
Vol.:(0123456789)1 3

Medical Oncology (2020) 37:34 
https://doi.org/10.1007/s12032-020-01362-0

ORIGINAL PAPER

Identification of novel biomarkers, MUC5AC, MUC1, KRT7, GAPDH, 
CD44 for gastric cancer

Jie Yang1

Received: 17 February 2020 / Accepted: 10 March 2020 / Published online: 27 March 2020 
© The Author(s) 2020

Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world, and it is also the third largest cause of cancer-
related death in the world. As far as we know, no biomarker has been widely accepted for early diagnosis and prognosis 
prediction of gastric cancer. The purpose of this study is to find potential biomarkers to predict the prognosis of GC. The 
gene expression profiles of GSE2685 were downloaded from GEO database. Morpheus was used to calculate the differen-
tially expressed genes (DEGs) between primary advanced gastric cancer tissues and noncancerous gastric tissues. The gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed, 
and protein–protein interaction (PPI) network of DEGs was constructed. Kaplan–Meier Plotter was used to determine the 
overall survival (OS) outcomes of UC5AC, MUC1, KRT7, GAPDH, CD44, and GEPIA was used to determine the Pearson 
correlation analysis. In total, 710 DEGs were identified in GC, including 396 upregulated genes and 314 downregulated 
genes. GO enrichment revealed that they were mainly enriched in binding, catalytic activity, cellular process and cell. KEGG 
pathway revealed that they were mainly enriched in metabolic pathways, pathways in cancer and PI3K-Akt signaling pathway. 
MUC5AC, MUC1, KRT7, GAPDH, CD44 were identified from the PPI network. MUC5AC, MUC1, KRT7, GAPDH, CD44 
were demonstrated to have prognostic value for patients with GC. MUC5AC, MUC1 exhibited low expression levels in GC 
tissues, KRT7, GAPDH, CD44 presented high expression levels in GC tissues. In particular, KRT7 is hardly expressed in 
normal gastric tissues. MUC5AC and MUC1 were negatively correlated with GAPDH, CD44, respectively; and GAPDH was 
positively correlated with CD44 and KRT7, respectively. Moreover. MUC5AC, MUC1, KRT7, GAPDH, and CD44 are not 
only related to GC but also to apoptosis pathway. Results from the present study suggested that MUC5AC, MUC1, KRT7, 
GAPDH, CD44 may represent novel prognostic biomarkers for GC.
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Introduction

Gastric cancer (GC) is one of the most common causes 
of tumor-related death worldwide. GC is the second larg-
est malignant tumor in China [1, 2]. The high incidence of 
GC is partly due to the widespread use of endoscopes. At 
present, the sensitivity and specificity of carcinoembryonic 
antigen (CEA) 19-9 in clinical application are limited, which 
leads to the unsatisfactory level of early diagnosis of GC 
[3–6]. Although progress has been made in the diagnosis 
and treatment of GC [7], the prognosis is still poor, and the 

5 year survival rate of patients with GC is less than 20%. If 
there is no regional lymph node involvement, the survival 
rate of patients with GC is very high [8]. Unfortunately, GC 
is difficult to diagnose at an early stage. Therefore, people 
are very interested in finding prognostic markers for these 
potentially curable patients [9–13].

From molecular diagnosis to tumor molecular classifica-
tion, from patient stratification to prognosis prediction, from 
new drug target discovery to tumor response prediction, 
high-throughput gene expression analysis platforms (such 
as microarrays) have been paid more and more attention. 
It is considered to be a promising tool in medical oncol-
ogy [14–16]. In the past decade, microarray technology has 
been used to study the expression profiles of many genes in 
the carcinogenesis of GC, and hundreds of DEGs involved 
in different pathways, biological processes or molecular 
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functions have been found [17, 18]. However, a compara-
tive analysis of DEGs in independent studies shows that 
the degree of overlap is relatively limited, and there is no 
reliable biomarker profile to distinguish cancer from nor-
mal tissue. Now, gene chip technology combined with bio-
informatics analysis makes it possible to comprehensively 
analyze the changes of mRNA expression during the occur-
rence and development of GC. Hippo et al. used laser cap-
ture microdissection technique to collect tissue samples and 
detect DEGs in GC tissue and normal tissue, respectively 
[19]. However, the interaction between DEGs, especially the 
pathway in the interaction network, remains to be clarified.

In this study, we download raw data (GSE2685) from 
GEO as a center for storing and retrieving microarray data, 
and identify these data by comparing gene expression pro-
files between GC and normal tissues. Then, DEGs was 
screened by Morpheus software, and then gene ontology 
(GO) and pathway enrichment analysis were carried out. 
Through the analysis of its biological functions and path-
ways, we can further understand the occurrence and devel-
opment of GC at the molecular level and explore potential 
biomarkers for diagnosis, prognosis and drug targets.

Materials and methods

Microarray data

The gene expression profiles of GSE2685 were downloaded 
from GEO database. GSE2685, which was based on Agilent 
GPL80 platform (Affymetrix Human Full Length HuGen-
eFL Array Hu6800), was submitted by Hippo et al. The 
GSE2685 dataset contained 30 samples, including 22 GC 
samples and 8 normal samples.

Identification of DEGs

Morpheus was applied to determine the differentially 
expressed genes (DEGs) in normal gastric tissues and GC 
tissues. Adjusted P < 0.01 and |log fold change (FC)|> 1.5 
were set as cut-off values. A total of 710 DEGs were then 
identified, including 396 up-regulated and 314 down-regu-
lated genes.

Gene ontology and pathway enrichment analysis 
of DEGs

Gene ontology analysis (GO) is a common useful method for 
annotating genes and gene products and for identifying char-
acteristic biological attributes for high-throughput genome 
or transcriptome data. KEGG is a knowledge base for sys-
tematic analysis of gene functions, linking genomic infor-
mation with higher-order functional information. In order 

to analyze the DEGs at the functional level, GO enrichment 
and KEGG pathway analysis were performed using DAVID 
online tool. P < 0.05 was considered statistically significant.

Integration of protein–protein interaction (PPI) 
network analysis

Search tool for the retrieval of interacting genes (STRING) 
database is online tool designed to evaluate the protein–pro-
tein interaction (PPI) information. To evaluate the interac-
tive relationships among DEGs, we mapped the DEGs to 
STRING, and only experimentally validated interactions 
with a combined score > 0.4 were selected as significant. 
Then, PPI networks were constructed using the Cytoscape 
software. P < 0.05 was considered to have significant 
differences.

Expression levels, correlation and survival analysis

The prognostic value of STATs mRNA expression was 
evaluated using Kaplan–Meier Plotter, which contained 
gene expression data and survival information of 1440 clini-
cal GC patients. To analyze the Overall survival (OS) of 
patients with GC, patient samples were split into two groups 
by median expression (high vs. low expression) and assessed 
by a Kaplan–Meier survival plot, with the hazard ratio (HR) 
with 95% confidence intervals (CI) and log-rank p value. 
The genes associated with OS were applied for further analy-
sis, including Pearson correlation analysis and analysis of 
expression levels in tumor and normal tissues using GEPIA.

Results

Identification of DEGs

There were 22 GC tissues and 8 normal gastric tissue sam-
ples analyzed in this study. Firstly, Morpheus was employed 
to identify DEGs using the following cut-off values: 
Adjusted P < 0.01 and |log FC|> 1.5. As a result, a total of 
710 DEGs were identified, including 396 up-regulated and 
314 down-regulated genes.

GO term enrichment analysis

We uploaded all DEGs to the online software DAVID to 
identify overrepresented GO categories and KEGG path-
ways. GO analysis results showed that up-regulated DEGs 
were significantly enriched in biological processes (BP), 
including cellular process, metabolic process, biological 
regulation and localization; the down-regulated DEGs were 
significantly enriched in cellular process, biological regula-
tion, metabolic process and response to stimulus (Table 1). 
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For molecular function (MF), the up-regulated DEGs were 
enriched in binding, catalytic activity, and transcription reg-
ulator activity; the down-regulated DEGs were significantly 
enriched in catalytic activity, binding and molecular trans-
ducer activity (Table 1). In addition, GO cell component 
(CC) analysis also displayed that the up-regulated DEGs 
were significantly enriched in cell, organelle, protein-con-
taining complex and extracellular region; the down-regu-
lated DEGs were significantly enriched in cell, organelle 
and membrane (Table 1).

KEGG pathway analysis

Table 2 contains the most significantly enriched pathways 
of the up-regulated DEGs and down-regulated DEGs ana-
lyzed by KEGG analysis. The up-regulated DEGs were 
enriched in pathways in cancer, metabolic pathways, 
PI3K-Akt signaling pathway, human papillomavirus 
infection and focal adhesion, while the down-regulated 
DEGs were enriched in metabolic pathways, neuroactive 
ligand-receptor interaction, pathways in cancer, calcium 
signaling pathway, PI3K-Akt signaling pathway and 
cytokine-cytokine receptor interaction.

Protein–protein interaction (PPI) network analysis

This network contains known interactions from curated 
databases and those that were experimentally determined; 
predicted interactions containing gene neighborhood, 
gene fusions and gene cooccurrence; and text-mining, 

Table 1   Enrichment analysis 
of 117 differentially expressed 
genes in different tissues

Category Gene function/term Count Percent (%)

A, Upregulated genes
 MF binding (GO:0005488) 138 37.9
 MF catalytic activity (GO:0003824) 110 30.2
 MF transcription regulator activity (GO:0140110) 26 7.1
 BP cellular process (GO:0009987) 177 48.6
 BP metabolic process (GO:0008152) 113 31.0
 BP biological regulation (GO:0065007) 64 17.6
 BP localization (GO:0051179) 38 10.4
 CC cell (GO:0005623) 117 32.1
 CC organelle (GO:0043226) 103 28.3
 CC protein-containing complex (GO:0032991) 50 13.7
 CC extracellular region (GO:0005576) 41 11.3

B, Down-regulated genes
 MF catalytic activity (GO:0003824) 109 36.7
 MF binding (GO:0005488) 88 29.6
 MF molecular transducer activity (GO:0060089) 36 12.1
 BP cellular process (GO:0009987) 128 43.1
 BP biological regulation (GO:0065007) 80 26.9
 BP metabolic process (GO:0008152) 72 24.2
 BP response to stimulus (GO:0050896) 48 16.2
 CC cell (GO:0005623) 108 36.4
 CC organelle (GO:0043226) 51 17.2
 CC membrane (GO:0016020) 38 12.8

Table 2   Enriched KEGG pathways of differentially expressed genes

Pathway ID Name Count Percent (%)

A, Up-regulated genes
 hsa05200 Pathways in cancer 30 11.8
 hsa01100 Metabolic pathways 26 10.2
 hsa04151 PI3K-Akt-signaling pathway 24 9.4
 hsa05165 Human papillomavirus infection 21 8.2
 hsa04510 Focal adhesion 20 7.8

B, Downregulated genes
 hsa01100 Metabolic pathways 52 20.0
 hsa04080 Neuroactive ligand-receptor 

interaction
23 8.8

 hsa05200 Pathways in cancer 18 6.9
 hsa04020 Calcium-signaling pathway 18 6.9
 hsa04151 PI3K-Akt-signaling pathway 13 5.0
 hsa04060 Cytokine–cytokine receptor 

interaction
12 4.6
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co-expression and protein homology. Based on the infor-
mation in the STRING database, MUC5AC, MUC1, 
KRT7, GAPDH, CD44 were identified from the PPI net-
work (Fig. 1).

Survival curves, expression levels and correlation 
analysis

MUC5AC, MUC1, KRT7, GAPDH, CD44 were demon-
strated to have prognostic value for patients with GC. 
The MUC5AC, MUC1, KRT7, GAPDH, CD44 were 
significantly associated with overall survival (log-rank 
P = 1.9e–5, 0.018, 8.1e–6, 1.1e–10 and 0.011, respec-
tively) (Fig. 2a–e). The analysis of the five genes shows 
that low expression levels lead to better living conditions.

The genes MUC5AC, MUC1, KRT7, GAPDH, CD44 
were then subjected to further analysis. Expression levels 
of the five genes are displayed in Fig. 3a–e. MUC5AC, 
MUC1 exhibited low expression levels in GC tissues, 
KRT7, GAPDH, CD44 presented high expression levels 
in GC tissues. In particular, KRT7 is hardly expressed in 
normal gastric tissues.

Furthermore, Pearson correlation analyses between the 
genes are presented in Fig. 4a–d. Results revealed that 
MUC5AC was negatively correlated with GAPDH, CD44: 
GAPDH (R = − 0.077, P = 0.054); CD44 (R = − 0.095, 
P = 0.018.); MUC1 was also negatively correlated with 
GAPDH, CD44: GAPDH (R = − 0.13, P = 0.001); CD44 
(R = − 0.055, P = 0.17). MUC5AC, MUC1, KRT7, each 
gene was positively correlated with the two other genes, 
and GAPDH was positively correlated with CD44 and 
KRT7, respectively (all R > 0, P < 0.05).

Discussion

In this study, we investigated the potential prognostic asso-
ciation between GC and DEGs in GSE2685. The results 
showed that there were 710 differentially expressed genes 
between 8 normal gastric tissues and 22 gastric cancer tis-
sues, of which 396 genes were up-regulated and 314 genes 
were down-regulated. MUC5AC, MUC1, KRT7, GAPDH, 
CD44 has potential prognostic value for patients with GC. 
Moreover, these five genes are not only related to GC, but 
also to apoptosis pathway.

Gastric mucosal barrier protects gastric mucosa from 
hydrochloric acid and various harmful substances. MUC5AC 
is a gel-formed mucin, which is known as the main compo-
nent of the gastric mucus layer [20–26]. MUC5AC is a well-
known marker of gastric differentiation, which is considered 
to be a very important prognostic indicator of GC and is 
often used in clinical evaluation [27–29]. It has been found 
that the expression of MUC5AC in stomach decreases with 
the development of intestinal metaplasia, and the expression 
of MUC5AC is related to tumor stage: the expression level 
of MUC5AC in advanced GC is lower than that in early GC 
[30]. This is consistent with our analysis results that the 
expression of MUC5AC in normal tissues is higher than that 
in GC tissues.

Keratin 7 is an intermediate filament protein, which is 
mainly expressed in epithelial and epithelial tumors. In 
GC, KRT7 has been identified as the target of long non-
coding antisense RNA KRT7-AS and has been proved to 
be involved in the progression of gastric cancer [31]. KRT7 
can promote the proliferation, migration and invasion of 
GC cells, and reduce the sensitivity to chemotherapy [32]. 
Interestingly, we found that KRT7 was hardly expressed in 
normal tissues, but strongly expressed in GC tissues, and its 

Fig. 1   Protein–protein interac-
tion network of MUC5AC, 
MUC1, KRT7, GAPDH, CD44
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methylation is very strong. We speculate that methylation 
must play an important role in it.

It was found that stromal cells secrete glyceraldehyde 
3-phosphate dehydrogenase (GAPDH). Extracellular 
GAPDH or its N-terminal domain inhibits the growth of 
gastric cancer cells, which has been confirmed in other cell 
systems [33–40]. They believe that the use of GAPDH to 
negatively regulate tumor growth may be a new anti-cancer 
strategy [41, 42]. They believe that the use of GAPDH to 
negatively regulate tumor growth may be a new anti-cancer 
strategy [43–45]. Yamaji et al. reported that GAPDH is 
secreted by some cancer cells and can inhibit cell prolif-
eration [46]. However, the inhibitory activity of GAPDH 
on the growth of cancer cells has not been reported. This 
is due to the sensitivity of cancer cells to GAPDH. They 
found that the N-terminal domain of GAPDH is necessary to 
exert its growth inhibitory activity. Interestingly, its growth 

inhibitory activity does not need the catalytic domain of 
the original enzyme activity. Unexpectedly, it has recently 
been reported that the N-terminal peptide of GAPDH has 
antifungal activity against Candida albicans through inter-
nalization. However, the immunofluorescence of anti-FLAG 
antibody under the condition of cell permeation showed that 
GAPDH was not incorporated into MKN-7 cells. Therefore, 
its mechanism is considered to be different. Our results 
showed that the expression of GAPDH in GC was higher 
than that in normal tissues, and it was negatively correlated 
with MUC5AC and MUC1, respectively.

In human GC, the mechanism responsible for maintain-
ing malignant stem cells in the tumor microenvironment 
is largely unknown [47–50]. Among the stem cell popula-
tions in the stomach, the cells that may be targeted and 
transformed into tumor initiation cells during chronic Hel-
icobacter pylori infection are those labeled by receptors 

Fig. 2   Prognostic survival analysis of MUC5AC (a), MUC1 (b), KRT7 (c), GAPDH (d) and CD44 (e)
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on the surface of differentiated cluster 44 (CD44) cells 
[51]. Different from the typical CD44 standard isomers, 
CD44 variants (CD44v) are considered to be the key mole-
cules in the process of malignant transformation, and their 
expression is highly restricted and specific [52, 53]. In 
general, CD44v, is considered to be a marker of GC cells 
[54, 55], which help to increase resistance to chemother-
apy or radiation-induced cell death [56–65]. Our results 
indicated that the expression of CD44 in GC was higher 
than that in normal tissues, and there was a positive cor-
relation between CD44 and GAPDH.

In conclusion, 710 DEGs were found in patients with gas-
tric cancer in this study. These genes may function through 
binding, catalytic activity, cellular processes and cells, as 
well as metabolic pathways, cancer pathways and PI3K-
Akt signaling pathways. MUC5AC, MUC1, KRT7, GAPDH 
and CD44 are not only related to gastric cancer, but also to 
apoptosis pathway, suggesting that MUC5AC, MUC1, KRT7, 
GAPDH and CD44 may be potential prognostic biomarkers 
of gastric cancer. In addition, KRT7, GAPDH and CD44 may 
play a carcinogenic role in gastric cancer, while MUC5AC 
and MUC1 may play a tumor inhibitory role. Further molec-
ular biology experiments are needed to confirm the function 
of identified genes in gastric cancer, especially in metastasis 
and cancer progression, to guide the clinical direction.

Fig. 3   Expression analysis of MUC5AC, MUC1, KRT7, GAPDH and CD44. Expression analysis of a KRT7, b GAPDH, c CD44, d MUC5AC 
and e MUC1 in gastric normal and tumor tissues
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