Skip to main content

Advertisement

Log in

Clinical relevance and therapeutic aspects of professional antigen-presenting cells in lung cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Lung cancer stays the preeminent cause of death worldwide. Despite recent advancements in chemotherapy, radiotherapy, and immunotherapy, the survival rate for people with advanced stages of the disease is still appalling. Moreover, there is a severe lack of reliable prognoses and indicators for classification in newly developed immunotherapies. A better understanding of immune cells is necessary to harness immune response mechanisms for therapeutic effects. Professional antigen-presenting cells are responsible for determining the fate of the immune response through the antigen processing and presentation pathway (APP). The most professional antigen-presenting cells (APC) include the dendritic cells (DC), macrophages, and B cells, which present antigens to the T-helper cells. Dendritic cells are significantly explored as a tool for immunotherapy owing to their precise ability to provoke and alter T-cell responses. Moreover, the role of tumor-associated macrophages (TAMs), an abundant leukocyte in lung cancer, is also a potential target for adjuvant anti-cancer therapies. In this review, we summarize the recent advances in our understanding of the various types of immunotherapy mapped out via professional antigen-presenting cells in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  2. Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol. 2014;32(9):456–65. https://doi.org/10.1016/j.tibtech.2014.06.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dong J, Li B, Zhou Q, Huang D. Advances in evidence-based medicine for immunotherapy of non-small cell lung cancer. J Evid Based Med. 2018;11:278–87. https://doi.org/10.1111/jebm.12322.

    Article  PubMed  Google Scholar 

  4. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73. https://doi.org/10.1146/annurev-immunol-032712-095910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Leal Rojas IM, Mok WH, Pearson FE, Minoda Y, Kenna TJ, Barnard RT. Human blood CD1c+ dendritic cells promote Th1 and Th17 effector function in memory CD4+ T Cells. Front Immunol. 2017;8:971. https://doi.org/10.3389/fimmu.2017.00971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity. 2008;29(3):352–61. https://doi.org/10.1016/j.immuni.2008.09.002.

    Article  PubMed  CAS  Google Scholar 

  7. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275–306. https://doi.org/10.1146/annurev.immunol.23.021704.115633.

    Article  PubMed  CAS  Google Scholar 

  8. Hemmi H, Akira S. TLR signalling and the function of dendritic cells. Chem Immunol Allergy. 2005;86:120–35. https://doi.org/10.1159/000086657.

    Article  PubMed  CAS  Google Scholar 

  9. Cerboni S, Gentili M, Manel N. Diversity of pathogen sensors in dendritic cells. Adv Immunol. 2013;120:211–37. https://doi.org/10.1016/B978-0-12-417028-5.00008-9.

    Article  PubMed  CAS  Google Scholar 

  10. Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and consequences of dendritic cell migration. Immunity. 2008;29(3):325–42. https://doi.org/10.1016/j.immuni.2008.08.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhu C-Q, Shih W, Ling C-H, Tsao M-S. Immunohistochemical markers of prognosis in non-small cell lung cancer: a review and proposal for a multiphase approach to marker evaluation. J Clin Pathol. 2006;59:790–800. https://doi.org/10.1136/jcp.2005.031351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kanters SD, Lammers JW, Voest EE. Molecular and biological factors in the prognosis of non-small cell lung cancer. Eur Respir J. 1995;8(8):1389–97. https://doi.org/10.1183/09031936.95.08081389.

    Article  PubMed  CAS  Google Scholar 

  13. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33. https://doi.org/10.1056/NEJMoa1606774.

    Article  PubMed  CAS  Google Scholar 

  14. Versteven M, Van den Bergh JMJ, Marcq E, Smits ELJ, Van Tendeloo VFI, Hobo W. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front Immunol. 2018;9:394. https://doi.org/10.3389/fimmu.2018.00394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell. 2020;38:685-700.e8. https://doi.org/10.1016/j.ccell.2020.09.001.

    Article  PubMed  CAS  Google Scholar 

  16. Mohsenzadegan M, Peng RW, Roudi R. Dendritic cell/cytokine-induced killer cell-based immunotherapy in lung cancer: what we know and future landscape. J Cell Physiol. 2020;235:74–86. https://doi.org/10.1002/jcp.28977.

    Article  PubMed  CAS  Google Scholar 

  17. Chen CL, Pan QZ, Weng DS, Xie CM, Zhao JJ, Chen MS. Safety and activity of PD-1 blockade-activated DC-CIK cells in patients with advanced solid tumors. Oncoimmunolog. 2018;7: e1417721. https://doi.org/10.1080/2162402X.2017.1417721.

    Article  Google Scholar 

  18. Lim TS, Chew V, Sieow JL, Goh S, Yeong JPS, Soon AL, Ricciardi-Castagnoli P. PD-1 expression on dendritic cells suppresses CD8(+) T cell function and antitumor immunity. Oncoimmunology. 2016;5(3): e1085146. https://doi.org/10.1080/2162402X.2015.1085146.

    Article  PubMed  CAS  Google Scholar 

  19. Brassard J, Bernatchez E, Gill ME, Joubert P, Blanchet M-R. Altering the dendritic cell signature in the lung: a new adjuvant to immune checkpoint inhibitor therapies? J Immunol. 2020;204:164.22.

    Google Scholar 

  20. Thomas S, Hoffmann H, Dienemann H, Schnabel PA, Enk AH, Ring S, Mahnke S. Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7–H3. J Thorac Oncol. 2011;6:1162–8. https://doi.org/10.1097/JTO.0b013e31821c421d.

    Article  Google Scholar 

  21. Zhang M, Yang W, Wang P, Deng Y, Dong YT, Liu FF. CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nat Commun. 2020;11:6119. https://doi.org/10.1038/s41467-020-19973-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci. 2001;98:8809–14. https://doi.org/10.1073/pnas.141226398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Itoh T, Ueda Y, Kawashima I, Nukaya I, Fujiwara H, Fuji N. Immunotherapy of solid cancer using dendritic cells pulsed with the HLA-A24-restricted peptide of carcinoembryonic antigen. Cancer Immunol Immunother. 2002;51:99–106. https://doi.org/10.1007/s00262-001-0257-z.

    Article  PubMed  CAS  Google Scholar 

  24. Nair SK, Morse M, Boczkowski D, IanCumming R, Vasovic L, Gilboa E. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg. 2002;235:540–9. https://doi.org/10.1097/00000658-200204000-00013.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kontani K, Taguchi O, Ozaki Y, Hanaoka J, Sawai S, Inoue S, Abe H, Hanasawa K, Fujino S. Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin. Int J Mol Med. 2003;12(4):493–502.

    PubMed  CAS  Google Scholar 

  26. Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:59–68. https://doi.org/10.1016/S1470-2045(13)70510-2.

    Article  PubMed  CAS  Google Scholar 

  27. Quoix E, Lena H, Losonczy G, Forget F, Chouaid C, Papai Z. TG4010 immunotherapy and first-line chemotherapy for advanced non-small-cell lung cancer (TIME): results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial. Lancet Oncol. 2016;17:212–23. https://doi.org/10.1016/S1470-2045(15)00483-0.

    Article  PubMed  CAS  Google Scholar 

  28. Jiang T, Chen X, Zhou W, Fan G, Zhao P, Ren S, Zhou C, Zhang J. Immunotherapy with dendritic cells modified with tumor-associated antigen gene demonstrates enhanced antitumor effect against lung cancer. Transl Oncol. 2017;10:132–41. https://doi.org/10.1016/j.tranon.2016.12.002.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mayordomo JI, Andres R, Isla MD, Murillo L, Cajal R, Yubero A. Results of a pilot trial of immunotherapy with dendritic cells pulsed with autologous tumor lysates in patients with advanced cancer. Tumori. 2007;93:26–30. https://doi.org/10.1177/030089160709300106.

    Article  PubMed  CAS  Google Scholar 

  30. Um S-J, Choi YJ, Shin H-J, Son CH, Park Y-S, Roh MS. Phase I study of autologous dendritic cell tumor vaccine in patients with non-small cell lung cancer. Lung Cancer. 2010;70:188–94. https://doi.org/10.1016/j.lungcan.2010.02.006.

    Article  PubMed  Google Scholar 

  31. Ge C, Li R, Song H, Geng T, Yang J, Tan Q. Phase I clinical trial of a novel autologous modified-DC vaccine in patients with resected NSCLC. BMC Cancer. 2017;17:884. https://doi.org/10.1186/s12885-017-3859-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhao P, Bu X, Wei X, Sun W, Xie X, Li C, Gao D. Dendritic cell immunotherapy combined with cytokine-induced killer cells promotes skewing toward Th2 cytokine profile in patients with metastatic non-small cell lung cancer. Int Immunopharmacol. 2015;25:450–6. https://doi.org/10.1016/j.intimp.2015.02.010.

    Article  PubMed  CAS  Google Scholar 

  33. Zhong R, Teng J, Han B, Zhong H. Dendritic cells combining with cytokine-induced killer cells synergize chemotherapy in patients with late-stage non-small cell lung cancer. Cancer Immunol Immunother. 2011;60:1497–502. https://doi.org/10.1007/s00262-011-1060-0.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang L, Xu Y, Shen J, He F, Zhang D, Chen Z, Sun J. Feasibility study of DCs/CIKs combined with thoracic radiotherapy for patients with locally advanced or metastatic non-small-cell lung cancer. Radiation Oncol. 2016;11:60. https://doi.org/10.1186/s13014-016-0635-5.

    Article  CAS  Google Scholar 

  35. Kimura H, Dobrenkov K, Iida T, Suzuki M, Ando S, Yamamoto N. Tumor-draining lymph nodes of primary lung cancer patients: a potent source of tumor-specific killer cells and dendritic cells. Anticancer Res. 2005;25:85–94.

    PubMed  CAS  Google Scholar 

  36. Kimura H, Iizasa T, Ishikawa A, Shingyouji M, Yoshino M, Kimura M. Prospective phase II study of post-surgical adjuvant chemo-immunotherapy using autologous dendritic cells and activated killer cells from tissue culture of tumor-draining lymph nodes in primary lung cancer patients. Anticancer Res. 2008;28:1229–38.

    PubMed  CAS  Google Scholar 

  37. Kimura H, Matsui Y, Ishikawa A, Nakajima T, Iizasa T. Randomized controlled phase III trial of adjuvant chemoimmunotherapy with activated cytotoxic T cells and dendritic cells from regional lymph nodes of patients with lung cancer. Cancer Immunol Immunother. 2018;67:1231–8. https://doi.org/10.1007/s00262-018-2180-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kimura H, Matsui Y, Ishikawa A, Nakajima T, Yoshino M, Sakairi Y. Randomized controlled phase III trial of adjuvant chemo-immunotherapy with activated killer T cells and dendritic cells in patients with resected primary lung cancer. Cancer Immunol Immunother. 2015;64:51–9. https://doi.org/10.1007/s00262-014-1613-0.

    Article  PubMed  CAS  Google Scholar 

  39. Lu Y, Xu W, Gu Y, Chang X, Wei G, Rong Z, Qin L, Chen X, Zhou F. Non-small cell lung cancer cells modulate the development of human CD1c+ conventional dendritic cell subsets mediated by CD103 and CD205. Front Immunol. 2019;10:2829. https://doi.org/10.3389/fimmu.2019.02829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chiappori AA, Soliman H, Janssen WE, Antonia SJ, Gabrilovich DI. INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opin Biol Ther. 2010;10:983–91. https://doi.org/10.1517/14712598.2010.484801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res. 2006;12:878–87. https://doi.org/10.1158/1078-0432.CCR-05-2013.

    Article  PubMed  CAS  Google Scholar 

  42. Chiappori AA, Williams CC, Gray JE, Tanvetyanon T, Haura EB, Creelan BC. Randomized-controlled phase II trial of salvage chemotherapy after immunization with a TP53-transfected dendritic cell-based vaccine (Ad.p53-DC) in patients with recurrent small cell lung cancer. Cancer Immunol Immunother. 2019;68:517–27. https://doi.org/10.1007/s00262-018-2287-9.

    Article  PubMed  CAS  Google Scholar 

  43. Sarode P, Zheng X, Giotopoulou GA, Weigert A, Kuenne C, Günther S, Friedrich A, Gattenlöhner S, Stiewe T, Brüne B, Grimminger F, Stathopoulos GT, Pullamsetti SS, Seeger W, Savai R. Reprogramming of tumor-associated macrophages by targeting β-catenin/FOSL2/ARID5A signaling: a potential treatment of lung cancer. Sci Adv. 2020;6:eaaz6105. https://doi.org/10.1126/sciadv.aaz6105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Flaherty DM, Monick MM, Hinde SL. Human alveolar macrophages are deficient in PTEN. The role of endogenous oxidants. J Biol Chem. 2006;281:5058–64. https://doi.org/10.1074/jbc.M508997200.

    Article  PubMed  CAS  Google Scholar 

  45. Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res. 2021;10(4):1889–916. https://doi.org/10.21037/tlcr-20-1241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196(3):254–65. https://doi.org/10.1002/path.1027.

    Article  PubMed  CAS  Google Scholar 

  47. Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju C, Redente EF. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol. 2014;5:587. https://doi.org/10.3389/fimmu.2014.00587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5. https://doi.org/10.1038/nature10138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, Alj MB. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515:130–3. https://doi.org/10.1038/nature13862.

    Article  PubMed  CAS  Google Scholar 

  50. Squadrito ML, Palma MD. Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med. 2011;32:123–45. https://doi.org/10.1016/j.mam.2011.04.005.

    Article  PubMed  CAS  Google Scholar 

  51. Li Y, Cao F, Li M, Li P, Yu Y, Xiang L. Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. J Exp Clin Cancer Res. 2018;37:259. https://doi.org/10.1186/s13046-018-0938-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhang B, Yao G, Zhang Y, Gao J, Yang B, Rao Z, Gao J. M2-polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma. Clinics (Sao Paulo). 2011;66:1879–86. https://doi.org/10.1590/s1807-59322011001100006.

    Article  Google Scholar 

  53. Cao L, Che X, Qiu X, Li Z, Yang B, Wang S, Hou K, Fan Y, Qu X, Liu Y. M2 macrophage infiltration into tumor islets leads to poor prognosis in non-small-cell lung cancer. Cancer Manag Res. 2019;11:6125–38. https://doi.org/10.2147/CMAR.S199832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, Lepelley A, Becht E, Katsahian S, Bizouard G, Validire P, Damotte D, Alifano M, Magdeleinat P, Cremer I, Teillaud JL, Fridman WH, Sautès-Fridman C, Dieu-Nosjean MC. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med. 2014;189(7):832–44. https://doi.org/10.1164/rccm.201309-1611OC.

    Article  PubMed  CAS  Google Scholar 

  55. Kurebayashi Y, Emoto K, Hayashi Y, Kamiyama I, Ohtsuka T, Asamura H, Sakamoto M. Comprehensive immune profiling of lung adenocarcinomas reveals four immunosubtypes with plasma cell subtype a negative indicator. Cancer Immunol Res. 2016;4:234–47. https://doi.org/10.1158/2326-6066.CIR-15-0214.

    Article  PubMed  CAS  Google Scholar 

  56. Banat GA, Tretyn A, Pullamsetti SS, Wilhelm J, Weigert A, Olesch C, Ebel K, Stiewe T, Grimminger F, Seeger W, Fink L. Immune and inflammatory cell composition of human lung cancer stroma. PLoS ONE. 2015;10:e0139073. https://doi.org/10.1371/journal.pone.0139073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Siliņa K, Rulle U, Kalniņa Z, Line A. Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol Immunother. 2014;63:643–62. https://doi.org/10.1007/s00262-014-1544-9.

    Article  PubMed  CAS  Google Scholar 

  58. Litsiou E, Semitekolou M, Galani IE, Morianos I, Tsoutsa A, Kara P, Rontogianni D, Bellenis I, Konstantinou M, Potaris K, Andreakos E, Sideras P, Zakynthinos S, Tsoumakidou M. CXCL13 production in B cells via Toll-like receptor/lymphotoxin receptor signaling is involved in lymphoid neogenesis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(11):1194–202. https://doi.org/10.1164/rccm.201208-1543OC.

    Article  PubMed  CAS  Google Scholar 

  59. Sautès-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, Dieu-Nosjean MC. Tumor microenvironment is multifaceted. Cancer Metastasis Rev. 2011;30(1):13–25. https://doi.org/10.1007/s10555-011-9279-y.

    Article  PubMed  Google Scholar 

  60. Schrama D, Voigt H, Eggert AO, Xiang R, Zhou H, Schumacher TN, Andersen MH, thor Straten P, Reisfeld RA, Becker JC. Immunological tumor destruction in a murine melanoma model by targeted LTalpha independent of secondary lymphoid tissue. Cancer Immunol Immunother. 2008;57:85–95. https://doi.org/10.1007/s00262-007-0352-x.

    Article  PubMed  Google Scholar 

  61. Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, Lepelley A, Becht E, Katsahian S, Bizouard G, Validire P. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med. 2014;189:832–44. https://doi.org/10.1164/rccm.201309-1611OC.

    Article  PubMed  CAS  Google Scholar 

  62. Kinoshita T, Muramatsu R, Fujita T, Nagumo H, Sakurai T, Noji S. Prognostic value of tumor-infiltrating lymphocytes differs depending on histological type and smoking habit in completely resected non-small-cell lung cancer. Ann Oncol. 2016;27:2117–23. https://doi.org/10.1093/annonc/mdw319.

    Article  PubMed  CAS  Google Scholar 

  63. Schalper KA, Brown J, Carvajal-Hausdorf D, McLaughlin J, Velcheti V, Syrigos KN, Herbst RS, Rimm DL. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst. 2015;107:dju435. https://doi.org/10.1093/jnci/dju435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Eerola AK, Soini Y, Pääkkö P. Tumour infiltrating lymphocytes in relation to tumour angiogenesis, apoptosis and prognosis in patients with large cell lung carcinoma. Lung Cancer. 1999;26:73–83. https://doi.org/10.1016/s0169-5002(99)00072-0.

    Article  PubMed  CAS  Google Scholar 

  65. Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB, Singhal S, Mitchell JD, Franklin WA, Merrick DT, McCarter MD, Palmer BE, Kern JA, Slansky JE. Antigen-presenting intratumoral B cells affect CD4+ TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol Res. 2017;5:898–907. https://doi.org/10.1158/2326-6066.CIR-17-0075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jones HP, Wang YC, Aldridge B, Weiss JM. Lung and splenic B cells facilitate diverse effects on in vitro measures of antitumor immune responses. Cancer Immun. 2008;8:4.

    PubMed  PubMed Central  Google Scholar 

  67. Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TF, Beyer T, Reister F, Fabricius D, Lotfi R, Lunov O, Nienhaus GU, Simmet T, Kreienberg R, Möller P, Schrezenmeier H, Jahrsdörfer B. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. 2013;73:2468–79. https://doi.org/10.1158/0008-5472.CAN-12-3450.

    Article  PubMed  CAS  Google Scholar 

  68. Eerola AK, Soini Y, Pääkkö PA. high number of tumor-infiltrating lymphocytes are associated with a small tumor size, low tumor stage, and a favorable prognosis in operated small cell lung carcinoma. Clin Cancer Res. 2000;6:1875–81.

    PubMed  CAS  Google Scholar 

  69. Liu J, Wang H, Yu Q, Zheng S, Jiang Y, Liu Y, Yuan G, Qiu L. Aberrant frequency of IL-10-producing B cells and its association with Treg and MDSC cells in non small cell lung carcinoma patients. Hum Immunol. 2016;77:84–9. https://doi.org/10.1016/j.humimm.2015.10.015.

    Article  PubMed  CAS  Google Scholar 

  70. Gentles A, Newman A, Liu C, Bratman SV, Feng W, Kim D. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–45. https://doi.org/10.1038/nm.3909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sorrentino R, Morello S, Forte G, Montinaro A, De Vita G, Luciano A, Palma G, Arra C, Maiolino P, Adcock IM, Pinto A. B cells contribute to the antitumor activity of CpG-oligodeoxynucleotide in a mouse model of metastatic lung carcinoma. Am J Respir Crit Care Med. 2011;183:1369–79. https://doi.org/10.1164/rccm.201010-1738oc.

    Article  PubMed  CAS  Google Scholar 

  72. Bodogai M, Lee Chang C, Wejksza K, Lai J, Merino M, Wersto RP, Gress RE, Chan AC, Hesdorffer C, Biragyn A. Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. Cancer Res. 2013;73:2127–38. https://doi.org/10.1158/0008-5472.CAN-12-4184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Liao SF, Liang CH, Ho MY, Hsu TL, Tsai TI, Hsieh YS, Tsai CM, Li ST, Cheng YY, Tsao SM, Lin TY, Lin ZY, Yang WB, Ren CT, Lin KI, Khoo KH, Lin CH, Hsu HY, Wu CY, Wong CH. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes. Proc Natl Acad Sci USA. 2013;110:13809–14. https://doi.org/10.1073/pnas.1312457110.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lee-Chang C, Bodogai M, Martin-Montalvo A, Wejksza K, Sanghvi M, Moaddel R, de Cabo R, Biragyn A. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J Immunol. 2013;191:4141–51. https://doi.org/10.4049/jimmunol.1300606.

    Article  PubMed  CAS  Google Scholar 

  75. Song SS, Yuan PF, Li PP, Wu HX, Ni WJ, Lu JT, Wei W. Protective effects of total glucosides of paeony on N-nitrosodiethylamine-induced hepatocellular carcinoma in rats via down-regulation of regulatory B cells. Immunol Invest. 2015;44:521–35. https://doi.org/10.3109/08820139.2015.1043668.

    Article  PubMed  CAS  Google Scholar 

  76. Wang Z, Cheng Q, Tang K, Sun Y, Zhang K, Zhang Y, Luo S, Zhang H, Ye D, Huang B. Lipid mediator lipoxin A4 inhibits tumor growth by targeting IL-10-producing regulatory B (Breg) cells. Cancer Lett. 2015;364:118–24. https://doi.org/10.1016/j.canlet.2015.04.030.

    Article  PubMed  CAS  Google Scholar 

  77. Chapoval AI, Fuller JA, Kremlev SG, Kamdar SJ, Evans R. Combination chemotherapy and IL-15 administration induce permanent tumor regression in a mouse lung tumor model: NK and T cell-mediated effects antagonized by B cells. J Immunol. 1998;161:6977–84.

    PubMed  CAS  Google Scholar 

  78. Kim S, Fridlender ZG, Dunn R, Kehry MR, Kapoor V, Blouin A, Kaiser LR, Albelda SM. B-cell depletion using an anti-CD20 antibody augments anti-tumor immune responses and immunotherapy in nonhematopoetic murine tumor models. J Immunother. 2008;31:446–57. https://doi.org/10.1097/CJI.0b013e31816d1d6a.

    Article  PubMed  CAS  Google Scholar 

  79. Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol. 2005;23(35):8959–67. https://doi.org/10.1200/JCO.2005.01.4910.

    Article  PubMed  Google Scholar 

  80. Hirayama S, Ishii G, Nagai K, Ono S, Kojima M, Yamauchi C, Aokage K, Hishida T, Yoshida J, Suzuki K, Ochiai A. Prognostic impact of CD204-positive macrophages in lung squamous cell carcinoma: possible contribution of Cd204-positive macrophages to the tumor-promoting microenvironment. J Thorac Oncol. 2012;7:1790–7. https://doi.org/10.1097/JTO.0b013e3182745968.

    Article  PubMed  CAS  Google Scholar 

  81. Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S, Ma J, Ma L, You Z. The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer. 2010;10:220. https://doi.org/10.1186/1471-2407-10-220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P. Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer. BMC Cancer. 2010;10:172. https://doi.org/10.1186/1471-2407-10-172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Nakanishi T, Imaizumi K, Hasegawa Y, Kawabe T, Hashimoto N, Okamoto M, Shimokata K. Expression of macrophage-derived chemokine (MDC)/CCL22 in human lung cancer. Cancer Immunol Immunother. 2006;55:1320–9. https://doi.org/10.1007/s00262-006-0133-y.

    Article  PubMed  CAS  Google Scholar 

  84. Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, Kuo ML, Lee YC, Yang PC. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res. 2003;9:729–37.

    PubMed  CAS  Google Scholar 

  85. Toomey D, Smyth G, Condron C, Kelly J, Byrne AM, Kay E, Conroy RM, Broe P, Bouchier-Hayes D. Infiltrating immune cells, but not tumour cells, express fasl in non-small cell lung cancer: no association with prognosis identified in 3-year follow-up. Int J Cancer. 2003;103:408–12. https://doi.org/10.1002/ijc.10836.

    Article  PubMed  CAS  Google Scholar 

  86. Arenberg DA, Keane MP, DiGiovine B, Kunkel SL, Strom SR, Burdick MD, Iannettoni MD, Strieter RM. Macrophage infiltration in human non-small-cell lung cancer: the role of CC chemokines. Cancer Immunol Immunother. 2000;49:63–70. https://doi.org/10.1007/s002620050603.

    Article  PubMed  CAS  Google Scholar 

  87. Sumitomo R, Hirai T, Fujita M, Murakami H, Otake Y, Huang CL. M2 tumor-associated macrophages promote tumor progression in non-small-cell lung cancer. Exp Ther Med. 2019;18(6):4490–8. https://doi.org/10.3892/etm.2019.8068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano H, Perry C, Hanaoka J, Fukuoka J, Chung JY, Hewitt SM. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med. 2020;18(1):443. https://doi.org/10.1186/s12967-020-02618-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Jackute J, Zemaitis M, Pranys D, Sitkauskiene B, Miliauskas S, Vaitkiene S, Sakalauskas R. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer. BMC Immunol. 2018;19(1):3. https://doi.org/10.1186/s12865-018-0241-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Longerich S, Basu U, Alt F, Storb U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol. 2006;18:164–74. https://doi.org/10.1016/j.coi.2006.01.008.

    Article  PubMed  CAS  Google Scholar 

  91. Pelletier MP, Edwardes MD, Michel RP, Halwani F, Morin JE. Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can J Surg. 2001;44:180–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res. 2008;14:5220–7. https://doi.org/10.1158/1078-0432.CCR-08-0133.

    Article  PubMed  CAS  Google Scholar 

  93. Gottlin EB, Bentley RC, Campa MJ, Pisetsky DS, Herndon JE, Patz EF. The association of intratumoral germinal centers with early-stage non-small cell lung cancer. J Thorac Oncol. 2011;6:1687–90. https://doi.org/10.1097/JTO.0b013e3182217bec.

    Article  PubMed  Google Scholar 

  94. Hald SM, Bremnes RM, Al-Shibli K, Al-Saad S, Andersen S, Stenvold H. CD4/CD8 co-expression shows independent prognostic impact in resected non-small cell lung cancer patients treated with adjuvant radiotherapy. Lung Cancer. 2013;80:209–15. https://doi.org/10.1016/j.lungcan.2012.12.026.

    Article  PubMed  Google Scholar 

  95. Lohr M, Edlund K, Botling J, Hammad S, Hellwig B, Othman A. The prognostic relevance of tumour-infiltrating plasma cells and immunoglobulin kappa C indicates an important role of the humoral immune response in non-small cell lung cancer. Cancer Lett. 2013;333:222–8. https://doi.org/10.1016/j.canlet.2013.01.036.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India (Sanction Order No. “ECR/2016/000965").

Funding

Funding was provided by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India, (Grant No. ECR/2016/000965).

Author information

Authors and Affiliations

Authors

Contributions

GS contributed to investigation, writing—original draft, and visualization; SD contributed to investigation and writing—original draft; SP and SR contributed to writing—review and editing; and KS contributed to conceptualization, writing—review and editing, supervision, and funding acquisition.

Corresponding author

Correspondence to Koustav Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugam, G., Das, S., Paul, S. et al. Clinical relevance and therapeutic aspects of professional antigen-presenting cells in lung cancer. Med Oncol 39, 237 (2022). https://doi.org/10.1007/s12032-022-01841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01841-6

Keywords

Navigation