Skip to main content

Advertisement

Log in

Arsenic trioxide induces apoptosis of p53 null osteosarcoma MG63 cells through the inhibition of catalase

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

This study is aimed at investigating the effect of arsenic trioxide (ATO) on p53 null human osteosarcoma MG63 cells and the mechanisms underlying the effect. Apoptotic cells were detected by flow cytometry with Annexin-V-FITC/PI dual staining. Intracellular ROS was measured by flow cytometry using a cell-based ROS assay kit. Catalase activity and mRNAs were analyzed by ELISA and real-time qRT–PCR, respectively. Apoptosis and intracellular ROS of MG63 cells increased in a dose-dependent manner following arsenic treatments. Both were prevented by the presence of the anti-oxidative reagent N-acetyl-l-cysteine (NAC) or catalase (CAT). Furthermore, the activity and mRNA of catalase were decreased strikingly following arsenic exposure. The present study indicates that p53 null osteosarcoma MG63 cells are susceptible to the ATO; the inhibition of catalase and the resulted intracellular ROS accumulation are an important molecular mechanism under which ATO induces apoptosis of p53-deficient osteosarcoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siclari VA, Qin L. Targeting the osteosarcoma cancer stem cell. J Orthop Surg Res. 2010;5:78–87.

    Article  PubMed  Google Scholar 

  2. Overholtzer M, Rao PH, Favis R, et al. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc Natl Acad Sci USA. 2003;100:11547–52.

    Article  PubMed  CAS  Google Scholar 

  3. Ueda Y, Dockhorn-Dworniczak B, Blasius S, et al. Analysis of mutant P53 protein in osteosarcomas and other malignant and benign lesions of bone. J Cancer Res Clin Oncol. 1993;119:172–8.

    Article  PubMed  CAS  Google Scholar 

  4. Goto A, Kanda H, Ishikawa Y, et al. Association of loss of heterozygosity at the p53 locus with chemoresistance in osteosarcomas. Jpn J Cancer Res. 1998;89:539–47.

    Article  PubMed  CAS  Google Scholar 

  5. Emadi A, Gore SD. Arsenic trioxide - An old drug rediscovered. Blood Rev. 2010;24:191–9.

    Article  PubMed  CAS  Google Scholar 

  6. Yedjou C, Tchounwou P, Jenkins J, McMurray R. Basic mechanisms of arsenic trioxide (ATO)-induced apoptosis in human leukemia (HL-60) cells. J Hematol Oncol. 2010;3:28–36.

    Article  PubMed  Google Scholar 

  7. Lafayette TC, Coser VM, Brule AO, et al. External auditory canal and middle ear relapse of acute promyelocytic leukemia treated with arsenic trioxide: case report and review of the literature. J Pediatr Hematol Oncol. 2010;32:229–32.

    Article  PubMed  Google Scholar 

  8. Chow SK, Chan JY, Fung KP. Inhibition of cell proliferation and the action mechanisms of arsenic trioxide (As2O3) on human breast cancer cells. J Cell Biochem. 2004;93:173–87.

    Article  PubMed  CAS  Google Scholar 

  9. Mann KK, Wallner B, Lossos IS, Miller WH Jr. Darinaparsin: a novel organic arsenical with promising anticancer activity. Expert Opin Investig Drugs. 2009;18:1727–34.

    Article  PubMed  CAS  Google Scholar 

  10. Li Y, Qu X, Qu J, et al. Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3 K/Akt signaling and thereby regulate p53 activation. Cancer Lett. 2009;284:208–15.

    Article  PubMed  CAS  Google Scholar 

  11. Yoda A, Toyoshima K, Watanabe Y, et al. Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase. J Biol Chem. 2008;283:18969–79.

    Article  PubMed  CAS  Google Scholar 

  12. Fei M, Lu M, Wang Y, et al. Arsenic trioxide-induced growth arrest of human hepatocellular carcinoma cells involving FOXO3a expression and localization. Med Oncol. 2009;26:178–85.

    Article  PubMed  CAS  Google Scholar 

  13. Akay C, Gazitt Y. Arsenic trioxide selectively induces early and extensive apoptosis via the APO2/caspase-8 pathway engaging the mitochondrial pathway in myeloma cells with mutant p53. Cell Cycle. 2003;2:358–68.

    PubMed  CAS  Google Scholar 

  14. Kircelli F, Akay C, Gazitt Y. Arsenic trioxide induces p53-dependent apoptotic signals in myeloma cells with SiRNA-silenced p53: MAP kinase pathway is preferentially activated in cells expressing inactivated p53. Int J Oncol. 2007;30:993–1001.

    PubMed  CAS  Google Scholar 

  15. Wu X, Shi J, Wu Y, et al. Arsenic trioxide-mediated growth inhibition of myeloma cells is associated with an extrinsic or intrinsic signaling pathway through activation of TRAIL or TRAIL receptor 2. Cancer Biol Ther. 2011;10:1201–14.

    Google Scholar 

  16. Shi Y, Wei Y, Qu S, et al. Arsenic induces apoptosis of human umbilical vein endothelial cells through mitochondrial pathways. Cardiovasc Toxicol. 2010;10:153–60.

    Article  PubMed  CAS  Google Scholar 

  17. Engel RH, Evens AM. Oxidative stress and apoptosis: a new treatment paradigm in cancer. Front Biosci. 2006;11:300–12.

    Article  PubMed  CAS  Google Scholar 

  18. Liu SX, Athar M, Lippai I, et al. Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci USA. 2001;98:1643–8.

    Article  PubMed  CAS  Google Scholar 

  19. Wang LW, Shi YL, Wang N, et al. Association of oxidative stress with realgar-induced differentiation in human leukemia HL-60 cells. Chemotherapy. 2009;55:460–7.

    Article  PubMed  CAS  Google Scholar 

  20. Sumi D, Shinkai Y, Kumagai Y. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells. Toxicol Appl Pharmacol. 2010;244:385–92.

    Article  PubMed  CAS  Google Scholar 

  21. Yedjou CG, Moore P, Tchounwou PB. Dose- and time-dependent response of human leukemia (HL-60) cells to arsenic trioxide treatment. Int J Environ Res Public Health. 2006;3:136–40.

    Article  PubMed  CAS  Google Scholar 

  22. Huan SY, Yang CH, Chen YC. Arsenic trioxide therapy for relapsed acute promyelocytic leukemia: an useful salvage therapy. Leuk Lymphoma. 2000;38:283–93.

    Article  PubMed  CAS  Google Scholar 

  23. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9:422–41.

    Article  PubMed  Google Scholar 

  24. Ferrari S, Palmerini E. Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr Opin Oncol. 2007;19:341–6.

    Article  PubMed  CAS  Google Scholar 

  25. Pakos EE, Nearchou AD, Grimer RJ, et al. Prognostic factors and outcomes for osteosarcoma: an international collaboration. Eur J Cancer. 2009;45:2367–75.

    Article  PubMed  Google Scholar 

  26. Jezek P, Hlavata L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol. 2005;37:2478–503.

    Article  PubMed  CAS  Google Scholar 

  27. Bartz RR, Piantadosi CA. Clin ical review: oxygen as a signaling molecule. Crit Care. 2010;14:234.

    Article  PubMed  Google Scholar 

  28. Sanchez Y, Calle C, de Blas E, Aller P. Modulation of arsenic trioxide-induced apoptosis by genistein and functionally related agents in U937 human leukaemia cells. Regulation by ROS and mitogen-activated protein kinases. Chem Biol Interact. 2009;182:37–44.

    Article  PubMed  CAS  Google Scholar 

  29. Das J, Ghosh J, Manna P, et al. Taurine protects rat testes against NaAsO(2)-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett. 2009;187:201–10.

    Article  PubMed  CAS  Google Scholar 

  30. Han YH, Kim SZ, Kim SH, Park WH. Suppression of arsenic trioxide-induced apoptosis in HeLa cells by N-acetylcysteine. Mol Cells. 2008;26:18–25.

    PubMed  Google Scholar 

  31. Wang W, Adachi M, Kawamura R, et al. Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apoptosis. 2006;11:2225–35.

    Article  PubMed  CAS  Google Scholar 

  32. Islam KN, Kayanoki Y, Kaneto H, et al. TGF-beta1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radic Biol Med. 1997;22:1007–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grants: NSFC No. 30872193). We would like to express our great appreciation to Dr. Xuejin Su, for his excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yudan Wei or Ronggui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wei, Y., Zhang, H. et al. Arsenic trioxide induces apoptosis of p53 null osteosarcoma MG63 cells through the inhibition of catalase. Med Oncol 29, 1328–1334 (2012). https://doi.org/10.1007/s12032-011-9848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-9848-5

Keywords

Navigation