Skip to main content

Advertisement

Log in

IKZF3 amplification frequently occurs in HER2-positive breast cancer and is a potential therapeutic target

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer is one of the leading causes of cancer death in women, and although treatment outcome has substantially improved in the past decades, advanced or metastatic breast cancers still carry a poor prognosis. Gene amplification is one of the frequent genetic alterations in cancer, and oncogene amplification may be associated with cancer aggressiveness and oncogenicity. Targeting amplified genes such as HER2 has vastly improved disease outcome and survival, and anti-HER2 therapeutics have revolutionized the standard of care in HER2 breast cancer. Besides currently known druggable gene amplifications including ERBB2 and FGFR2, other frequently amplified genes are relatively less well known for function and clinical significance. By querying four large databases from TCGA and AACR-Genie, from a total of 11,890 patients with invasive ductal breast carcinoma, we discover IKZF3, CCND1, ERBB2 to be consistently amplified across different cohorts. We further identify IKZF3 as a frequently amplified gene in breast cancer with a prevalence of 12–15% amplification rate. Interestingly, IKZF3 amplification is frequently co-amplified with ERBB2/HER2, and is also associated with worse prognosis compared to IKZF3 non-amplified cancers. Analysis of HER2 breast cancer patients treated with trastuzumab revealed decrease in both ERBB2/HER2 and IKZF3 expression. Further investigation using the DepMap for gene dependency by genome-wide CRISPR screening revealed dependence on IKZF3 in HER2 breast cancer cell lines. Our study utilized an integrative analysis of large-scale patient genomics, transcriptomics and clinical data to reveal IKZF3 as a frequently amplified gene, and suggest a potential role of IKZF3 as a druggable target for HER2 breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

DAVID:

Database for Annotation, Visualization, and Integrated Discovery

DFS:

Disease-free survival

GEPIA:

Gene Expression Profiling Interactive Analysis

GO:

Gene ontology

HER2:

Epidermal growth factor receptor 2

IMiDs:

Immunomodulatory imide drugs

IPA:

Ingenuity pathway analysis

IDC:

Invasive ductal breast carcinoma

KEGG:

Kyoto Encyclopedia of Genes and Genomes

mBC:

Metastatic breast cancer

OS:

Overall survival

PFS:

Progression-free survival

PROTACs:

Proteolysis targeting chimeras

TCGA:

The Cancer Genome Atlas

References

  1. De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I. Nutrition and breast cancer: a literature review on prevention. Treat Recurr Nutr. 2019;11(7):1514. https://doi.org/10.3390/nu11071514.

    Article  CAS  Google Scholar 

  2. Ademuyiwa FO, Edge SB, Erwin DO, Orom H, Ambrosone CB, Underwood W 3rd. Breast cancer racial disparities: unanswered questions. Cancer Res. 2011;71(3):640–4. https://doi.org/10.1158/0008-5472.CAN-10-3021.

    Article  PubMed  CAS  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  4. Swain SM, Miles D, Kim SB, Im YH, Im SA, Semiglazov V, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(4):519–30. https://doi.org/10.1016/S1470-2045(19)30863-0.

    Article  PubMed  CAS  Google Scholar 

  5. Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Hart L, Campone M, Petrakova K, Winer EP, Janni W, Conte,. LBA17 Overall survival (OS) results from the phase III MONALEESA-2 (ML-2) trial of postmenopausal patients (pts) with hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/HER2−) advanced breast cancer (ABC) treated with endocrine therapy (ET) ± ribociclib (RIB). Ann Oncol. 2021. https://doi.org/10.1016/j.annonc.2021.08.2090.

    Article  PubMed  Google Scholar 

  6. Albertson DG. Gene amplification in cancer. Trends Genet. 2006;22(8):447–55. https://doi.org/10.1016/j.tig.2006.06.007.

    Article  PubMed  CAS  Google Scholar 

  7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  8. Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet. 2003;34(4):369–76. https://doi.org/10.1038/ng1215.

    Article  PubMed  CAS  Google Scholar 

  9. Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H, et al. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Can Res. 2004;64(23):8534–40. https://doi.org/10.1158/0008-5472.CAN-04-1945.

    Article  CAS  Google Scholar 

  10. Kato S, Okamura R, Mareboina M, Lee S, Goodman A, Patel SP, et al. Revisiting epidermal growth factor receptor (EGFR) amplification as a target for anti-EGFR therapy: analysis of cell-free circulating tumor DNA in patients with advanced malignancies. JCO Precis Oncol. 2019. https://doi.org/10.1200/PO.18.00180.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saborowski A, Lehmann U, Vogel A. FGFR inhibitors in cholangiocarcinoma: what’s now and what’s next? Ther Adv Med Oncol. 2020;12:1758835920953293. https://doi.org/10.1177/1758835920953293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Heizmann B, Kastner P, Chan S. The Ikaros family in lymphocyte development. Curr Opin Immunol. 2018;51:14–23. https://doi.org/10.1016/j.coi.2017.11.005.

    Article  PubMed  CAS  Google Scholar 

  13. Sievers QL, Petzold G, Bunker RD, Renneville A, Slabicki M, Liddicoat BJ, et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science. 2018. https://doi.org/10.1126/science.aat0572.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen K, Quan J, Yang J, Chen Z. The potential markers of endocrine resistance among HR+ /HER2+ breast cancer patients. Clin transl oncol. 2020;22(4):576–84. https://doi.org/10.1007/s12094-019-02163-2.

    Article  PubMed  CAS  Google Scholar 

  15. Sircoulomb F, Bekhouche I, Finetti P, Adelaide J, Ben Hamida A, Bonansea J, et al. Genome profiling of ERBB2-amplified breast cancers. BMC Cancer. 2010;10:539. https://doi.org/10.1186/1471-2407-10-539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6. https://doi.org/10.1016/s1476-5586(04)80047-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–102. https://doi.org/10.1093/nar/gkx247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  19. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.

    Article  CAS  Google Scholar 

  20. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucl acid res. 2007. https://doi.org/10.1093/nar/gkm415.

    Article  Google Scholar 

  21. Atlas CG, N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.

    Article  CAS  Google Scholar 

  22. Consortium APG. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7(8):818–31. https://doi.org/10.1158/2159-8290.CD-17-0151.

    Article  Google Scholar 

  23. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023–31. https://doi.org/10.1038/nbt.2696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Consortium APG. Metastatic Breast Cancer: 2013–2016 (DFCI, CCR 2020).

  25. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52. https://doi.org/10.1038/nature10983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479. https://doi.org/10.1038/ncomms11479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. AACR-Genie. AACR GENIE Data Guide.

  28. Lundberg A, Lindstrom LS, Li J, Harrell JC, Darai-Ramqvist E, Sifakis EG, et al. The long-term prognostic and predictive capacity of cyclin D1 gene amplification in 2305 breast tumours. Breast Cancer Res. 2019;21(1):34. https://doi.org/10.1186/s13058-019-1121-4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35. https://doi.org/10.1016/S1470-2045(14)71159-3.

    Article  PubMed  CAS  Google Scholar 

  30. Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610–21. https://doi.org/10.1056/NEJMoa1914510.

    Article  PubMed  CAS  Google Scholar 

  31. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34. https://doi.org/10.1056/NEJMoa1413513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bivin WW, Yergiyev O, Bunker ML, Silverman JF, Krishnamurti U. GRB7 expression and correlation With HER2 amplification in invasive breast carcinoma. Appl Immunohistochem Mol Morphol. 2017;25(8):553–8. https://doi.org/10.1097/PAI.0000000000000349.

    Article  PubMed  CAS  Google Scholar 

  33. Triulzi T, Regondi V, De Cecco L, Cappelletti MR, Di Modica M, Paolini B, et al. Early immune modulation by single-agent trastuzumab as a marker of trastuzumab benefit. Br J Cancer. 2018;119(12):1487–94. https://doi.org/10.1038/s41416-018-0318-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a cancer dependency map. Cell. 2017;170(3):564–76. https://doi.org/10.1016/j.cell.2017.06.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Perez EA, Romond EH, Suman VJ, Jeong JH, Sledge G, Geyer CE Jr, et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol Off J American Soc Clin Oncol. 2014;32(33):3744–52. https://doi.org/10.1200/JCO.2014.55.5730.

    Article  CAS  Google Scholar 

  36. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92. https://doi.org/10.1056/NEJM200103153441101.

    Article  PubMed  CAS  Google Scholar 

  37. Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, Kim MH, Tseng LM, Petry V, Chung CF, Iwata H. LBA1 - Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients (Pts) with HER2+ metastatic breast cancer (mBC): Results of the randomized phase III DESTINY-Breast03 study. Ann Oncol. 2021. https://doi.org/10.1016/j.annonc.2021.08.2087.

    Article  PubMed  Google Scholar 

  38. Shao Z, Tseng LM, Huang CS, Pang D, Yang Y, Li W, et al. Pertuzumab and trastuzumab as adjuvant treatment for HER2-positive early breast cancer: outcomes in Chinese patients in the APHINITY study. Jpn J Clin Oncol. 2021;51(3):345–53. https://doi.org/10.1093/jjco/hyaa216.

    Article  PubMed  Google Scholar 

  39. Piccart M, Procter M, Fumagalli D, de Azambuja E, Clark E, Ewer MS, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY Trial: 6 years’ follow-up. J Clin Oncol. 2021;39(13):1448–57. https://doi.org/10.1200/JCO.20.01204.

    Article  PubMed  CAS  Google Scholar 

  40. Menard S, Pupa SM, Campiglio M, Tagliabue E. Biologic and therapeutic role of HER2 in cancer. Oncogene. 2003;22(42):6570–8. https://doi.org/10.1038/sj.onc.1206779.

    Article  PubMed  CAS  Google Scholar 

  41. Patel A, Unni N, Peng Y. The changing paradigm for the treatment of HER2-positive breast cancer. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12082081.

    Article  PubMed Central  Google Scholar 

  42. Ferrari A, Vincent-Salomon A, Pivot X, Sertier AS, Thomas E, Tonon L, et al. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nat Commun. 2016;7:12222. https://doi.org/10.1038/ncomms12222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5. https://doi.org/10.1126/science.1244851.

    Article  PubMed  CAS  Google Scholar 

  44. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305–9. https://doi.org/10.1126/science.1244917.

    Article  PubMed  CAS  Google Scholar 

  45. Furihata H, Yamanaka S, Honda T, Miyauchi Y, Asano A, Shibata N, et al. Structural bases of IMiD selectivity that emerges by 5-hydroxythalidomide. Nat Commun. 2020;11(1):4578. https://doi.org/10.1038/s41467-020-18488-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Steinebach C, Lindner S, Udeshi ND, Mani DC, Kehm H, Kopff S, et al. Homo-PROTACs for the chemical knockdown of cereblon. ACS Chem Biol. 2018;13(9):2771–82. https://doi.org/10.1021/acschembio.8b00693.

    Article  PubMed  CAS  Google Scholar 

  47. Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, et al. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther. 2019;4:64. https://doi.org/10.1038/s41392-019-0101-6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barrio S, Munawar U, Zhu YX, Giesen N, Shi CX, Via MD, et al. IKZF1/3 and CRL4(CRBN) E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma. Haematologica. 2020;105(5):e237–41. https://doi.org/10.3324/haematol.2019.217943.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Khan S, He Y, Zhang X, Yuan Y, Pu S, Kong Q, et al. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene. 2020;39(26):4909–24. https://doi.org/10.1038/s41388-020-1336-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yin LL, Wen XM, Lai QH, Li J, Wang XW. Lenalidomide improvement of cisplatin antitumor efficacy on triple-negative breast cancer cells in vitro. Oncol Lett. 2018;15(5):6469–74. https://doi.org/10.3892/ol.2018.8120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Brosseau C, Colston K, Dalgleish AG, Galustian C. The immunomodulatory drug lenalidomide restores a vitamin D sensitive phenotype to the vitamin D resistant breast cancer cell line MDA-MB-231 through inhibition of BCL-2: potential for breast cancer therapeutics. Apoptosis : Int J Program cell death. 2012;17(2):164–73. https://doi.org/10.1007/s10495-011-0670-5.

    Article  CAS  Google Scholar 

  52. Barbarossa A, Iacopetta D, Sinicropi MS, Franchini C, Carocci A. Recent advances in the development of thalidomide-related compounds as anticancer drugs. Curr Med Chem. 2021. https://doi.org/10.2174/0929867328666210623143526.

    Article  Google Scholar 

  53. Wang X, Shen Y, MengLv L, Zhang X, Yang J, Wang F, et al. Thalidomide suppresses breast cancer tumor growth by inhibiting tumor-associated macrophage accumulation in breast tumor-bearing mice. Eur J Pharm Sci. 2020;151: 105302. https://doi.org/10.1016/j.ejps.2020.105302.

    Article  PubMed  CAS  Google Scholar 

  54. Biran A, Yin S, Kretzmer H, Ten Hacken E, Parvin S, Lucas F, et al. Activation of notch and Myc signaling via B cell-restricted depletion of Dnmt3a generates a consistent murine model of chronic lymphocytic leukemia. Can Res. 2021. https://doi.org/10.1158/0008-5472.CAN-21-1273.

    Article  Google Scholar 

  55. Lazarian G, Yin S, Ten Hacken E, Sewastianik T, Uduman M, Font-Tello A, et al. A hotspot mutation in transcription factor IKZF3 drives B cell neoplasia via transcriptional dysregulation. Cancer Cell. 2021;39(3):380–93. https://doi.org/10.1016/j.ccell.2021.02.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell. 2018;34(3):427–38. https://doi.org/10.1016/j.ccell.2018.08.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Razavi P, Dickler MN, Shah PD, Toy W, Brown DN, Won HH, et al. Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. Nat Cancer. 2020;1(4):382–93. https://doi.org/10.1038/s43018-020-0047-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Li Q, Jiang B, Guo J, Shao H, Del Priore IS, Chang Q, et al. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov. 2021. https://doi.org/10.1158/2159-8290.CD-20-1726.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the grants to JIL: MOST 110-2314-B-A49A-549 (Ministry of Science and Technology), CI-109-8 (Yen Tjing Ling Medical Foundation), Taiwan Clinical Oncology Research Foundation, and 109DHA0100490 (Taipei Veterans General Hospital internal grant).

Funding

Hsinchu Science Park Bureau,Ministry of Science and Technology,Taiwan,MOST 110-2314-B-A49A-549,Jiun-I Lai

Author information

Authors and Affiliations

Authors

Contributions

CJY, CIS, CYL, JIL: data collection, analysis and curation. CJY, CYL, JIL: drafting of the manuscript. CYL, TCC, CCH, LMT, JIL: conceptualization of the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiun-I Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Supplementary file2 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY., Yu, CJ., Shen, CI. et al. IKZF3 amplification frequently occurs in HER2-positive breast cancer and is a potential therapeutic target. Med Oncol 39, 242 (2022). https://doi.org/10.1007/s12032-022-01812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01812-x

Keywords

Navigation