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Abstract
Glioblastoma (GBM) is the most invasive type of glioma and is difficult to treat. Diverse programmed cell death (PCD) 
patterns have a significant association with tumor initiation and progression. A novel prognostic model based on PCD genes 
may serve as an effective tool to predict the prognosis of GBM. The study incorporated 11 PCD patterns, namely apoptosis, 
necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell 
death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis, to develop the model. To construct and validate the 
model, both bulk and single-cell transcriptome data, along with corresponding clinical data from GBM cases, were obtained 
from the TCGA-GBM, REMBRANDT, CGGA, and GSE162631 datasets. A cell death-related signature containing 14 genes 
was constructed with the TCGA-GBM cohort and validated in the REMBRANDT and CGGA datasets. GBM patients with 
a higher cell death index (CDI) were significantly associated with poorer survival outcomes. Two separate clusters associ-
ated with clinical outcomes emerged from unsupervised analysis. A multivariate Cox regression analysis was conducted to 
examine the association of CDI with clinical characteristics, and a prognostic nomogram was developed. Drug sensitivity 
analysis revealed high-CDI GBM patients might be resistant to carmustine while sensitive to 5-fluorouracil. Less abundance 
of natural killer cells was found in GBM cases with high CDI and bulk transcriptome data. A cell death-related prognostic 
model that could predict the prognosis of GBM patients with good performance was established, which could discriminate 
between the prognosis and drug sensitivity of GBM.
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Introduction

Glioblastoma (GBM) is the most common form of malig-
nant primary brain cancer, affecting approximately two 
to five people per 100,000 cases annually in the USA and 
Europe (Bikfalvi et al. 2023). Despite the administration 
of surgery and the Stupp protocol combining radiotherapy 
with concomitant chemotherapy with temozolomide (TMZ) 

in GBM, the prognosis for GBM remains poor, as patients 
typically experience a median survival period of approxi-
mately 15 months after treatment (Fabbro-Peray et al. 2019). 
Blood–brain barrier, immune escape, and tumor heteroge-
neity may lead to therapy resistance for GBM, while the 
potential mechanisms of GBM cell treatment escaping and 
invasion are incompletely understood (Gonzalez Castro et al. 
2021). A good prognostic model for GBM may help in the 
development of individualized and effective treatment strate-
gies. Additionally, identifying robust underlying treatment 
targets to design optimized drugs is also urgently needed.

Cell demise can be classified according to morphological 
characteristics, the cellular environment, and the stimulus 
that triggers the procedure, primarily encompassing pro-
grammed cell death (PCD) and unintentional cell death 
(ACD). ACD is an unregulated process whereby cells suc-
cumb to death in response to stimuli resulting from acciden-
tal injuries. Cell death occurs when the cellular ability to 
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adapt or adjust is surpassed by these injury stimuli, resulting 
in their ultimate demise (Galluzzi et al. 2018). PCD refers 
to a self-regulated and organized process by which cells 
undergo demise under the control of specific genes. PCD’s 
main goal is to uphold the stability of the internal cellular 
environment (Galluzzi et al. 2018). PCD encompasses vari-
ous forms of cell death, such as apoptosis, pyroptosis, fer-
roptosis, autophagy, necroptosis, cuproptosis, parthanatos, 
entotic cell death, netotic cell death, lysosome-dependent 
cell death, alkaliptosis, and oxeiptosis (Tang et al. 2019). 
Various pathways and their crosstalk during PCD can sig-
nificantly influence tumor progression and response to anti-
cancer treatment. Apoptosis, which has been extensively 
researched, has been considered the sole form of regulated 
cell death for many years. The interplay among different pro-
teins of the BCL-2 family, comprising both proapoptotic and 
antiapoptotic members, governs the crucial feature of apop-
tosis, which involves the liberation of cytochrome from mito-
chondria. Additionally, initiator caspases and effector cas-
pases also play a role in regulating this process (Bertheloot 
et al. 2021). A recent study has found that necrosis could 
also be regulated. Necroptosis, a form of controlled cellular 
death, takes place after the stimulation of tumor necrosis 
factor receptor 1 (TNFR1) by interacting with TNFα (Yan 
et al. 2022). The activation of inflammasome sensors leads 
to pyroptosis, which is marked by the disruption of the integ-
rity of the plasma membrane. Inflammasomes function as a 
strong protective mechanism against pathogens or cellular 
pressure, resulting in destructive cell death that obstructs the 
proliferation of microorganisms and at the same time notifies 
the immune system of imminent dangers. However, dysregu-
lated activation of this vital physiological sentinel function 
can also lead to the onset of pathological inflammation (Yan 
et al. 2022). Ferroptosis, a form of controlled cellular death, 
relies on iron and is distinguished by an overabundance of 
lipid peroxidation. It can be induced by IFNγ and TGFβ1 to 
suppress tumor progression (Chen et al. 2021). In contrast, 
cuproptosis entails the interaction of Cu2+ with lipoylated 
components of the tricarboxylic acid cycle in the respiratory 
chain of mitochondria (Chen et al. 2022a). The interaction 
causes the accumulation of proteins with lipoylation and 
the decrease of proteins with iron-sulfur clusters, leading to 
proteotoxic stress and eventual cell death. Entosis is a form 
of cell-in-cell-mediated death. Core elements essential for 
entotic cell-in-cell formation include contractile actomyosin, 
adherens junctions, and mechanical rings (Wang et al. 2020). 
Conversely, netotic cell demise is induced by the liberation 
of neutrophil extracellular traps (NETs), renowned mainly 
for their antimicrobial properties (Jiang et al. 2023). NETs 
have the function of capturing, restraining, and eradicating 
intruding bacteria and pathogens. The intricate extracellu-
lar formations are composed of nuclear DNA strands and 
mitochondria adorned with granular antimicrobial enzymes 

and histones. Different types of stress can cause lysosomal 
membrane permeabilization, leading to the movement of 
intralysosomal elements, like cathepsins, from the lysosomes 
to the cytoplasm (Wang et al. 2018). The commencement 
of lysosome-mediated cellular demise occurs through this 
procedure. Conversely, autophagy-triggered cellular demise 
takes place when autophagy is stimulated and acts as a safe-
guarding process to eliminate impaired cellular elements. 
Lately, alkaliptosis has surfaced as a pH-responsive type 
of controlled cellular death and is being investigated as an 
innovative approach for treating cancer (Liu et al. 2020). 
In contrast, oxeiptosis is a type of cellular death caused by 
reactive oxygen species and is propelled by the stimulation 
of the KEAP1-PGAM5-AIFM1 pathway. Previously, cell 
death pathways were believed to function independently 
without overlap. However, it is now evident that these path-
ways are intricately interconnected and can cross-regulate 
one another. Caspase-8, recognized as one of the earliest-
discovered bridges between various cell deaths, inhibits 
the formation of necrosomes and promotes apoptosis over 
necroptosis (Wang et al. 2008). Additionally, the inactivation 
of procaspase-8 also promotes caspase-1-dependent cleav-
age of gasdermin D and pyroptosis (Newton et al. 2019). 
Thus, caspase-8 may be the key regulator among apoptosis, 
necroptosis, and pyroptosis.

Diverse PCD patterns have significant associations with 
tumorigenesis and development. The development of GBM, 
like other cancers, depends on avoiding various types of cell 
death. Nevertheless, the exploration of PCD’s role in GBM 
has been insufficient. Moreover, the prognosis and treatment 
response of GBM patients in relation to PCD-related genes 
have yet to be thoroughly analyzed. Hence, this research 
identified genes associated with survival and developed a 
novel indicator, the cell death index (CDI), to gauge the 
effectiveness of treatment for GBM patients. Differences in 
drug sensitivity and the tumor microenvironment between 
subgroups identified based on CDI were analyzed. In sum-
mary, our study constructed an accurate prognostic model to 
evaluate the survival outcomes of GBM patients and develop 
individualized and effective treatment strategies for them.

Materials and Methods

Data Collection

A total of 12 PCD pattern-related genes were identified, 
encompassing apoptosis (580 genes), necroptosis (101 
genes), pyroptosis (52 genes), ferroptosis (87 genes), cuprop-
tosis (14 genes), entotic cell death (15 genes), netotic cell 
death (8 genes), parthanatos (9 genes), lysosome-dependent 
cell death (220 genes), autophagy (367 genes), alkaliptosis 
(7 genes), and oxeiptosis (5 genes) (Tang et al. 2019; Zou 
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et al. 2022). Forward analysis included a total of 1078 genes 
(Table S1).

The training group included transcriptome records from 
159 GBM individuals acquired from the Cancer Genome 
Atlas (TCGA) repository (https://​portal.​gdc.​cancer.​gov/). 
Additionally, clinical data for these specimens was obtained. 
Data on copy number variation and masked somatic muta-
tions were obtained from the GDC Data Portal (https://​
portal.​gdc.​cancer.​gov/). To serve as a standard control, 30 
normal tissues were obtained from the Genotype-Tissue 
Expression (GTEx) repository. The normalized expression 
matrix and corresponding clinical information of 210 GBM 
cases were acquired from GlioVis (http://​gliov​is.​bioin​fo.​
cnio.​es/) for the microarray validation cohort. These sam-
ples were part of the REMBRANDT dataset. Furthermore, 
135 GBM samples were obtained from the Chinese Glioma 
Genome Atlas (CGGA) portal (http://​www.​cgga.​org.​cn/​
index.​jsp) (Zhao et al. 2017), along with transcriptome and 
clinical data. Given the population representative and data 
characteristics in these three public databases, we chose the 
database as the training cohort and the REMBRANT and 
CGGA databases as the validation databases. To ensure 
consistency in our study, only adult cases with complete 
clinical information were included. Samples lacking such 
information were excluded. Moreover, our attention was 
solely directed towards genes that exhibited expression lev-
els greater than zero in over 50% of the samples.

Identification of Key PCD‑Related Genes Associated 
with GBM

The “limma” R package was used to identify differentially 
expressed genes (DEGs) between tumors and normal tissues 
in the TCGA cohort. The selection of DEGs was determined 
by a FDR that was adjusted to be below 0.05 and a logFC 
that exceeded 1 (Ritchie et al. 2015). The R package “clus-
terProfiler” was used to conduct Gene Ontology (GO) analy-
ses with the DEGs. For investigating somatic mutation data 
within TNBC patients, the “maftools” package was used 
(Mayakonda et al. 2018). Values above 0.2 were considered 
“gains,” and values below − 0.2 were considered “losses” 
after filtering CNV values linked to programmed cell death 
(PCD)-related genes. Using the “circlize” R package (Gu 
et al. 2014), a circus plot was created to visually display the 
distinctive characteristics of the PCD-related genes.

Prognostic Model Construction and Validation

PCD-associated DEGs were regarded as potential prog-
nostic genes if they showed significance (p < 0.05) in 
both the Kaplan–Meier and univariate Cox analyses. The 
genes underwent a LASSO Cox analysis using the R pack-
age “glmnet” to determine the optimal penalty parameter 

lambda. The examination was conducted in the TCGA-GBM 
group (Friedman et al. 2010). The CDI, which stands for 
coefficient-based gene expression index, was computed by 
utilizing the normalized levels of gene expression and their 
corresponding regression coefficients. The formula used for 
calculating CDI is as follows: CDI = sum (gene expression 
level × corresponding coefficient). In the training cohort, the 
threshold value for CDI was determined using the X-tile 
program (Camp et al. 2004 Nov 1). Based on this thresh-
old, the GBM patients were categorized into two subgroups: 
low CDI and high CDI. To investigate the variation in gene 
expression patterns among GBM samples, principal compo-
nent analysis (PCA) was performed using the “stats” pack-
age. Moreover, an examination of Kaplan–Meier was per-
formed to evaluate the correlation between the duration of 
overall survival (OS) and CDI. The examination employed 
the R packages “survival” and “survminer” for analysis.

Functional Enrichment Analysis

The “clusterProfiler” R package was used to perform gene 
set enrichment analysis (GSEA). The examination employed 
the collection of gene sets known as “c2.all.v7.0.entrez.
gmt,” sourced from the Molecular Signatures Database 
(MSigDB) (Hänzelmann et al. 2013). This database con-
tains a comprehensive collection of gene sets associated with 
various biological pathways and processes.

Unsupervised Clustering Analysis in GBM

Consensus clustering analysis was conducted using the R 
package “ConsensusClusterPlus” to discover unrecognized 
subtypes of GBM utilizing 14 genes associated with PCD 
(Wilkerson and Hayes 2010). The CC analysis involved set-
ting the parameter “maxK” to 10, selecting “clusterAlg” 
as “km” (k-means), and using “distance” as “pearson” for 
calculating the similarity between samples. The TCGA-
GBM cohort was utilized as the training set in this analy-
sis, whereas the REMBRANDT and CGGA datasets were 
employed to assess the reliability of the clustering outcomes.

Nomogram Development and Evaluation 
of Predictive Performance

Univariate and multivariate Cox regression analyses were 
conducted in the TCGA-GBM cohort to determine inde-
pendent prognostic factors, utilizing both the patient’s clini-
cal information and CDI. These analyses aimed to determine 
which variables significantly influenced overall survival. 
To visually represent the prognostic model, a nomogram 
plot was generated using the “regplot” package. This plot 
provides a visual tool for estimating individualized survival 
probabilities based on the identified prognostic factors. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://gliovis.bioinfo.cnio.es/
http://gliovis.bioinfo.cnio.es/
http://www.cgga.org.cn/index.jsp
http://www.cgga.org.cn/index.jsp
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The effectiveness of the predictive model was assessed 
using calibration plots and decision curve analysis (DCA), 
employing the R software packages “caret” and “rmda.” 
Calibration graphs evaluate the concordance between the 
observed and estimated chances of survival. The clinical 
utility of the model is evaluated by DCA, which measures 
the overall advantage at various threshold probabilities. The 
“timeROC” R package was used to conduct receiver operat-
ing characteristic (ROC) analyses. These analyses assess the 
discriminatory power of the prognostic model in predicting 
survival outcomes.

Drug Sensitivity and the Tumor Immune 
Microenvironment Analysis

To forecast drug sensitivities between the CDI-high and 
CDI-low groups (Ohashi et al. 2020), the R package “onco-
Predict” was employed. This analysis aimed to assess 
potential differences in drug responses between these two 
subgroups based on their CDI values. The immune micro-
environment was assessed by determining the infiltration 
scores of 28 immune cells using single-sample gene set 
enrichment analysis (ssGSEA) through the utilization of the 
“gsva” R package (Mariathasan et al. 2018). The analysis 
offers a calculation of the proportionate prevalence of vari-
ous immune cell categories in the tumor specimen. Moreo-
ver, an analysis was conducted on the correlation between 
CDI and immunomodulatory agents. This analysis aimed to 
investigate potential associations between CDI values and 
genes involved in immune regulation or modulation.

Single‑Cell RNA‑Seq Data Processing and Analysis

We analyzed the RNA-seq data of GBM patients’ tumor tis-
sues, which were obtained from GSE162631, using the R 
package “Seurat” (Hao et al. 2021). Assessing the proportion 
of genes related to mitochondria or ribosomes was used to 
evaluate the quality of the initial counts. Cells with low-
quality counts were removed from the analysis. To identify 
the top 2000 genes that exhibit high variability, the Seurat 
package’s “FindVariableFeatures” function was utilized. The 
“FindNeighbors” and “FindClusters” functions were used 
to analyze cell clustering. The “FindNeighbors” function 
was used to create a k-nearest neighbor graph in principal 
component analysis (PCA), which relied on Euclidean dis-
tance to identify the closest neighbors for every cell. Using 
the “RunTSNE” function, t-distributed stochastic neigh-
bor embedding (tSNE) was then applied. The cell clusters 
were visualized using the resulting dimensions of tSNE-1 
and tSNE-2. For each cluster, the “FindAllMarkers” func-
tion was utilized to perform differential expression analy-
sis, identifying marker genes based on a cutoff threshold 
where the adjusted p-value was below 0.01 and the absolute 

log2 fold change exceeded 1. The “Garnett” package was 
employed for clustering annotations to identify distinct cell 
types (Pliner et al. 2019). The “analyze_sc_clusters” func-
tion was used for enrichment analysis, and the results were 
extracted based on pathways. The “AddModuleScore” func-
tion was utilized to calculate module scores and the propor-
tion of enrichment for gene expression related to PCD in 
individual cells. The “ReactomeGSA” package (Griss et al. 
2020) was used to perform functional enrichment analysis on 
the identified hub cell types. The differentiation trajectories 
between various developmental stages were captured using 
CytoTRACE, with cells exhibiting the highest CytoTRACE 
score indicating immaturity or an early stage of develop-
ment (Gulati et al. 2020). Finally, cell–cell communication 
analysis and network visualization were carried out using 
the “CellChat” and “patchwork” software packages, respec-
tively (Jin et al. 2021). The purpose of these analyses was 
to investigate communication patterns and create a visual 
representation of the network of interactions among various 
cell types.

Statistical Analysis

R software, version 4.2.2, was utilized for conducting all 
statistical analyses. To analyze disparities between two 
groups, either the Student's t-test or the Wilcoxon test was 
utilized, depending on the characteristics of the data. The 
Kruskal–Wallis test was employed for making comparisons 
between multiple groups. We performed survival analysis 
by utilizing Kaplan–Meier diagrams and evaluated dispari-
ties between survival curves through the log-rank test. For 
all analyses, a statistical significance level of P < 0.05 was 
deemed significant.

Results

The TCGA-GBM database was selected as the training 
cohort, while the REMBRANT and CGGA databases were 
chosen as the validation cohorts for the prognosis predictive 
model. Transcriptional heterogeneity was evaluated using 
single-cell RNA-seq data (GSE162631) obtained from four 
patients with GBM. The detailed process of this study is 
illustrated in Fig. 1.

Differential Expression of PDC‑Related Genes 
in GBM Patients

A total of 68 differentially expressed genes (DEGs) were 
identified in the TCGA-GBM dataset. The differen-
tially expressed genes (DEGs) exhibited a p-value below 
0.05 after adjustment and a fold change exceeding 1 on 
the absolute log2 scale. Out of these, the GBM group 
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exhibited upregulation of 30 genes, whereas 38 genes 
showed downregulation. The heatmaps in Fig. 2A display 
the scaled RNA levels of the differentially expressed genes 
(DEGs). Furthermore, Fig. 2B showcases a volcano plot 
that emphasizes the differentially expressed genes (DEGs). 
For more in-depth details on the chromosomal position, 
expression trends, and associations of every DEG, refer to 
Fig. 2C. Moreover, the GO enrichment analysis revealed 
several biological pathways associated with these differ-
entially expressed genes, as depicted in Fig. 2D. Further-
more, the examination evaluated the diversity of genes 
associated with PCD among patients with GBM in the 
TCGA group. The results revealed that approximately 
16.7% of GBM patients exhibited mutations in PCD-
related genes. In Fig. 2E, the top ten mutations of these 
genes are shown, with PIK3CA having the highest fre-
quency of mutations (58%), followed by nine other genes 
ranging from 12 to 4% (Fig. 2F). Figure 2G depicts the 
connections among extensively mutated genes associ-
ated with PCD. Furthermore, the analysis of CNV status 
revealed frequent changes in genes associated with PCD. 

In particular, PARK7 displayed the highest occurrence 
of CNV deletion, while YPIK3CA demonstrated notable 
amplifications in copy number (Fig. 2H).

Prognostic Signature Construction 
with PCD‑Related Genes

Survival data from GBM patients was collected and sub-
jected to analysis. At first, a univariate Cox regression 
analysis was used to discover 19 genes linked to survival. 
Figure S1 demonstrates the further validation of the results 
through Kaplan–Meier analysis. LASSO Cox regression 
analysis effectively reduced features in high-dimensional 
data and optimized predictors of clinical outcomes. The 
vertical dotted line in Fig. 3A corresponds to the penalty 
value of the lowest point (that is, the upper coordinate cor-
responding to the lowest point of the curve). Then, we find 
the vertical line corresponding to the corresponding position 
of the penalty value in Fig. 3B. The number of intersect-
ing points is the number of variables included in the final 
model, and the ordinate of the corresponding intersection 

Fig. 1   Flowchart for comprehensive analysis of 11 programmed cell death (PCD) patterns in GBM patients
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Fig. 2   Differential expression of PDC-related genes in GBM Patients. 
A, B Heatmap and volcano plot of the PDC-related DEGs between 
GBM and normal tissues. C The location, expression, and correlation 
of PCD-related differential expression genes (DGEs) in the TCGA 

cohort. D GO enrichment analyses based on the DEGs. E, F An 
oncoplot of PCD-related genes in the TCGA cohort. G The correlo-
gram of interactions between highly mutated PCD-related genes. H 
CNV values of PCD-related genes in the TCGA cohort
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Fig. 3   Prognostic signature construction with PCD-related genes. A, 
B Identification of the 14 model genes by LASSO regression analy-
sis. C Violin plots of the relationship between CDI and different 

GBM molecular subtypes. D Heatmap of 12 model genes and clinical 
features. E Pathway enrichment analysis between high- and low-CDI 
groups by GSEA
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point is the regression coefficient of the variable. We took 
the value of log(λ) to − 3, and 14 genes were finally selected 
from 19 genes. Among these genes, there were eight genes 
associated with apoptosis, five genes linked to autophagy, 
three genes connected to lysosome-dependent cell death, 
two genes related to necroptosis, and one gene associated 
with pyroptosis. Figure S2 illustrates the examination and 
representation of the association among every gene in the 
model. Moreover, the levels of expression for these 14 genes 
were compared between TNBC tissues and normal samples 
using the Wilcoxon test (Figure S3). Significant differences 
(p < 0.05) were detected in the expression of all 14 genes. 
The hazard model was constructed by combining the 14 
PCD-associated genes using their coefficients from the mul-
tivariate Cox analysis, according to the formula:

EBCL2A1 represents the expression value of the gene 
BCL2A1, while the remaining genes have a similar repre-
sentation to BCL2A1. Using the X-tile program, a threshold 
value of 1.58 was determined for CDI. Using this criterion, 
the TCGA cohort was segregated into a high-CDI group 
and a low-CDI group, comprising 159 GBM patients, which 
were then utilized as the training dataset. The presence of 
CDI was found to have a significant association with various 
clinical characteristics, such as distinct molecular subtypes 
of GBM (as shown in Fig. 3C). Heatmaps were employed 
to illustrate the associations between CDI and clinical char-
acteristics, along with the status of survival. However, no 
significant relationship was observed (Fig. 3D). In order to 
further examine variations in biological processes among 
the subgroups classified by the gene signature, the applica-
tion of gene set enrichment analysis (GSEA) was utilized. In 
the TCGA cohort, Fig. 3E showcases the top ten biological 
processes that have been identified.

Internal Training and External Validation 
of the PCD‑Related Signature

The results of our study showed that in the TCGA-GBM 
cohort, consisting of 159 patients, which served as the 
internal training dataset, as well as in the external valida-
tion cohorts REMBRANDT (210 patients) and CGGA (135 
patients), individuals with elevated CDI levels (> 1.58) 
exhibited a decreased rate of survival in comparison to those 
with lower CDI levels (≤ 1.58) (as depicted in Fig. 4A). 
PCA was conducted to assess the categorization using CDI, 
and the findings demonstrated a favorable classification, as 

CDI =
(

EBCL2A1 × 0.15
)

+
(

ECASP3 × −0.05
)

+
(

ECLTB × 0.14
)

+
(

ECTSK × −0.19
)

+
(

ECYP1B1 × 0.60
)

+ (EICAM1
× −0.03)

+(EMMP9 × 0.03) + (EPTPN2 × −0.29) + (ERAC2 × −0.09)

+(ES100A9 × 0.19) + (ETEX264 × 0.01) + (ETNFAIP3 × 0.11)

+(EVDAC1 × −0.18) + (EZKSCAN3 × 0.20)

depicted in Fig. 4B. Furthermore, a significant distinction 
was noted in the duration of overall survival (OS) between 
the two groups with CDI. In particular, individuals in the 
low-CDI category demonstrated a greater likelihood of 
encountering reduced mortality rates (p < 0.05, as shown in 
Fig. 4C). Additionally, a connection was established between 
the mutation status and the CDI groups. Significantly, our 
results indicated a higher occurrence of PTEN mutations 
in patients belonging to the high-CDI group (p < 0.05, 
Figure S4).

Unsupervised Clustering of PCD‑Related Model Genes

A comprehensive analysis was carried out to investigate 
unknown variations of GBM, utilizing a collection of 14 
genes associated with PCD. Significantly, the subgroups 
exhibited the most noticeable disparities when the value of 
k (number of clusters) was established as 2. The implication 
was that the TCGA-GBM cohort, consisting of 159 patients, 
could be successfully categorized into two separate groups, 
as shown in Fig. 5A and B. Moreover, there was a nota-
ble difference in the duration of overall survival (OS) time 
among these clusters, with a p-value of 0.032 (Fig. 5C). 
Cluster B exhibited a more favorable prognosis, while 
cluster A was characterized by a poorer prognosis. Similar 
results were also observed in the REMBRANDT dataset 
(p-value = 0.013) and the CGGA dataset (p-value = 0.081). 
Furthermore, the clusters were visualized using alluvial dia-
grams to depict the distribution patterns of CDI. Figure 5D 
shows that most patients in cluster A had elevated CDI val-
ues, while a significant number of patients in cluster B had 
decreased CDI values.

Construction and Assessment of the Nomogram 
Survival Model

To ascertain whether CDI could serve as a prognostic factor 
independently, both univariate and multivariate Cox regres-
sion analyses were conducted. According to the univariate 
analysis findings, CDI was found to be a significant risk 
factor in comparison to other factors (HR = 4.27, 95% CI 
2.76–6.61, p < 0.001, Fig. 6A). Furthermore, even after 
accounting for other influencing factors, the multivariate 
analysis revealed that CDI continued to be a separate predic-
tive factor in GBM patients (HR = 3.13, 95% CI 1.81–5.41, 
p < 0.001, Fig. 6B). A nomogram model was created in the 
TCGA cohort using multivariable Cox regression and step-
wise regression analyses to predict the overall survival (OS) 
for 1, 3, and 5 years. Figure 6C includes gender and CDI as 
predictor variables in the nomogram. The model’s predictive 
accuracy was calculated as 0.675 (95% CI 0.627–0.722), as 
indicated by its C-index value. To evaluate the precision 
of the model in forecasting the survival rates for 1, 3, and 
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5 years, calibration curves were created (Fig. 6D). Signifi-
cantly, there was a clear contrast in survival rates between 
the high and low groups, as indicated by the nomogram 
score (Fig. 6E). In addition, the AUC values were assessed 
in three separate groups, indicating that the nomogram 
showed excellent precision in forecasting the survival of 
GBM patients for both 3 and 5 years (Fig. 6F).

Drug Sensitivity Analysis and Landscape 
of the Immune Microenvironment

In order to examine the correlation between the established 
model and drug responsiveness, we computed the IC50 
values, representing the concentration at which half of the 
drug’s inhibitory effect is achieved, for every GBM sample 

to detect noteworthy variances. Figure 7A and B illustrate 
the relationship and importance of drug sensitivities and 
CDI. Surprisingly, the group with high CDI demonstrated 
increased IC50 values for carmustine and AZD5991, sug-
gesting a possible resistance to these medications. Con-
versely, 5-fluorouracil and dasatinib exhibited lower IC50 
values, suggesting a possible susceptibility to these medi-
cations. The results indicate that individuals with elevated 
CDI levels in GBM may exhibit resistance to carmustine but 
could potentially show sensitivity to 5-fluorouracil. Conse-
quently, 5-fluorouracil shows promise as a treatment option 
for chemotherapy-resistant GBM patients with high CDI.

Furthermore, we performed an examination to discern 
disparities in immunomodulating agents and cells associ-
ated with the immune system among the two groups with 

Fig. 4   Internal training and external validation of the PCD-related 
signature. A Distribution of adjusted CDI according to the survival 
status and time in TCGA, REMBRANDT, and CGGA cohorts. B 
Principal component analysis (PCA) plot based on the CDI in TCGA, 

REMBRANDT, and CGGA cohorts. C Overall survival in the low- 
and high-CDI group patients in TCGA, REMBRANDT, and CGGA 
cohorts



	 Journal of Molecular Neuroscience (2024) 74:1010  Page 10 of 18

Fig. 5   Unsupervised clustering of PCD-related model genes. A GBM 
patients were grouped into two molecular clusters when k = 2, based 
on the PCD-related model genes. B Representative cumulative distri-
bution function (CDF) curves. C Kaplan–Meier survival curve analy-

sis between the two clusters. D Alluvial diagram shows the interrela-
tionship between molecular clusters, survival status, and CDI groups 
in GBM patients
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CDI. According to the bar graph shown in Fig. 7C, it can 
be inferred that the low-CDI group might demonstrate more 
robust immune responses. In addition, the enrichment scores 
for immune-related cells were computed, revealing that only 
consistently activated NK cells exhibited significantly ele-
vated levels in the low-CDI group across the three cohorts. 
Figure  S5 demonstrates a notable positive correlation 

between CDI and the increased activation of these elevated 
levels of NK cells.

Single‑Cell RNA Transcriptome Data in GBM

To acquire a more comprehensive comprehension of the dis-
tribution of CDI in GBM patients, we examined data from 

Fig. 6   Construction and assessment of the nomogram survival model. 
A, B Univariate and multivariate analysis of CDI and the clinico-
pathologic characteristics. C A nomogram was established to predict 
the prognostic of GBM patients. D The calibration curve of the nom-

ogram. E Kaplan–Meier analyses for the two GBM groups based on 
the nomogram score. F Receiver operator characteristic (ROC) analy-
sis of nomogram in TCGA, REMBRANDT, and CGGA cohorts
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Fig. 7   Drug sensitivity analysis and landscape of the immune micro-
environment. A Bubble plot of the correlation between drugs and 
model genes. B Boxplots of IC50 of carmustine, AZD5991, 5-fluoro-

uracil, and dasatinib in high- and low-CDI groups. C Bar plot of the 
correlation between immunomodulators and the CDI values in GBM 
patients
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Fig. 8   Single-cell RNA transcriptome data analysis in GBM. A–C 
Cluster annotation and cell type identification by tSNE. D Boxplots 
showing CDI of six subtypes of cell in GBM microenvironment and 
feature plot showing CDI of monocytes. E Functional enrichment 
analysis of identified six cell types. F Correlation between 14 PCD-

related genes and CytoTRACE score and a predicted higher develop-
mental potential for monocytes (cells with the highest CytoTRACE 
score mapped to the starting point of the trajectory by RNA velocity). 
G Among the six cell types, there were high cell-to-cell correlations 
in terms of the number and intensity of ligand-receptor interactions
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the single-cell RNA transcriptome (GSE162631). Follow-
ing the process of quality control (as shown in Figure S6A-
B), the cells underwent clustering using the FindNeighbors 
and FindClusters functions, with a resolution of 0.1, which 
led to the formation of nine distinct clusters (as depicted 
in Figs. 8A and B and S6C). Figure S6D displays the top 
five marker genes for every cell type. Using the Garnett 
package, we performed cluster annotation and tSNE visu-
alization of downscaled cell types, identifying 22 known 
cell types (Fig. 8C). In the GBM microenvironment, it was 
noticed that monocytes displayed higher CDI values com-
pared to other cell types among these cell types (Fig. 8D). 
The ReactomeGSA analysis showed that COX reactions, 
histamine receptors, MGMT-mediated DNA damage rever-
sal, and classical antibody-mediated complement activation 
pathways were mainly associated with memory B cells, 
dendritic cells, monocytes, CD8 + T cells, activated mast 
cells, and plasma cells (Fig. 8E). Moreover, we examined 
the association between the 14 genes associated with PCD 
and the CytoTRACE score, which forecasts the developmen-
tal capacity of a cell. According to this analysis (Fig. 8F), 
monocytes exhibited a greater capacity for development. 
Furthermore, by employing RNA velocity, the cells exhibit-
ing the greatest CytoTRACE score, which signifies the least 
mature cells, were assigned to the initial point of the trajec-
tory. In order to further explore the communication between 
cells, we examined the connection among monocytes and 
memory B cells, dendritic cells, CD8 + T cells, activated 
mast cells, and plasma cells. Significantly, the involvement 
of ICAM1-ITGAL, ICAM1-SPN, and ICAM1-AREG in 
monocytes was observed to have pivotal functions in ligand-
receptor interactions (Fig. 8G).

Discussion

The present research is the initial extensive examination of 
12 different programmed cell death (PCD) patterns in GBM. 
The process included building a signature for cell death in 
the TCGA-GBM group, which was later confirmed by two 
additional groups (REMBRANDT and CGGA), showcas-
ing its outstanding effectiveness. Additionally, a nomogram 
model that incorporated clinical characteristics and CDI 
was developed, resulting in favorable outcomes for predict-
ing overall survival. Moreover, this research examined the 
possible association between CDI and immunomodulating 
agents, the tumor microenvironment, and the sensitivity of 
drugs. The analysis uncovered connections between CDI 
and immune-related cells, indicating variations in immune 
functions among the high- and low-CDI groups. Addition-
ally, the investigation examined the correlation between 
CDI and drug responsiveness, uncovering possible resist-
ance to carmustine while revealing potential susceptibility to 

5-fluorouracil among patients with high CDI. In general, this 
research offers an extensive understanding of the PCD pat-
terns in GBM and their significance for prognosis, immune 
response, tumor microenvironment, and drug sensitivity.

PCD is a multifaceted phenomenon governed by diverse 
mechanisms. Accumulating evidence substantiates the 
pivotal involvement of PCD in fundamental biological 
processes and its long-standing association with the onset 
and spread of malignant neoplasms (Su et al. 2015). In our 
study, we developed a signature comprising 14 PCD-related 
genes (BCL2A1, CASP3, CLTB, CTSK, CYP1B1, ICAM1, 
MMP9, PTPN2, RAC2, S100A9, TEX264, TNFAIP3, 
VDAC1, and ZKSCAN3) and demonstrated its ability to 
predict overall survival in GBM patients. BCL2-related 
protein A1 (BCL2A1), an antiapoptotic protein, promotes 
anti-cancer drug resistance (Li et al. 2021). The presence 
of excessive BCL2A1 levels was detected and linked to 
unfavorable survival outcomes in GBM. However, BCL2A1 
is a potential target in cancer therapy, and inhibitors of this 
protein are developing. Caspase 3 (CASP3) was found to be 
involved in apoptosis, pyroptosis, and autophagy pathways at 
the same time in GBM in our study. A favorable prognosis was 
correlated with a relatively heightened expression of CASP3. 
A recent investigation has indeed validated that the inhibition 
of glioblastoma growth is caused by CASP3, which triggers 
intrinsic apoptosis and pyroptosis by means of the mediated 
cleavage of gasdermin E (Zhao et al. 2023). Currently, there 
is limited mechanism investigation of clathrin light chain B 
(CLTB) in cancer. According to reports, CLTB is said to be 
involved in the invasion and spread of tumors (Mukenhirn 
et al. 2021). Cathepsin K (CTSK), a cysteine protease, plays 
a significant role in tissue invasion and angiogenesis within 
glioblastoma multiforme (GBM) (Santangelo et al. 2021). 
It is worth mentioning that the presence of CYP1B1 has 
been solely detected in medulloblastoma, distinguishing it 
from other types of central nervous system tumors. Previous 
studies have demonstrated that an immunotherapeutic agent 
designed to target this antigen can effectively and safely 
induce a robust immune response (Barnett et al. 2007). Our 
investigation revealed an upregulation of CYP1B1 in samples 
of glioblastoma multiforme (GBM). Furthermore, a relatively 
high level of cyclin-dependent kinase inhibitor 1A (CDKN1A) 
expression was discovered to have a strong association with an 
adverse prognosis. Intercellular adhesion molecule 1 (ICAM1) 
was observed to serve as a pivotal communicator between 
tumors and macrophages, influencing the GBM invasion 
(Yoo et al. 2022). ICAM1 is also involved in bevacizumab 
resistance in GBM (Piao et al. 2017). High expression of 
matrix metallopeptidase 9 (MMP9) in tumors is closely related 
to invasion, while a high plasmatic MMP9 level is associated 
with non-benefit from bevacizumab treatment (Jiguet-Jiglaire 
et al. 2022). GBM patients exhibiting elevated levels of MMP9 
in tumor tissue or peripheral blood exhibited a notably poorer 
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survival outcome, which is consistent with our results. PTPN2, 
a non-receptor type 2 protein tyrosine phosphatase, plays a 
vital role in both the development of tumors and the field of 
cancer immunotherapy as an immune checkpoint. Notably, 
the inhibition of PTPN2 has been observed to impede the 
proliferation of glioblastoma multiforme (GBM) (Tang 
et al. 2023). GBM exhibited a significant upregulation of 
Rac family small GTPase 2 (RAC2), which was found to be 
correlated with unfavorable survival outcomes. Paracrine 
factor S100 calcium-binding protein A9 (S100A9) could 
activate prosurvival factors Erk1/2 and p70S60k to promote 
GBM development (Hu et al. xxxx). Testis-expressed 264, the 
ER-Phagy receptor (TEX264), was reported to be involved 
in restoring cellular energy levels and endoplasmic reticulum 
homeostasis in GBM through autophagy (Zielke et al. 2021). 
Activation of the Akt and NF-κB signaling pathways may 
lead to temozolomide resistance in GBM by inhibiting TNF-
alpha-induced protein 3 (TNFAIP3), as suggested by Chen 
et  al. 2022b. The initiation of reprogramming malignant 
cancer cells into terminally differentiated cells, resulting in 
the reversal of their oncogenic properties within GBM, was 
triggered by the depletion of voltage-dependent anion channel 
1 (VDAC1) (Arif et al. 2017). Zinc finger containing KRAB 
and SCAN domains 3 (ZKSCAN3) was discovered to enhance 
tumor migration in different types of cancers, such as breast, 
colorectal, and prostate (Chi et al. 2018; Cho et al. 2022; 
Zhang et al. 2012), except for GBM. An elevated expression 
of ZKSCAN3 was detected in GBM tissue samples, exhibiting 
a significant correlation with an unfavorable prognosis.

Analysis of drug sensitivity indicated that individuals in 
the high-CDI category displayed increased IC50 values for 
carmustine and AZD5991, suggesting a lack of responsive-
ness to these medications in the treatment of TNBC. On the 
other hand, the group with high CDI showed decreased IC50 
values for 5-fluorouracil, indicating possible advantages of 
using this chemotherapy medication for GBM patients with 
CDI. Furthermore, individuals with elevated CDI exhibited 
the highest responsiveness to dasatinib, necessitating addi-
tional exploration via clinical trials to determine its effective-
ness as a potential therapy for GBM with high CDI. Despite 
the significant progress made by immune checkpoint inhibi-
tors (ICIs) in immunotherapy for cancer, only a minority of 
patients (20%) respond positively to ICIs (Zhang and Zhang 
2020). According to prior studies, the presence of immune 
cells infiltrating the tumor (Zhang and Zhang 2020) can 
impact the prognosis of tumor patients and the efficacy of 
immunotherapy. The main reliance of current immune check-
point inhibitors (ICIs), like PD1/PDL1 inhibitors, in clinical 
applications is on the activation of adaptive immunity medi-
ated by T cells to eradicate cancer cells. However, this treat-
ment approach has limited efficacy in GBM. The effective-
ness of activating natural immune cells relies on the existence 
of functional T cells in the tumor microenvironment. Tumor 

types with higher mutational loads tend to exhibit greater 
infiltration of T cells, whereas those with lower mutational 
loads, like GBM, typically have lower levels of T cell infil-
tration (Nakamura and Smyth 2020). In all three cohorts, 
our research discovered a notable decrease in the number of 
natural killer (NK) cells present in the tumor microenviron-
ment among the high-CDI subgroup. There was no observed 
variation in the distribution of CD8 + T cells. Regarding the 
identification and removal phase of the cancer-immunity 
cycle, natural killer (NK) cells have a wider array of recep-
tors for detecting tumor cells that do not exhibit MHC/human 
leukocyte antigen (HLA) expression. Furthermore, they have 
the ability to swiftly eradicate atypical cells without the need 
for T cells (Wang et al. 2022). Furthermore, NK cell-induced 
apoptosis of tumor cells leads to an increased release of can-
cer cell antigens. Therefore, it is crucial to explore NK cells 
as potent immune modulators against tumors and conduct 
additional research on their role in GBM. Through the analy-
sis of single-cell RNA transcriptome data, it was discovered 
that monocytes exhibited the greatest CDI in GBM. The 
analysis of bulk RNA transcriptome data in CGGA revealed 
a notable upsurge in the abundance of monocytes. The major-
ity of immune cells that infiltrate GBM are macrophages and 
monocytes, and these cells are believed to have protumor 
and immunosuppressive effects in GBM (Tomaszewski et al. 
2019). A prior investigation showed that the overexpression 
of CXCL1 and CXCL2 by interleukin 6 can enhance the 
recruitment of monocytes and drive macrophages towards 
a protumor phenotype, ultimately leading to the formation 
of a suppressive tumor microenvironment (Yeung et  al. 
2013). This discovery mentioned above might clarify the 
reason behind the unfavorable prognosis observed in patients 
belonging to the high-CDI category.

Although our CDI-derived model showed promising results 
in both the training and validation groups, there are various 
constraints to consider in this study. Initially, the retrospective 
analysis utilized data from a public database to identify clus-
ters, develop prognostic models, and validate them. Hence, it 
is crucial to gather empirical data and verify the practicality of 
our forecasting model. Despite our efforts to address this issue 
through multivariate Cox regression analyses, the potential 
impact on the efficacy of our prediction model may have been 
influenced by the limited inclusion of comprehensive clinical 
characteristics in public databases. Noting these limitations is 
crucial since they emphasize the necessity of further research 
to collect more data and confirm the effectiveness of our model 
in a real-life scenario. In addition, this research involved a 
restricted set of genes associated with parthanatosis, netotic 
cell death, alkaliptosis, and oxeiptosis. It is plausible that addi-
tional genes regulating these types of PCD have been identified 
in recent studies. Future research should consider incorporating 
these newly discovered genes to enhance the comprehensive-
ness of the analysis. Additionally, only four GBM patients were 
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included in the single-cell analysis, which may not be sufficient 
for the heterogeneity of GBM in the entire population. In con-
clusion, additional empirical studies are necessary to examine 
the fundamental biological roles and associations between risk 
forecasts and GBM. Although our model provides valuable 
insights, verifying these associations through experimental 
studies will contribute to a more comprehensive understand-
ing of GBM biology with a larger population.

Conclusion

In summary, our study demonstrated the applicability of PCD-
related genes in classifying GBM patients based on diverse 
clinical and molecular characteristics. A new predictive model 
was created using 14 genes related to PCD, which demon-
strated significant predictive capability by independently fore-
casting the risk of survival in both the derivation and valida-
tion groups. However, the underlying mechanisms connecting 
these prognostic genes to the biological functions of GBM 
are still poorly understood and require further investigation.
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