in the microenvironment [27, 61, 85], side 
effects of drugs [86], drug scheduling [109], evolutionarily 

informed therapies [18, 19], and the effects of plasticity and 
cell states [20, 21].

Discussion

Cancer research has made much progress over the last sev-
eral centuries, from understanding the functions of key genes 
and proteins and outlining detailed molecular mechanisms 
that promote tumorigenesis to the advent of therapies such 
as radiation therapy, chemotherapy, and immunotherapy. 
However, patient outcomes are still dismal in many regards. 
To truly understand and effectively treat cancer, we must 
supplement the gene-centric paradigm that dominates much 
of modern cancer research with a higher-level understanding 
of the ecological and evolutionary forces that shape cancer.

It has long been recognized that cancer cells are groups of 
heterogeneous cells that are evolving in a constantly chang-
ing ecological environment, subject to fluctuations in nutri-
ent and oxygen levels, “predation” by immune cells, and 
therapy [7, 78]. Ecological and evolutionary perspectives are 
necessary to understand the complex nature of cancer biol-
ogy and develop more effective treatment strategies. Much 
work in last several decades has applied ecological and evo-
lutionary theory to a diverse set of problems in cancer biol-
ogy [100] including the origins of cancer [5, 34, 79, 80, 84], 
tumor-microenvironment coevolution [13, 67, 73, 77, 99], 
cell signaling [17], infection and cancer [37–39], metastasis 
[8, 9, 24, 40, 50, 54, 82, 93], dormancy [4, 71, 98], and of 
course therapeutic responses [6, 11, 16, 27, 36, 42, 43, 46, 
70]. In fact, many of the earliest mathematical models of 
cancer such as the logistic, von Bertalanffy, and Gompertz 
growth models were inspired by problems in ecology. More 
recently, these evolutionary perspectives into tumorigenesis 
were formalized through the use of EGT [106], starting with 
the pioneering work of Tomlinson who used matrix games 
to probe competition among cancer cells [97]. Since then, 
the scope of EGT as a tool to solve problems in cancer has 
expanded greatly, due to both mathematical advancements 
in EGT [23] and greater awareness of the usefulness of 
such techniques to solve biological problems [18]. Current 
approaches now allow for incorporation of spatial heteroge-
neity [1, 10, 14, 25, 56, 63, 75, 96, 106, 108], optimization 
of cancer treatment [22, 26, 49, 53, 64, 90, 104], linking 
game theoretic frameworks to experimental [55, 92] and 
clinical patient [65, 86, 88] data to drive and inform clinical 
trials.

However, a simple, unifying modeling framework that 
allows us to simultaneously consider the ecological and 
evolutionary dynamics of cancer in a variety of scenarios 
is lacking. In this paper, we show how the G-function mod-
eling framework can help us do just this. Starting from first 
principles, we walk through the development of G functions 
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and show its power to simultaneously model ecological 
(population) and evolutionary (strategy) dynamics. We then 
use G-functions to construct a basic model of cancer growth, 
upon which we add cancer cell-cell competition and analyze 
a basic scenario of the evolution of therapeutic resistance. 
Overall, the G function framework allows us to rigorously 
create simple mathematical models of our hypotheses about 
the natural world and provides the necessary tools to simu-
late and analyze the resulting models. These results can then 
be compared to reality and, if needed, the hypotheses modi-
fied in an iterative fashion.

Author contributions All authors conceptualized the article. IH and 
AB created the G-function software tool. AB performed all simulations 
and wrote an original draft of the article. All authors edited the article 
and approved the final version of this manuscript.

Funding Open access funding provided by Lund University. AB 
acknowledges support by the Stiftelsen Längmanska kulturfonden 
(BA22-0753), the Royal Swedish Academy of Sciences Stiftelsen GS 
Magnusons fond (MG2022-0019), the Crafoord foundation (20220633), 
and the National Science Foundation Graduate Research Fellowship 
Program under Grant No. 1746051. KJP is supported by NCI Grants 
U54CA143803, CA163124, CA093900, and CA143055, and the 
Prostate Cancer Foundation. JSB acknowledges funding from NIH/
NCI, U54CA193489,“Cancer as a complex adaptive system”, NIH/
NCI U54 Supplement, “The tumor-host evolutionary arms race”, NIH/
NCI, 1R01CA258089, “Eco-evolutionary drivers of clonal dynamics 
during UV-induced skin carcinogenesis”. SRA is supported by the 
US Department of Defense CDMRP/PCRP (W81XWH-20-10353), 
the Patrick C. Walsh Prostate Cancer Research Fund and the Prostate 
Cancer Foundation. EUH received funding from the ParadOX-ERC 
Starting Grant (No. 96948), the Crafoord foundation (20220633), and 
from the Swedish Research Council (Grant 2019-05254).

Code availability All model simulation plots were produced from the 
G-function software tool, found at https:// lively- wave- 033dd 4510. azure 
stati capps. net/. The codes behind the software tool can be found at 
https:// github. com/ ihock ett01/g- funct ion- api

Declarations 

Conflict of interest KJP is a consultant for CUE Biopharma, Inc., and 
holds equity interest in CUE Biopharma, Inc., Keystone Biopharma, 
Inc. and PEEL Therapeutics, Inc. SRA holds equity interest in Key-
stone Biopharma, Inc. AB, IH, RHA, EUH, and JSB declare no poten-
tial conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Adami C, Schossau J, Hintze A. Evolutionary game theory using 
agent-based methods. Phys Life Rev. 2016;19:1–26.

 2. Adler Frederick R, Gordon DM. Cancer ecology and evolution: 
positive interactions and system vulnerability. Curr Opin Syst 
Biol. 2019;17:1–7.

 3. Guim A-G, Ricard S. Adaptive dynamics of unstable cancer pop-
ulations: the canonical equation. Evol Appl. 2018;11(8):1283–92.

 4. Aktipis AC, Boddy AM, Gatenby RA, Brown JS, Maley CC. 
Life history trade-offs in cancer evolution. Nat Rev Cancer. 
2013;13(12):883–92.

 5. Aktipis AC, Boddy AM, Jansen G, Hibner U, Hochberg ME, 
Maley CC, Wilkinson GS. Cancer across the tree of life: coop-
eration and cheating in multicellularity. Philos Trans R Soc B. 
2015;370(1673):7.

 6. Aktipis AC, Kwan VSY, Johnson KA, Neuberg SL, Maley CC. 
Overlooking evolution: a systematic analysis of cancer relapse 
and therapeutic resistance research. PLoS ONE. 2011;6(11): 
e26100.

 7. Aktipis AC, Nesse RM. Evolutionary foundations for cancer biol-
ogy. Evol Appl. 2013;6(1):144–59.

 8. Amend SR, Pienta AJ, Amend SR, Pienta AJ. Ecology meets 
cancer biology: the cancer swamp promotes the lethal cancer 
phenotype. Oncotarget. 2015;6(12):9669–78.

 9. Amend SR, Sounak R, Brown JS, Pienta KJ. Ecological para-
digms to understand the dynamics of metastasis. Cancer Lett. 
2016;380(1):237–42.

 10. Marco A. Cooperation among cancer cells as public goods games 
on Voronoi networks. J Theor Biol. 2016;396:191–203.

 11. David B, Gatenby RA, Anderson ARA. Exploiting evolution to 
treat drug resistance: combination therapy and the double bind. 
Mol Pharm. 2012;9(4):914–21.

 12. Teresa BM, Irene E, Gomis RR. Ecology and evolution of dor-
mant metastasis. Trends Cancer. 2022;8(7):570–82.

 13. Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, 
Pinedo HM, Abeloff MD, Simons JW, van Diest PJ, van der Wall 
E. Levels of hypoxia-inducible factor-1 alpha during breast car-
cinogenesis. J Natl Cancer Inst. 2001;93(4):309–14.

 14. Bravo RR, Baratchart E, West J, Schenck RO, Miller AK, Gal-
laher J, Gatenbee CD, Basanta D, Robertson-Tessi M, Anderson 
ARA. Hybrid automata library: a flexible platform for hybrid 
modeling with real-time visualization. PLoS Comput Biol. 
2020;16(3):5.

 15. Brown JS, Vincent TL. Organization of predator-prey communi-
ties as an evolutionary game. Evolution. 1992;46(5):1269–83.

 16. Bukkuri A. Optimal control analysis of combined chemotherapy-
immunotherapy treatment regimens in a PKPD cancer evolution 
model. Biomath. 2020;9:1–12.

 17. Bukkuri A, Adler FR. Viewing cancer through the lens of corrup-
tion: using behavioral ecology to understand cancer. Front Ecol 
Evol. 2021;7:442.

 18. Bukkuri Anuraag, Brown JS. Evolutionary game theory: dar-
winian dynamics and the G function approach. MDPI Games. 
2021;12(4):1–19.

 19. Bukkuri A, Gatenby RA, Brown JS. GLUT1 production in cancer 
cells: a tragedy of the commons. Submitted, 2021.

 20. Bukkuri A, Pienta K, Amend S. A life history model of the eco-
logical and evolutionary dynamics of Polyaneuploid cancer cells. 
Nat Sci Rep. 2022;89:1–25.

 21. Bukkuri A, Pienta K, Amend S, Brown JS. Stochastic models of 
mendelian and reverse transcriptional inheritance in state-struc-
tured cancer populations. Nat Sci Rep. 2022;12(13079):1–13.

 22. Carrère C. Optimization of an in vitro chemotherapy to avoid 
resistant tumours. J Theor Biol. 2017;1:24–33.

https://lively-wave-033dd4510.azurestaticapps.net/
https://lively-wave-033dd4510.azurestaticapps.net/
https://github.com/ihockett01/g-function-api
http://creativecommons.org/licenses/by/4.0/


 Medical Oncology (2023) 40:109

1 3

109 Page 12 of 14

 23. Champagnat N, Ferrière R, Méléard S. Unifying evolutionary 
dynamics: from individual stochastic processes to macroscopic 
models. Theor Popul Biol. 2006;69(3):297–321.

 24. Chen KW, Pienta KJ. Modeling invasion of metastasizing cancer 
cells to bone marrow utilizing ecological principles. Theor Biol 
Med Modell. 2011;8(1):4.

 25. Chen Y, Wang H, Zhang J, Chen K, Li Y. Simulation of avascular 
tumor growth by agent-based game model involving phenotype-
phenotype interactions. Sci Rep. 2015;5:89.

 26. Cunningham J, Thuijsman F, Peeters R, Viossat Y, Brown J, 
Gatenby R, Staňková K. Optimal control to reach eco-evolution-
ary stability in metastatic castrate-resistant prostate cancer. PLoS 
ONE. 2020;15(12): e0243386,12.

 27. Cunningham JJ, Bukkuri A, Brown JS, Gillies RJ, Gatenby 
RA. Coupled source-sink habitats produce spatial and temporal 
variation of cancer cell molecular properties as an alternative to 
branched clonal evolution and stem cell paradigms. Front Ecol 
Evolut. 2021;7:472.

 28. Cunningham JJ, Gatenby RA, Brown JS. Evolutionary dynamics 
in cancer therapy. Mol Pharm. 2011;8:2094–100.

 29. Deisboeck TS, Wang Z. Cancer dissemination: a consequence of 
limited carrying capacity? Med Hypoth. 2007;69(1):173.

 30. Dieckmann U, Marrow P, Law R. Evolutionary cycling in pred-
ator-prey interactions: population dynamics and the red queen. J 
Theor Biol. 1995;176(1):91–102.

 31. Dieckmann U. Coevolutionary dynamics of stochastic replicator 
systems. Central Library of the Research Center Jülich. 1994.

 32. Dieckmann U, Ferrière R. Adaptive dynamics and evolving bio-
diversity. In: Ferrière R, Dieckmann U, Couvet D, editors. Evolu-
tionary conservation biology. Cambridge: Cambridge University 
Press; 2009. p. 188–224.

 33. Dieckmann U, Law R. The dynamical theory of coevolution: 
a derivation from stochastic ecological processes. J Math Biol. 
1996;34(5–6):579–612.

 34. Doonan JH, Sablowski R. Walls around tumours-why plants do 
not develop cancer. Nat Rev Cancer. 2010;10(11):794–802.

 35. Dujon AM, Aktipis A, Alix-Panabières C, Amend SR, Boddy 
AM, Brown JS, Capp JP, DeGregori J, Ewald P, Gatenby R, 
Gerlinger M, Giraudeau M, Hamede RK, Hansen E, Kareva I, 
Maley CC, Marusyk A, McGranahan N, Metzger MJ, Nedelcu 
AM, Noble R, Nunney L, Pienta KJ, Polyak K, Pujol P, Read AF, 
Roche B, Sebens S, Solary E, Staňková K, Ewald HS, Thomas F, 
Ujvari B. Identifying key questions in the ecology and evolution 
of cancer. Evolut Appl. 2021;14(4):25.

 36. Enriquez-Navas PM, Wojtkowiak JW, Gatenby RA. Applica-
tion of evolutionary principles to cancer therapy. Cancer Res. 
2015;75(22): 4675,11.

 37. Ewald PW, Ewald SHA. Infection, mutation, and cancer evolu-
tion. J Mol Med. 2012;90:535–41.

 38. Ewald PW, Ewald SHA. Joint infectious causation of human can-
cers. Adv Parasitol. 2014;84:1–26.

 39. Ewald PW, Ewald SHA. Evolution, infection, and cancer. Evolut 
Think Med. 2016;89:191–207.

 40. Fidler IJ. The pathogenesis of cancer metastasis: the seed and 
soil hypothesis revisited. Nat Rev Cancer. 2003;33(6):453–8.

 41. Fitzgerald DM, Hastings PJ, Rosenberg SM, Implications in 
cancer and drug resistance. Stress-induced mutagenesis: impli-
cations in cancer and drug resistance. Ann Rev Cancer Biol. 
2017;1:119–40.

 42. Foo J, Michor F. Evolution of acquired resistance to anti-cancer 
therapy. J Theor Biol. 2014;355:10–20.

 43. Gatenby R, Brown J. The evolution and ecology of resistance in 
cancer therapy. Cold Spring Harbor Perspect Med. 2018;8(3):3.

 44. Gatenby RA. Population ecology issues in tumor growth. Cancer 
Res. 1991;51:2542–7.

 45. Gatenby RA, Artzy-Randrup Y, Epstein T, Reed DR, Brown JS. 
Eradicating metastatic cancer and the eco-evolutionary dynamics 
of anthropocene extinctions. Cancer Res. 2020;80(3):613–23.

 46. Gatenby RA, Brown JS. Integrating evolutionary dynamics into 
cancer therapy. Nat Rev Clin Oncol. 2020;17(11):67–686.

 47. Gatenby RA, Silva AS, Gillies RJ, Frieden BR. Adaptive therapy. 
Cancer Res. 2009;69(11):7894.

 48. Gerlee P, Anderson ARA. The evolution of carrying capacity in 
constrained and expanding tumour cell populations. Phys Biol. 
2015;12(5):8.

 49. Gluzman M, Scott JG, Vladimirsky A. Optimizing adaptive 
cancer therapy: dynamic programming and evolutionary game 
theory. Proc R Soc B. 2020;287(1925):4.

 50. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 
2012;481(7381):306–13.

 51. Hammarlund EU, Amend SR, Pienta KJ. The issues with tissues: 
the wide range of cell fate separation enables the evolution of 
multicellularity and cancer. Med Oncol. 2020;37(7):6237.

 52. Hanahan D, Weinberg RA. Leading edge review hallmarks of 
cancer. Cell. 2011;144:646–74.

 53. Itik M, Salamci MU, Banks SP. Optimal control of drug therapy 
in cancer treatment. Nonlinear Anal. 2009;71(12):e1473–e1473.

 54. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent 
L, Costa C, MacDonald DD, Jin D, Shido K, Kerns SA, Zhu 
Z, Hicklin D, Yan W, Port JL, Altorki N, Port ER, Ruggero D, 
Shmelkov SV, Jensen KK, Rafii S, Lyden D. VEGFR1-positive 
haematopoietic bone marrow progenitors initiate the pre-meta-
static niche. Nature. 2005;438(7069):820–7.

 55. Kaznatcheev A, Peacock J, Basanta D, Marusyk A, Scott JG. 
Fibroblasts and Alectinib switch the evolutionary games played 
by non-small cell lung cancer. Nat Ecol Evolut. 2019;3(3):450–6.

 56. Kaznatcheev A, Scot JG, Basanta D. Edge effects in game-theo-
retic dynamics of spatially structured tumours. J R Soc Interface. 
2005;12(108):7069.

 57. Kisdi éva E, Stefan A, Geritz H. Adaptive dynamics: a frame-
work to model evolution in the ecological theatre. J Math Biol. 
2010;61(1):59.

 58. Korolev KS, Xavier JB, Gore J. Turning ecology and evolution 
against cancer. Nat Rev Cancer. 2014;14(5):371–80.

 59. Kuang YJ, Nagyohn D, Eikenberry SE. Introduction to math-
ematical oncology. Chapman & Hall/CRC, 2016.

 60. Lack D. The natural regulation of animal numbers. Oxford: 
Oxford University Press; 1954.

 61. Lloyd MC, Cunningham JJ, Bui MM, Gillies RJ, Brown JS, 
Gatenby RA. Darwinian dynamics of intratumoral heterogene-
ity: Not solely random mutations but also variable environmental 
selection forces. Cancer Res. 2016;76(11):89.

 62. Luebker SA, Koepsell SA. Diverse mechanisms of BRAF inhibi-
tor resistance in melanoma identified in clinical and preclinical 
studies. Front Oncol. 2019;9(3):89.

 63. Mansury Y, Diggory M, Deisboeck TS. Evolutionary game 
theory in an agent-based brain tumor model: exploring the Gen-
otype-Phenotype’ link. J Theor Biol. 2006;238(1):146–56.

 64. Martin RB, Fisher ME, Minchin RF, Teo KL. Optimal control of 
tumor size used to maximize survival time when cells are resist-
ant to chemotherapy. Math Biosci. 1992;110(2):201–19.

 65. Martinez VA, Laleh NG, Salvioli M, Thuijsman F, Brown JS, 
Cavill R, Kather JN, Staňková K. Improving mathematical mod-
els of cancer by including resistance to therapy: a study in non-
small cell lung cancer. bioRxiv, 2021.

 66. McGill BJ, Brown JS, Annual Review of Ecology. Evolutionary 
game theory and adaptive dynamics of continuous traits. Annu 
Rev Ecol Evol Syst. 2007;38:403–35.



Medical Oncology (2023) 40:109 

1 3

Page 13 of 14 109

 67. Merlo Lauren MF, Pepper JW, Reid BJ, Maley CC. Cancer 
as an evolutionary and ecological process. Nat Rev Cancer. 
2006;6(12):924–35.

 68. Jacob JA, Metz SAH, Geritz GM, Jacobs FJA, Van Heerwaarden 
JS. Adaptive dynamics: a geometrical study of the consequences 
of nearly faithful reproduction. Stochast Spat Struct Dyn Syst. 
1996;45:183–231.

 69. Metz JA, Nisbet RM, Geritz SA. How should we define ‘fit-
ness’ for general ecological scenarios? Trends Ecol Evolut. 
1992;7(6):198–202.

 70. Michor F, Nowak M, Iwasa Y. Evolution of resistance to cancer 
therapy. Curr Pharm Des. 2005;12(3):261–77.

 71. Miller AK, Brown JS, Enderling H, Basanta D, Whelan CJ. The 
evolutionary ecology of dormancy in nature and in cancer. Front 
Ecol Evolut. 2021;7:440.

 72. Murphy H, Jaafari H, Dobrovolny HM. Differences in predictions 
of ODE models of tumor growth: a cautionary example. BMC Can-
cer. 2016;16(1):163.

 73. Myers KV, Pienta KJ, Amend SR. Cancer cells and M2 mac-
rophages: cooperative invasive ecosystem engineers. Cancer Con-
trol. 2020;27(1):1.

 74. Nagy JD. The ecology and evolutionary biology of cancer: a review 
of mathematical models of necrosis and tumor cell diversity. Math 
Biosci Eng. 2005;2(2):381–418.

 75. Nanda M, Durrett R. Spatial evolutionary games with weak selec-
tion. Proc Nat Acad Sci. 2017;114(23):6046–51.

 76. Nedelcu AM. The evolution of multicellularity and cancer: views 
and paradigms. Biochem Soc Trans. 2020;48(4):1505–18.

 77. Noël A, Foidart J-M. The role of stroma in breast carcinoma growth 
in vivo. J Mamm Gland Biol Neoplasia. 1998;3(2):215–25.

 78. Nowell PC. The clonal evolution of tumor cell populations. Sci-
ence. 1976;194(4260):23–8.

 79. Nunney L. Lineage selection and the evolution of multistage car-
cinogenesis. Proc R Soc B. 1999;266(1418):493.

 80. Nunney L. The population genetics of multistage carcinogenesis. 
Proc R Soc B. 2003;270(1520):1183.

 81. Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mit-
sunaga K, Okita K, Osafune K, Arioka Y, Maeda T, Soejima H, 
Moriwaki H, Moriwaki H, Yamanaka S, Woltjen K, Yamada Y. 
Premature termination of reprogramming in vivo leads to can-
cer development through altered epigenetic regulation. Cell. 
2014;156(4):663–77.

 82. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible 
for pre-metastatic niche formation: old sayings and new thoughts. 
Semin Cancer Biol. 2011;21(2):139–46.

 83. Pienta KJ, Hammarlund EU, Austin RH, Axelrod R, Brown JS, 
Amend SR. Cancer cells employ an evolutionarily conserved 
polyploidization program to resist therapy. Semin Cancer Biol. 
2022;81:145–59.

 84. Pienta KJ, Hammarlund EU, Axelrod R, Amend SR, Brown JS. 
Convergent evolution, evolving evolvability, and the origins of 
lethal cancer. Mol Cancer Res. 2020;18(6):801–10.

 85. Pressley M, Gallaher JA, Brown JS, Tomaszewski MR, Tomasze-
wski Michal R, Borad P, Damaghi M, Gillies RJ, Whelan CJ. 
Cycling hypoxia selects for constitutive HIF stabilization. Sci Rep. 
2021;11(1):59.

 86. Reed DR, Metts J, Pressley M, Fridley BL, Hayashi M, Michael 
S, Isakoff D, Loeb M, Makanji R, Roberts RD, Trucco M, Wagner 
LM. An evolutionary framework for treating pediatric sarcomas. 
Cancer. 2020;126(11):2577–87.

 87. Ripa J, Storlind L, Lundberg P, Brown JS. Niche co-evolu-
tion in consumer-resource communities. Evolut Ecol Res. 
2009;11(2):305–23.

 88. ...Robertson-Tessi M, Brown JS, Poole MI, Johnson M, Marusyk 
A, Gallaher JA, Luddy KA, Whelan CJ, West J, Strobl M, Turati 
V, Enderling H, Schell MJ, Tan A, Boyle T, Makanji R, Farinhas J, 

Soliman H, Lemanne D, Gatenby RA, Reed DR, Anderson ARA, 
Chung CH. Feasibility of an evolutionary tumor board for generat-
ing novel personalized therapeutic strategies. medRxiv. 2023;5:1.

 89. Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier 
JA, Macklin P, Hormuth DA, Hormuth AM, Lima EABF, Tins-
ley OJ, Biros G, Yankeelov TE, Curtius K, Bakir IA, Wodarz D, 
Komarova N, Wodarz D, Komarova N, Aparicio L, Bordyuh M, 
Rabadan R, Finley SD, Enderling H, Caudell J, Moros EG, Ander-
son ARA, Gatenby DA, Kaznatcheev A, Jeavons P, Krishnan N, 
Pelesko J, Wadhwa RR, Yoon N, Nichol D, Marusyk A, Hincze-
wski M, Scott JG. The 2019 mathematical oncology roadmap. Phys 
Biol. 2019;16(4):041005.

 90. Salvioli M, Dubbeldam J, Staňková K, Brown JS. Fisheries man-
agement as a Stackelberg evolutionary Game: finding an evolution-
arily enlightened strategy. PLoS ONE. 2021;16(1):e0245255.

 91. Somarelli JA. The hallmarks of cancer as ecologically driven phe-
notypes. Front Ecol Evolut. 2021;9:4.

 92. Staňková K. Resistance games. Nat Ecol Evolut. 2019;3(3):336.
 93. Steeg PS. Emissaries set up new sites. Nature. 2005;7069:438.
 94. Tabassum S, Rosli NB, Mazalan MS. Mathematical modeling of 

cancer growth process: a review. J Phys. 2019;1366:012018.
 95. Tissot T, Massol F, Ujvari B, Alix-Panabieres C, Loeuille N, 

Thomas F. Metastasis and the evolution of dispersal. Proc R Soc 
B. 2019;286(1916):12.

 96. Tomasetti C, Vogelstein B, Parmigiani G. (Oxford, England,. Half 
or more of the somatic mutations in cancers of self-renewing tis-
sues originate prior to tumor initiation. Proc Nat Acad Sci USA. 
1990;110(6):15.

 97. Tomlinson IP. Game-theory models of interactions between tumour 
cells. Eur J Cancer (Oxf Engl 1990). 1997;33(9):1495–500.

 98. Trumpp A, Essers M, Wilson A. Awakening dormant haematopoi-
etic stem cells. Nat Rev Immunol. 2010;10(3):201–9.

 99. Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR. 
Stromal cells promote angiogenesis and growth of human prostate 
tumors in a differential reactive stroma (DRS) xenograft model. 
Cancer Res. 2002;62(11):5962.

 100. Ujvari B, Roche B, Thomas F. Ecology and evolution of cancer. 1st 
ed. Cambridge: Academic Press; 2017.

 101. Vaghi C, Rodallec A, Fanciullino R, Ciccolini J, Mochel JP, Mastri 
M, Poignard C, Ebos JML, Benzekry S. Population modeling of 
tumor growth curves and the reduced Gompertz model improve 
prediction of the age of experimental tumors. PLOS Comput Biol. 
2020;16(2): e1007178.

 102. Villanueva J, Vultur A, Herlyn M. Resistance to BRAF inhibitors: 
unraveling mechanisms and future treatment options NIH Public 
Access. Cancer Res. 2011;71(23):7137–40.

 103. Vincent TL, Brown JS. Evolutionary game theory, natural selection, 
and darwinian dynamics. Cambridge: Cambridge University Press; 
2005.

 104. Warman PI, Kaznatcheev A, Araujo A, Lynch CC, Basanta D. Frac-
tionated follow-up chemotherapy delays the onset of resistance in 
bone metastatic prostate cancer. Games. 2018;9:19.

 105. West J, You L, Zhang J, Gatenby RA, Brown JS, Newton PK, 
Anderson ARA. Towards multidrug adaptive therapy. Cancer Res. 
2020;80(7):1578–89.

 106. Wölfl B, De Rietmole H, Salvioli M, Kaznatcheev A, Thuijsman F, 
Brown JS, Burgering B, Staňková K. The contribution of evolution-
ary game theory to understanding and treating cancer. Dyn Games 
Appl. 2021;8:1–30.

 107. Yin A, Dirk JAR, Moes JGC, Hasselt J, Swen J, Henk-Jan G. A 
review of mathematical models for tumor dynamics and treatment 
resistance evolution of solid tumors. CPT. 2019;8(10):720–37.

 108. You L, Brown JS, Thuijsman F, Cunningham JJ, Gatenby RA, 
Zhang J, Staňková K. Spatial vs. non-spatial eco-evolutionary 
dynamics in a tumor growth model. J Theor Biol. 2017;435:78–97.



 Medical Oncology (2023) 40:109

1 3

109 Page 14 of 14

 109. Zhang J, Cunningham JJ, Brown JS, Gatenby RA. Integrating evo-
lutionary dynamics into treatment of metastatic castrate-resistant 
prostate cancer. Nat Commun. 2017;8(1):58.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Modeling cancer’s ecological and evolutionary dynamics
	Abstract
	Introduction
	Methods
	Results
	Basic cancer growth
	Cancer cell competition
	Drug resistance

	Discussion
	References




