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Abstract
In the senescence-accelerated mouse prone 8 (SAMP8) mouse model, oxidative stress leads to premature senescence and 
age-related hearing impairment (ARHI). CMS121 inhibits oxytosis/ferroptosis by targeting fatty acid synthase. The aim of 
our study was to determine whether CMS121 is protective against ARHI in SAMP8 mice. Auditory brainstem responses 
(ABRs) were used to assess baseline hearing in sixteen 4-week-old female SAMP8 mice, which were divided into two 
cohorts. The control group was fed a vehicle diet, while the experimental group was fed a diet containing CMS121. ABRs 
were measured until 13 weeks of age. Cochlear immunohistochemistry was performed to analyze the number of paired 
ribbon-receptor synapses per inner hair cell (IHC). Descriptive statistics are provided with mean ± SEM. Two-sample t-tests 
were performed to compare hearing thresholds and paired synapse count across the two groups, with alpha = 0.05. Baseline 
hearing thresholds in the control group were statistically similar to those of the CMS121 group. At 13 weeks of age, the 
control group had significantly worse hearing thresholds at 12 kHz (56.5 vs. 39.8, p = 0.044) and 16 kHz (64.8 vs. 43.8, 
p = 0.040) compared to the CMS121 group. Immunohistochemistry showed a significantly lower synapse count per IHC in 
the control group (15.7) compared to the CMS121 group (18.4), p = 0.014. Our study shows a significant reduction in ABR 
threshold shifts and increased preservation of IHC ribbon synapses in the mid-range frequencies among mice treated with 
CMS121 compared to untreated mice.
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Introduction

Age-related hearing impairment (ARHI) is the most com-
mon cause of hearing loss. It has been shown to be associ-
ated with cognitive decline, dementia, and depression and 
results in an estimated annual economic burden of over $3 
billion in medical expenditures (Deal et al. 2017, 2018; Lin 

and Albert 2014). Although the use of hearing aids and/or 
cochlear implants may improve these associated conditions, 
ARHI remains significantly undertreated, and to date, there 
are no targeted therapies (Deal et al. 2018).

SAMP8 Mouse Model

Laboratory mouse models are invaluable resources for hear-
ing research (Ohlemiller et al. 2016), as mouse and human 
ears are functionally and genetically homologous. As age 
is the greatest risk factor for hearing loss, mouse models 
of aging such as the senescence-accelerated mouse prone 
(SAMP) strains, which were derived from AKR/J mice and 
selected for senescence acceleration (Takeda et al. 1981), are 
excellent resources for the study of ARHI.

Specifically, the senescence-accelerated mouse prone 8 
(SAMP8) strain has been shown to develop premature ARHI 
(Menardo et al. 2012; Peixoto Pinheiro et al. 2021) and 
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exhibit early increased oxidative stress (Benkafadar et al. 
2019), which leads to chronic inflammation and the trigger-
ing of cell death, resulting in premature ARHI and senes-
cence (Menardo et al. 2012). Functional studies using audi-
tory brainstem response (ABR) have shown SAMP8 mice 
to be a fast and robust model for the study of aging-related 
diseases such as ARHI (Marie et al. 2017), and thus, this 
mouse model provides opportunities to investigate potential 
ARHI drug candidates.

The Oxytosis/Ferroptosis Pathway and CMS121

Given the common cellular pathways leading to age-related 
dysfunction in the brain and cochlea, there is a significant 
precedent to study compounds for their ability to not only 
improve cognitive function but also attenuate ARHI. For 
example, EUK-207, a synthetic superoxide dismutase/cata-
lase mimetic which suppresses oxidative stress, has been 
shown to both decrease age-related cognitive impairment in 
C57BL/6N mice (Liu et al. 2003; Clausen et al. 2010) and 
slow down ARHI in SAMP8 mice (Benkafadar et al. 2019). 
N-acetylcysteine (NAC) is another antioxidant which has 
been associated with improved memory performance as well 
as improved hearing in SAMP8 mice (Marie et al. 2018).

In the study of neuronal cell death pathways and their 
relationships with age-related neurological disease, the oxy-
tosis/ferroptosis pathway, a regulated cell-death pathway 
involving glutathione depletion, lipoxygenase activation, 
reactive oxygen species accumulation, and mitochondrial 
and calcium dysregulation, has emerged as a potential key 
driver of pathology in neurodegenerative diseases (Lewerenz 
et al. 2018; Maher et al. 2020). Although oxytosis/ferropto-
sis has not been widely studied in the field of hearing loss, 
this pathway has been associated with neurodegeneration of 
the auditory cortex in ARHI (Chen et al. 2020).

As glutathione depletion is a key step in the oxytosis/
ferroptosis pathway, Maher et al. (2020) identified the fla-
vonol fisetin as a compound of interest in the study of neu-
rodegenerative diseases due to its ability to maintain glu-
tathione levels in the presence of oxidative stress (Ishige 
et al. 2001; Maher 2009). Importantly, fisetin has been 
shown to enhance memory in normal animals (Maher et al. 
2006), APPswe/PS1dE9 transgenic AD mice (Currais et al. 
2014), and SAMP8 mice (Currais et al. 2018).

Further pharmacokinetic studies into fisetin derivatives 
revealed CMS121 as a promising candidate with enhanced 
neuroprotective activity and good oral bioavailability 
(Chiruta et al. 2012). CMS121 reduces lipid peroxidation 
through activation of AMPK and inhibition of fatty acid 
synthase. It has since been shown to reduce metabolic and 
gene transcription markers of aging in SAMP8 mouse brains 
(Currais et al. 2019) and reduce neuroinflammation and cog-
nitive decline in APPswe/PS1dE9 transgenic AD mice (Ates 

et al. 2020). Given the potent neuroprotective effects of 
CMS121 in SAMP8 mice in the context of aging, we hypoth-
esized that it would likewise be protective against ARHI in 
SAMP8 mice. In this study, we investigated the changes in 
ABR thresholds and suprathreshold wave I amplitudes in 
SAMP8 mice treated with CMS121 compared to untreated 
SAMP8 mice. As disruption in ribbon synapses between 
inner hair cells (IHCs) and auditory nerve fibers (ANFs) is 
an early pathological change in ARHI (Xiong et al. 2020), 
we also compared ribbon-receptor synapse counts between 
treated and untreated groups.

Materials and Methods

Experimental Design

Animals

The SAMP8 line was originally acquired from Harlan Labo-
ratories (UK) and subsequently bred and housed at the Salk 
Institute in accordance with the US Public Health Service 
Guide for Care and Use of Laboratory Animals and proto-
cols approved by The Institutional Care and Use Committee 
(IACUC) at the Salk Institute. ABR testing and subsequent 
cochlear harvesting were performed on the SAMP8 mice in 
accordance with protocols approved by the IACUC at the 
University of California, San Diego.

The experimental design consisted of sixteen SAMP8 
mice divided into two cohorts of eight mice. Both cohorts 
underwent baseline ABR testing at the age of 4 weeks. The 
control group was then fed a vehicle diet (LabDiet 5015, 
TestDiet, Richmond, IN), while the experimental group was 
fed a diet with CMS121 (LabDiet 5015 + 200 ppm CMS121, 
TestDiet, Richmond, IN) (Chiruta et al. 2012). This dose of 
200 ppm correlates to about 17 mg/kg/day and was chosen 
because it had previously been shown to reduce cognitive 
decline in SAMP8 mice (Currais et al. 2019) as well as APP-
swe/PS1dE9 transgenic AD Mice (Ates et al. 2020) with no 
indications of any adverse effects, even after 4 months of 
treatment. ABR measurements were then repeated at 7, 10, 
and 13 weeks of age.

Auditory Brainstem Response (ABR)

All ABR testing was performed on mice under intraperito-
neal anesthesia (ketamine 80–100 mg/kg body weight and 
xylazine 10 mg/kg body weight), and all efforts were made 
to minimize suffering. A thermocouple rectal probe was 
inserted, and mouse body temperature was maintained via 
a TCAT-2DF temperature controller and the HP-4 M heat-
ing plate (Physitemp Instruments Inc., Clifton, NJ). Mice 
recovered from anesthesia on a heating pad.
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ABR testing was performed inside a MAC-1 sound-proof 
chamber designed by Industrial Acoustics (IAC, Bronx, NY) 
to eliminate environmental and electrical noise. Auditory 
stimuli were generated with a data acquisition board from 
National Instruments (National Instruments Corporation, 
Austin, TX) and were delivered using an Intelligent Hear-
ing Systems speaker (Intelligent Hearing Systems, Miami, 
FL) attached to a 0.8 cm long tube that was inserted into the 
ear canal. Sound pressure was measured through the use 
of a condenser microphone. Stainless steel electrodes were 
placed subcutaneously at the vertex of the head and the right 
mastoid, with a ground electrode at the base of the tail.

Auditory signals were presented to the right ear as tone 
pips with a rise and fall time of 0.5 ms and total duration of 
5 ms at 4, 8, 12, 16, 24, and 32 kHz frequencies. Tone pips 
were delivered below threshold and increased in 5 dB incre-
ments until the maximum volume of 100 dB was reached. 
Signals were presented at a rate of 30/second. Signals were 
then sent to an amplifier and then to a sound transducer from 
Intelligent Hearing Systems. Physiologic responses were 
recorded at a 20,000 Hz sampling frequency and sent to an 
8 channel 150 gain AC/DC headbox and then onto a second-
ary Synamps signal amplifier of 2500 gain before analysis. 
Responses were bandpass filtered between 0.3 and 3 kHz. 
For each stimulus intensity, 512 waveforms were averaged. 
Hearing threshold was determined by visual inspection of 
ABR waveforms and defined by the minimum intensity at 
which a wave I complex was distinguishable. Suprathresh-
old Wave I amplitudes were measured from peak to follow-
ing trough at 80 dB SPL for each mouse. For each mouse, 
only the right ear was tested, as the dosage of anesthesia 
given only provided sedation for the length of time required 
to test one ear, and repeated dosage was avoided to reduce 
morbidity/mortality.

Cochlear Whole Mount Immunolabeling

Following the final round of ABR measurements, the anes-
thetized mice were intracardially perfused and their har-
vested cochleae were post-fixed with 4% paraformaldehyde 
for 1 h for whole-mount functional synapses analysis. Fixed 
samples were rinsed extensively in phosphate-buffered 
saline (PBS) and dissected under a microscope; the Organ 
of Corti from each cochlea was isolated and divided into 
apical, middle, and basal segments.

The specimens were thoroughly washed with PBS and 
blocked with 10% goat serum for 1 h at room temperature. 
Tissues were then incubated at 37 °C with the following 
primary antibodies: monoclonal mouse anti-carboxyl-ter-
minal binding protein 2 (CtBP2) IgG1 at 1:200 (612,044; 
BD Biosciences), monoclonal mouse anti-GluR2 IgG2a at 
1:1000 (MAB397; Millipore), and polyclonal rabbit anti-
myosin VIIa at 1:200 (25–6790; Proteus Biosciences). The 

following day, after further PBS washes, the tissues were 
incubated with appropriate conjugated secondary antibod-
ies at a concentration of 1:1000 for 1 h in darkness at room 
temperature. The samples were then thoroughly washed one 
final time and mounted on slides using ProLong Glass anti-
fade mount and left to dry for at least 24 h prior to image 
acquisition.

Frequency regions corresponding to 16 kHz were located 
based on the place-frequency map from Müller et al. (2005). 
The immunofluorescence-labeled whole-mount segments 
were then imaged on a Zeiss 880 LSM Airyscan confocal 
microscope (Carl Zeiss, Oberkochen, Germany). Images for 
synapse quantification were acquired with a Plan-Apochro-
mat 63x/1.4 Oil DIC M27 objective, with 42.5 nm X–Y 
pixel size and 185 nm Z-step size; laser powers used were 
HeNe633 (49.8 uW), DPSS 561–10 (268.83 uW), Diode 
405–30 (122.49 uW), and ArgonRemote (82.47 uW). Images 
for hair cell counts were acquired with a Plan-Apochromat 
10x/0.45 M27 objective, with 171.6 nm X–Y pixel size and 
695 nm Z-step size; laser powers used were HeNe633 (49.8 
uW), DPSS 561–10 (268.83 uW), Diode 405–30 (122.49 
uW), and ArgonRemote (76.69 uW). After acquisition, the 
images were Airyscan processed using automatic default set-
tings, and the number of punctae corresponding to synaptic 
ribbons and glutamate receptors per four inner hair cells 
(IHCs) were blindly counted to determine average number 
of functional synapses per IHC for each mouse.

Statistical Analysis

Descriptive statistics are provided with mean ± SEM (stand-
ard error of the mean). Welch’s t-tests were performed to 
compare hearing thresholds, wave I amplitudes, and paired 
synapse counts across the two groups, with alpha = 0.05. 
Statistical analysis was performed using the R environment 
for statistical computing (R Core Team 2021).

Results

ABR thresholds were examined at 4, 8, 12, 16, 24, and 
32 kHz. Baseline hearing thresholds (pre-treatment) were 
obtained for eight 4-week-old mice assigned to the con-
trol group (n = 8) and eight 4-week-old mice assigned to 
the CMS121 group (n = 8). Following the first ABR meas-
urement, two of the mice from the control group died. We 
determined that the average baseline thresholds among the 
remaining six mice were not significantly different from that 
of the original eight mice in the control group.

Baseline hearing thresholds of the mice assigned to 
the control group (n = 6) were similar compared to those 
assigned to the CMS121 group (n = 8) at 4 weeks of age 
(Fig. 1A). There was no significant difference in ABR 
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thresholds at any frequency between the control group and 
CMS121 group at 7 and 10 weeks of age (Fig. 1B, C) 
although there was an age-dependent trend towards higher 
hearing thresholds in the control group. At 13 weeks, the 
control group had significantly higher hearing thresholds  
compared to the CMS121 group at 12 kHz (56.5 vs. 39.8, 
t(8.7) = −2.35, p = 0.045) and 16  kHz (64.8 vs. 43.8, 
t(8.4) = −2.45, p = 0.039) (Fig. 1D).

We then evaluated ABR waveforms at 80 dB sound 
pressure level (SPL) across all mice at 13 weeks of age 
(when there was a significant difference in hearing thresh-
olds) by measuring the wave I amplitude (peak to fol-
lowing trough) for each mouse. On average, the wave I 
amplitudes (mean (SD)) across all six frequencies were 
not significantly different between the mice in the control 
group vs. the CMS121 group: 0.06 (0.10) vs. 0.08 (0.07) 
at 4 kHz, p = 0.67; 0.22 (0.26) vs. 0.28 (0.19) at 8 kHz, 
p = 0.61; 0.33 (0.26) vs. 0.49 (0.16) at 12 kHz, p = 0.18; 
0.23 (0.21) vs. 0.35 (0.23) at 16 kHz, p = 0.34; 0.37 (0.13) 
vs. 0.43 (0.15) at 24 kHz, p = 0.39; 0.30 (0.12) vs. 0.32 
(0.15) P at 32 kHz, p = 0.83 (Fig. 2). Representative power 
analysis of the 16 kHz data (pooled SD = 0.22) shows that 
53 mice per group would be needed to detect 0.12 wave 1 

amplitude difference between groups using alpha = 0.05 
and desired power = 0.80.

At each ABR testing timepoint, mouse weights were also 
collected. There was no significant difference between the 
control and CMS121 groups’ baseline weights at 4 weeks 
of age (17.2 vs. 18.4 g, p = 0.19). At 13 weeks, the con-
trol group weight was significantly less compared to the 
CMS121 group (24.5 vs. 28.4 g, p = 0.040) (not shown).

Representative confocal imaging of inner hair cells from 
the control group (A) and CMS121 group (B) are shown in 
Fig. 3A, B. Immunohistochemistry of cochleae from both 
conditions following the final round of ABR measurements 
showed a significantly lower synapse count per IHC in the 
untreated group (15.6) compared to the CMS121-treated 
group (18.3), p = 0.014 (Fig. 3C).

Discussion

In the USA, hearing loss is one of the key contributors to 
increases in chronic disability (Murray et al. 2013). Esti-
mates suggest that approximately two-thirds of people over 
the age of 70 in the USA experience ARHI (Bainbridge and 

Fig. 1   Auditory brainstem response (ABR) thresholds of untreated 
SAMP8 mice (black solid line, n = 6) and CMS121-treated SAMP8 
mice (green dashed line, n = 8) at 4, 8, 12, 16, 24, and 32 kHz at the 

indicated ages: 4 weeks (baseline, A), 7 weeks (B), 10 weeks (C), and 
13 weeks (D). Data are shown as mean ± SEM (standard error of the 
mean). Significance was set at *p < .05
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Wallhagen 2014). Globally, it is projected to be among the 
top ten causes of disease burden in high- and middle-income 
countries by the year 2030. Hearing loss is associated with 
numerous adverse social and health-related effects (Arlinger 
2003). In particular, hearing loss is independently associated 
with dementia (Lin et al. 2011; Lin and Albert 2014) and is 
furthermore the strongest potentially modifiable risk factor 
for developing dementia (Livingston et al. 2017).

The SAMP8 mouse model has been shown to be a robust 
model of ARHI (Marie et al. 2017), wherein oxidative stress, 
altered levels of antioxidant enzymes, and decreased activity 

of complexes I, II, and IV lead to chronic inflammation and 
triggering of cell death pathways that ultimately result in 
the degeneration of outer hair cells, spiral ganglion neu-
rons, stria vascularis, and inner hair cells, mimicking human 
ARHI (Menardo et al. 2012).

To date, there exist no pharmacologic agents approved 
for the treatment or prevention of ARHI. The fisetin deriva-
tive CMS121 is a promising drug candidate that has been 
shown to improve cognitive function in SAMP8 mice with 
symptoms of dementia (Chiruta et al. 2012; Currais et al. 
2018). Although the mechanism of action of CMS121 is 

Fig. 2   ABR waveforms at 80 dB, averaged across untreated SAMP8 
mice (black solid line, n = 6) and CMS121-treated SAMP8 mice 
(green dashed line, n = 8). Mean wave 1 amplitude for each cohort is 

indicated on each graph. Significance was set at *p < .05. There was 
no significant difference in wave 1 amplitude across the two groups at 
any frequency
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still under study, it in part shows neuroprotective activ-
ity against insults such as oxytosis/ferroptosis by partially 
inhibiting the lipid biosynthetic enzyme, fatty acid synthase, 
thereby decreasing lipid peroxidation, and protecting cells 
against increased oxidative stress and inflammation (Ates 
et al. 2020; Maher et al. 2020). It has also been shown to 
preserve brain mitochondrial gene expression via inhibition 
of acetyl-CoA carboxylase 1 (ACC1) and the maintenance 
of high levels of the central mitochondrial metabolite acetyl-
Coenzyme A (acetyl-CoA) (Currais et al. 2019). In prior 
studies, CMS121 has been shown to delay molecular mark-
ers of aging and cognitive decline in SAMP8 mice (Currais 
et al. 2019). Given that oxidative stress, lipid peroxidation, 
mitochondrial dysfunction, and cell death in the cochlea 
are also thought to play a key role in ARHI (Someya et al. 
2009; Fujimoto and Yamasoba 2014), this study is aimed 
at evaluating CMS121 as a potential drug candidate for the 
prevention of ARHI in SAMP8 mice.

CMS121‑Treated Mice Exhibited Attenuation of ARHI 
in the Mid‑Range Frequencies

Our study followed functional measurements of hearing in 
untreated SAMP8 mice versus CMS121-treated SAMP8 
mice. SAMP8 mice have been shown to develop progressive 
age-related ABR threshold increases characteristic of ARHI 
(Marie et al. 2017; Peixoto Pinheiro et al. 2021). Among the 
untreated mice in our study, we observed the expected pro-
gressive ABR threshold increases from 4 to 13 weeks of age. 

Among the CMS121-treated mice, we observed a significant 
attenuation in ARHI resulting in stable ABR thresholds from 
4 to 13 weeks. At 13 weeks of age, the CMS121-treated 
mice on average had significantly lower ABR thresholds 
in the mid-range frequencies (12 and 16 kHz) compared to 
the untreated mice, who experienced progressive threshold 
increases at these mid-range frequencies. Although differ-
ent mouse strains have been shown to exhibit different fre-
quency sensitivities to hearing loss (Zheng et al. 1999), these 
mid-frequencies are where mice are typically most sensitive 
to sound (Reynolds et al. 2010). This suggests that the ben-
efit of hearing impairment attenuation at these frequencies 
may be especially advantageous. The mechanisms underly-
ing hair cell death and synaptic ribbon loss with age are still 
poorly understood in both mice and humans. It is notable 
that ABR thresholds for 24 kHz and 32 kHz were not signifi-
cantly improved after CMS121 treatment, possibly the result 
of confounding genetic contributions from the strain-related 
hearing loss and/or additional age-related vulnerabilities of 
the basal-most cochlear regions.

CMS121‑Treated Mice Retained Higher Numbers 
of IHC/ANF Synapses

In recent years, research has suggested that auditory aging 
results not only in audiometric threshold elevations follow-
ing hair cell loss but also in “hidden” hearing loss including 
perceptual difficulties in understanding speech in complex 
sound environments in the setting of stable audiometric 

Fig. 3   Representative images of synaptic immunolabeling for the 
16  kHz cochlear region of an untreated SAMP8 mouse (A) and a 
CMS121-treated SAMP8 mouse (B). CtBP2 labeled red and GluR2 
labeled green to visualize the pre-synaptic ribbon protein and post-
synaptic glutamate receptor, respectively. Paired ribbon-receptors 
were blindly counted across four inner hair cells (IHCs) in each 

mouse to determine the average number of ribbon synapse counts per 
IHC, which was compared between the untreated SAMP8 mice (gray) 
and CMS121-treated SAMP8 mice (green). Significance was set at 
*p < .05 (C). There was a significantly lower synapse count per IHC 
in the untreated group (15.6) compared to the CMS121-treated group 
(18.3), p = 0.014
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thresholds (Liberman 2017; Liberman and Kujawa 2017). 
In ARHI, it has been shown that degeneration of cochlear 
synapses precedes both hair cell loss and threshold elevation 
(Sergeyenko et al. 2013) and that the synapses between IHCs 
and ANFs in the aging cochlea are the most vulnerable ele-
ments, not the hair cells (Kujawa and Liberman 2015). We 
examined the integrity of IHC/ANF synapses in this study 
in two ways.

Wave I Amplitude

The ABR waveform comprises several peaks and troughs 
within the first ~ 10 ms after acoustic stimulus onset (Akil 
et al. 2016; Young et al. 2021). Wave I occurs around 2 ms 
and represents the summated response from the spiral gan-
glion and auditory nerve (Akil et al. 2016). Wave I suprath-
reshold amplitudes have been associated with significant 
differences in functional synaptic ribbon counts (Boussaty 
et al. 2020). In this study, we did not observe any significant 
differences in suprathreshold wave I amplitudes between the 
CMS121-treated and untreated mice, although there were 
weak trends towards significance in the mid-range frequen-
cies which may be further developed in future studies with 
larger samples of mice. Our preliminary power analysis 
suggests that sample sizes of 50 mice per group would be 
necessary to reach significance for the wave 1 comparisons.

Synaptic Immunolabeling

At the conclusion of the ABR measurement series, we 
also directly examined functional synaptic counts (paired 
ribbon-receptors puncta) as a measurement of hidden hear-
ing loss and as another measurement of cochlear aging. We 
observed that at 13 weeks, the CMS121-treated SAMP8 
mice had higher numbers of functional synapses between 
mid-frequency IHCs compared to untreated SAMP8 mice. 
Disruptions in functional ribbon synapses has been shown to 
reduce hair cell ability to transmit signals with temporal pre-
cision (Jean et al. 2018) and thus impair the neural encoding 
of acoustic temporal cues essential for speech comprehen-
sion (Moser et al. 2013). This finding further reinforces the 
functional ABR threshold differences at 16 kHz by showing 
the disruption in ribbon synapses in aging SAMP8 mice and 
how that disruption was attenuated in SAMP8 mice treated 
with CMS121.

In concert, these findings suggest that treatment with 
CMS121 is associated not only with improvement in audio-
metric signs of hearing impairment (i.e., increased ABR 
thresholds in untreated mice) but also improvement in 
impaired ribbon synapses which may be associated with 
synaptopathy and decreased ability to comprehend auditory 
stimuli.

Limitations

Sample Size

Although our sample size was adequately powered for 
identifying differences in ABR thresholds between groups, 
we were limited in the number of available age-matched 
SAMP8 strain mice for the study so this study would still 
benefit from replication with larger numbers of animals, 
including male mice. The analysis of secondary outcomes 
such as wave I amplitude differences would yield more 
robust results if replicated with a larger sample size.

Mouse Longevity

By their nature as senescence-accelerated animals, we found 
that SAMP8 mice are less tolerant of anesthesia compared 
to other inbred models, as suggested by the two animals 
that expired prematurely following the first round of ABRs. 
While it would have been preferable to continue the experi-
ment for several more weeks, we ended the final round of 
ABRs at 13 weeks to avoid further repeated stressors. Fur-
thermore, along the same lines, we chose to start with young 
mice due to the concern that starting with older mice would 
not yield a sufficient time frame for testing given poor lon-
gevity after serial rounds of anesthesia for testing.

Mouse Weights

Although there was initially no significant difference in 
mouse weights between groups, at 13 weeks, the control 
group weighed significantly less than the group treated 
with CMS121. It is unclear to what extent this difference in 
weight is natural variance that may exist between different 
SAMP8 mice, versus an effect of CMS121 itself.

Unilateral ABRs

For each mouse, only the right ear was tested to reduce 
anesthesia-associated morbidity/mortality. Although ARHI 
often presents bilaterally, threshold shifts may not necessar-
ily be symmetric. However, we standardized by using only 
the right ear for all animals, so we do not expect this to 
influence any between-group comparisons.

Conclusion

In summary, these findings support expanding the scope of 
current research on CMS121 to further investigate the prom-
ising role of this compound as a protective agent against 
ARHI. Future studies should also consider testing CMS121 
as a treatment for ARHI after it has already occurred. 
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CMS121 is currently finishing up a phase 1 clinical trial 
for safety in healthy, young humans (NCT05318040) and 
thus is poised to be tested for efficacy in age-related human 
diseases such as ARHI.
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