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Abstract
Otofaciocervical syndrome (OTFCS) is a rare genetic disorder of both autosomal recessive and autosomal dominant patterns 
of inheritance. It is caused by biallelic or monoallelic mutations in PAX1 or EYA1 genes, respectively. Here, we report an 
OTFCS2 female patient of 1st consanguineous healthy parents. She manifested facial dysmorphism, hearing loss, intellectual 
disability (ID), and delayed language development (DLD) as the main clinical phenotype. The novel homozygous variant 
c.1212dup (p.Gly405Argfs*51) in the PAX1 gene was identified by whole exome sequencing (WES), and family segregation 
confirmed the heterozygous status of the mutation in the parents using the Sanger sequencing. The study recorded a novel 
PAX1 variant representing the sixth report of OTFCS2 worldwide and the first Egyptian study expanding the geographic 
area where the disorder was confined.
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Introduction

Otofaciocervical syndrome (OTFCS) is a rare group disor-
der that is subclassified into two types: autosomal recessive 
OTFCS2 (MIM: 615,560) and autosomal dominant OTFCS1 
(MIM: 166,780) due to gene mutations in PAX1 and EYA1, 
respectively (Patil et al. 2018). OTFCS is characterized 
by a combination of facial dysmorphisms, shoulder girdle 
anomalies, ear abnormalities accompanied by hearing loss, 
and intellectual disability (Pohl et al. 2013). It showed some 
overlapping clinical features with branchiootorenal spectrum 
disorders (BSDs), including branchiootic syndrome (BOS, 
MIM#60,258) and branchiootorenal syndrome (BORS, 
MIM#113,650) (Gana et al. 2019).

OTFCS2 is caused by a biallelic PAX1 mutation. The 
hypofunctional homozygous missense mutation c.497G < T 
(p.G166V) was described in the first OTFCS2 family who 
presented with facial dysmorphism, nasolacrimal duct and 

shoulder girdle abnormalities, vertebral anomalies, ear mal-
formations, hearing loss, and mild intellectual disability (Pohl 
et al. 2013). However, more severe expanded features, includ-
ing thymus aplasia, T-cell immunodeficiency, and recurrent 
infections, were observed in other successive studies (Paganini 
et al. 2017; Yamazaki et al. 2020; Sherlaw-Sturrock et al. 2022). 
To date, only fourteen affected individuals with OTFCS2 
from six different families have been documented. PAX1 is a 
member of the paired-box (PAX) family that has already been 
classified into four main subfamilies, “Pax1 and Pax9; Pax2, 
Pax5, and Pax8; Pax3 and Pax7; Pax4 and Pax6,” according 
to their expression patterns, genomic organization, and the 
paired domain sequence. PAX1 is localized at chromosome 
20p11.22, including 5 exons and encoding a 534 amino acid 
protein (NP_006183.2). The most conserved functional motif of 
PAX1 and its family is the 128 amino acid (98–226) paired-box 
domain (PD), which is responsible for DNA-binding activity 
(Blake and Ziman 2014; Thompson et al. 2021). PAX1 encodes 
a transcription factor protein specifically expressed during the 
development of the skeleton, thymus, and parathyroid glands 
(Wu et al. 2022). Experimentally, mice with PAX1 deficiency 
showed vertebral column anomalies and different degrees of 
thymic hypoplasia (Yamazaki et al. 2020).

Human PAX1 mutations are also involved in the Klippel-
Feil (KFS) syndrome and oculo-auriculo-vertebral syndrome 
(OAVS) (Carter et al. 2022). The hypermethylated PAX1 

 *	 Asmaa F. Abdel‑Aleem 
	 asmaafawzy85@yahoo.com

1	 Medical Molecular Genetics Department, Human Genetics 
and Genome Research Institute, National Research Centre, 
Cairo, Egypt

2	 Clinical Genetics Department, Human Genetics and Genome 
Research Institute, National Research Centre, Cairo, Egypt

http://crossmark.crossref.org/dialog/?doi=10.1007/s12031-023-02170-7&domain=pdf


977Journal of Molecular Neuroscience (2023) 73:976–982	

1 3

promoter in esophageal squamous cell carcinoma suggests 
PAX1 as a tumor suppressor gene, highlighting its multi-
faceted roles in the human body (Nishiyama and Nakanishi 
2021). Here, we present the clinical and molecular findings 
of the first Egyptian patient with OTFCS2 representing the 
sixth reported case worldwide.

Material and Methods

Patient Recruitment and Ethical Approval

A 13-year-old female patient was referred to the Multiple 
Congenital Anomalies (MCAs) Clinic, Center of Excel-
lence for Human Genetics at the National Research Centre 
(NRC). Written informed consent was obtained from the 
parents according to the Declaration of Helsinki. The study 

was approved by the Medical Research Ethics Committee of 
the NRC (ID: 19,261).

Molecular Study

DNA was extracted from the peripheral blood lymphocytes 
using PAXgene Blood DNA (QIAGEN, Germany) according 
to the manufacturer’s protocol. Exome mapping was applied 
using the xGen Exome Research Panel v2 (Integrated DNA 
Technologies, Coralville, IA, USA), and sequencing was 
applied using the NovaSeq 6000 (Illumina, San Diego, CA, 
USA). Approximately 98.9% of the targeted bases were cov-
ered to a depth of ≥ 20x. All detected reads were mapped 
against the human reference genome (GRCh37/hg19) fol-
lowed by validation of small indels and nucleotide variants 
using GATK best practices guidelines (Pollard et al. 2009). 
Variants were annotated using ANNOVAR for location and 

Fig. 1   a Images of the proband 
demonstrate a long face, sparse 
outer third of the eyebrows, long 
lashes, hypertelorism, down 
slanting palpebral fissures, 
broad nose, bilateral microtia, 
bilateral low set ears, short 
neck, bilateral sloping shoulder, 
and toenail dystrophy. b Fam-
ily pedigree: the black arrow 
denotes to the affected proband
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function prediction (Wang et al. 2010). Only variants deemed 
relevant to the patient’s clinical phenotypes were evaluated. 
The detected novel-related variant was examined in different 
databases, including ClinVar (Landrum et al. 2016), gno-
mAD (Karczewski and Francioli 2017), HGMD (Stenson 
et al. 2003), 1000 Genomes (http://​brows​er.​1000g​enomes.​
org/​index.​html), ExAC (http://​exac.​broad​insti​tute.​org/), and 
GME Variome (Scott et al. 2016). The pathogenicity of the 
novel variant was examined by several functional prediction 

tools including mutation taster (Schwarz et al. 2014), CADD 
(Rentzsch et al. 2019), DDIG-in (Zhao et al. 2013), and 
TransPPMP (Nie et al. 2022). Additionally, PhyloP 100 and 
PhastCons 100 were checked for variant evolutionary con-
servation using multiple alignments based on 100 vertebrate 
genomes, including humans. Exon 4 of PAX1 (GenBank: 
NM_006192.4) was amplified utilizing standard PCR cycling 
conditions with specifically designed primers (F: 5′-TAA​
TGG​ATG​GGC​ACA​GGA​CG-3′ and R: 5′-AAG​TGG​AGG​
GGA​CAG​TCT​TG-3′). The Sanger sequencing was applied 
using an ABI 3500 Genetic Analyser (Applied Biosystems) 
for variant validation and cosegregation.

Results

Clinical Results

The patient was the first offspring of a 1st-degree consan-
guineous parent who had another healthy sibling (Fig. 1). The 
pregnancy history was uneventful, and the proband had a low 
birth weight (2 kg), as mentioned by the parents. She had a 
history of normal motor developmental milestones with no 
history of recurrent infection. A general clinical examination 
revealed delayed mental milestones and speech development. 
The patient was dysmorphic with characteristic facial features, 
including a long face, sparse outer third of the eyebrows, long 
lashes, hypertelorism, down slanting palpebral fissures, broad 
nose, bilateral microtia, bilateral low set ears, short neck, bilat-
eral sloping shoulder, and toenail dystrophy, but no abnormali-
ties were detected in the hands. Anthropometric measurements 
were normal according to the patient’s age (weight = 36 kg, 
height = 141 cm, and head circumference = 53 cm). Neurologi-
cal examination showed normal muscle tone and reflexes. The 
auditory brainstem response (ABR) test showed bilateral sen-
sorineural hearing loss (SNHL). Echocardiography and pelvic-
abdominal ultrasound were normal. Fundoscopic and genital 
examinations also revealed normal findings.

Molecular Results

A homozygous variant was identified in PAX1, one 
base duplication of cytosine at amino acid position 405 
(NM_006192.4:c.1212dup; p.Gly405Argfs*51) in exon 
4, creating a premature stop codon and truncated protein 
at position 456 in exon 5 of the altered sequence. The 

Fig. 2   PAX1 genotypes of the included subjects: a the proband 
homozygous mutation (c.1212Cdup, p.Gly405Argfs*51) in PAX1 
gene, b heterozygous status of the revealed mutation in parents, and 
c wild-type sequence

Table 1   The novel-detected variant in the studied proband

Gene Variant Zygosity Associated 
phenotype

Mode of 
inheritance

ACMG 
classification

In silico 
predictions

PhyloP 100 
score

PhastCons 100 
score

PAX1
Exon 4/5

NM_006192.4:c.1212dup
(p.Gly405Argfs*51)

Homozygous OTFCS2 Autosomal 
recessive

Pathogenic Pathogenic 5.324 1.000

http://browser.1000genomes.org/index.html
http://browser.1000genomes.org/index.html
http://exac.broadinstitute.org/
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Sanger sequencing confirmed the detected homozygous 
variant in the proband and the carrier status in the par-
ents, while the healthy sibling showed wild-type alleles 
(Fig. 2). The variant has not been detected in gnomAD, 
1000 Genomes, HGMD, ClinVar, or ExAC. It has been 
classified as pathogenic according to the American College 
of Medical Genetics (ACMG) recommendations for vari-
ant classification. The variant deleterious effect has been 
also supported by several in silico prediction tools with 
relatively high conservation scores (Phylop100 = 5.324 and 
PhastCons 100 = 1.000) (Table 1).

Discussion

Embryonic development requires the proper regulation of vari-
ous transcription factors, whose dysfunctional activity could 
lead to serious congenital malformations (Wu et al. 2022). 
PAX1 encodes a transcription factor protein that plays an 
essential role in different biological processes. It is especially 
expressed in embryogenesis during skeletal and pharyngeal 
pouch development, which gives rise to the thymus, tonsils, 
thyroid gland, and parathyroid glands (Thompson et al. 2021). 
Importantly, mouse point mutations in the paired-box domain 
of PAX1 showed a dramatic decrease in protein DNA-binding 
affinity, leading to skeletal deformities. Further studies declared 
that PAX1 deficiency is correlated with moderate thymic hypo-
plasia in mice, which is more exacerbated when it is accompa-
nied by Hoxa3 haploinsufficiency (Su et al. 2001).

Human biallelic PAX1 mutation is responsible for 
OTFCS2 disorder, while SCID is a variable aspect among 
the reported patients (Pohl et al. 2013; Yamazaki et al. 
2020). To date, fourteen OTFCS2 cases from six unre-
lated families have been reported worldwide (Table 2) 
(Fig. 3). Four of these families were descendants from 
Middle Eastern countries.

In 4 out of the 6 previously reported families, OTFCS2 was 
associated with the T− B+ NK+ SCID phenotype related to an 
underdeveloped or absent thymus. These cases had an Omenn 
syndrome-like phenotype, eosinophilia, and erythroderma as 
well as severe bacterial infections in their early life. They failed 
to achieve T-cell reconstitution after allogeneic hematopoietic 
stem cell (HPS) transplantation, leading to early death, postu-
lating thymus transplantation as more appropriate management 
for OTFCS2 patients with SCID (Yamazaki et al. 2020).

Alternatively, patients of the other 2 families (n = 6) were 
reported to be free of SCID with no history of immunodefi-
ciency (Pohl et al. 2013; Patil et al. 2018). Consistently, nei-
ther recurrent infections nor a history of SCID manifested in 
our proband (13 years old). Moreover, the patient revealed a 
normal complete blood picture, where both WBC and lym-
phocyte counts were within the normal ranges (5700 and 1208 
per cubic millimeter, respectively). Normally, T cells comprise N
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70% of the circulating lymphocytes, so the decreased number 
of T cells in children with SCID usually leads to lymphopenia 
(Rivers and Gaspar 2015). Notably, the current patient has a 
reduced eosinophil count (46 per cubic millimeter), in contrast 
to eosinophilia reported in the T− B+ NK+ SCID phenotype.

In the current study, whole exome sequencing revealed a 
novel homozygous variant (NM_006192.4:c.1212dup) creat-
ing a premature stop codon in the last exon. When translation 
terminates either in the last exon or near the last exon–exon 
junction in the penultimate exon, mRNA avoids nonsense-
mediated decay (NMD), possibly due to the removal of the 
exon junction complex (EJC) from the last exon junction 
(Embree et al. 2022). Therefore, residual protein activity 
might be attained in the reported patient associated with 
proper immune functioning. Hypofunctional PAX1 protein 
may be sufficient to stimulate the growth of the thymic epi-
thelial lining from the third pharyngeal pouch. This might 
explain why some gene mutations might not be associated 
with congenital athymia. Therefore, we hypothesize that 
the activity of the mutant protein varies according to the 
variant type and location, which mediates whether SCID is 
progressed in OTFCS2 patients or not. This finding could be 
supported as the immune activity was similar among patients 
derived from the same family.

Conclusion

PAX1 mutations are generally associated with skeletal deformi-
ties that are highly comparable among all reported patients. 
However, the SCID is a variable aspect, where the hypo-
functional PAX1 protein might be adequate to drive thymus 
development and activity. Molecular studies on the effects of 
various PAX1 variations on thymus tissue would provide use-
ful insights into the disease genotype–phenotype correlation.
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tide domain (OP). Positions of 
amino acids (aa) and locations 
of the identified PAX1 variants 
related to OTFCS2 are indicated 
above
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