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The Discovery

NAP (NAPVSIPQ) was identified by screening a cDNA ex-
pression library from neuroglial origin with antibodies pre-
pared against activity-dependent neurotrophic factor
(ADNF-14/9), which then revealed a new protein to science,
activity-dependent neuroprotective protein (ADNP) (Bassan
et al. 1999), (Zamostiano et al. 2001). NAP showed higher
in vitro and in vivo neuroprotective efficacy, compared with
ADNF-9 (Bassan et al. 1999) constituting a future drug can-
didate (AL-108, davunetide, CP201).

Mechanism of Action

Discovering neuroprotective compounds requires com-
plete understanding of the mechanism of action. Here,
from protein binding point of view, NAP interacts with
microtubules (MT). As such, ADNP, as well as NAP,
have shown MT co-localization (Divinski et al. 2004;
Furman et al. 2004; Oz et al. 2014), (Divinski et al.
2006). NAP protects against the MT-associated protein
Tau (MAPT)–related impairments in mouse models in-
cluding ADNP deficiency (Adnp+/− mice) (Vulih-
Shultzman et al. 2007), Alzheimer’s disease (AD)
tauopathy, and 3xTg-AD with human double mutant
Tau protein and additional Aβ human pathology, respec-
tively (Matsuoka et al. 2007, 2008; Shiryaev et al. 2009).
Protection against tauopathy is extended to mouse
models of Parkinson’s disease synucleinopathy (Magen

et al. 2014) and copper zinc superoxide dismutase 1,
amyotrophic lateral sclerosis (ALS) (Jouroukhin et al.
2013).

NAP protects axonal transport against MT disruption by
colchicine and stimulates axonal transport in an ALS mouse
model (Jouroukhin et al. 2013) and in a Drosophila model of
tauopathy in which axonal transport defects are prominent
(Quraishe et al. 2013). NAP has also been identified as a
neurotrophic factor, stimulating neurite outgrowth (Smith-
Swintosky et al. 2005; Gozes and Divinski 2007; Pascual
and Guerri 2007) and synapse formation (Hacohen-Kleiman
et al. 2018; Sragovich et al. 2019).

Originally, tubulin, the structural subunit of MTs (e.g.,
Gozes and Littauer 1978; Gozes and Sweadner 1981; Gozes
and Barnstable 1982), was suggested as a NAP-binding li-
gand, since tubulin in brain extracts binds to NAP-affinity
columns (Divinski et al. 2004). Furthermore, NAP protects
MTs against degradation induced by MT disrupting agents
(Divinski et al. 2004, 2006; Gozes and Divinski 2007;
Zemlyak et al. 2009; Oz et al. 2012). Likewise, it has been
shown that NAP affects Tau-MT interaction and prevents
zinc-related dissociation of Tau from MTs in vitro (Divinski
et al. 2004; Oz et al. 2012). Zinc was used as Tau-MT–disso-
ciating agent, as previous studies have shown that Tau
hyperphosphorylation and MT destruction are caused by zinc
toxicity (Boom et al. 2009).

Looking at sequence interactions, both NAP (NAPVSIPQ)
and the previously described ADNP-9 (SALLRSIPA) show
neuroprotective activities and share a SIP motif that is a var-
iation of the SxIP domain, providing direct interaction with
MT end-binding proteins (EBs) (Honnappa et al. 2009; Oz
et al. 2014; Gozes et al. 2016; Quraishe et al. 2016). EBs,
referred to as part of the MT plus-end tracking protein
(+TIPs) family, decorate polymerized MT plus-ends
(Seetapun et al. 2012) and can directly affect MT dynamics
(Mohan et al. 2013). There are three mammalian end-binding
proteins: EB1, EB2, and EB3 (Gouveia and Akhmanova
2010). EB1 and EB3 proteins generate homo- and heterodi-
mers, an essential feature required for the plus-end tracking
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behavior of the EBs (Sen et al. 2013). It has been further found
that Tau directly associates with EB1 and EB3 and modulates
the localization of these proteins on the MTs (Sayas et al.
2015). Our initial studies have shown a direct interaction of
NAP and ADNP with the EB1 and the EB3 proteins (Oz et al.
2014) and recruitment of +TIPs to the MT growing end (Oz
et al. 2014; Amram et al. 2016).

Through EB1/EB3 interactions, ADNP and NAP have an
impact on MT dynamics and significantly enhance the elon-
gation of MT growing ends (Ivashko-Pachima et al. 2017,
2019a). Regarding MT dynamicity, in a neuronal differentia-
tion cellular model, NAP impacts the alpha-tubulin
tyrosination cycle (a marker for MT dynamics), which has
been correlated with increased MT network area (reflecting
neurite outgrowth) (Oz et al. 2012). The area of dynamic MT
invasion into the neuronal growth cone periphery (reflecting
synapse plasticity and synapse formation) is also increased
following NAP treatment (Oz et al. 2012).

Tau and EB1/3 were found to be required for NAP neuro-
protective activity (Oz et al. 2014), (Ivashko-Pachima and
Gozes 2018). Furthermore, NAP modulates Tau-EB interac-
tion and recruits Tau and EBs to the MT lattice (Ivashko-
Pachima et al. 2017, 2019a). Lastly, NAP exhibits a distinc-
tive effect on Tau isoforms with 3 and 4 MT-binding sites
(Tau3R and Tau4R, respectively), attributed to a protein

region–specific Tau4R phosphorylation attenuating Tau-EB1
association (Ivashko-Pachima et al. 2019b). The molecular
mechanism of NAP activity suggests an EB-mediated Tau
involvement and a relatively reduced interaction with Tau4R
compared to Tau3R. This may explain the observed inefficacy
of NAP in the clinical study performed on progressive
supranuclear palsy (PSP) patients (mostly Tau4R
tauopathy)(Boxer et al. 2014), while the effectiveness of
NAP treatment was clinically shown in patients with prodro-
mal AD (mixed Tau3R/4R tauopathy)(Gozes et al. 2009;
Morimoto et al. 2013).

Clinically, ADNP expression has been found to be dysreg-
ulated in schizophrenia (Dresner et al. 2011; Merenlender-
Wagner et al. 2015), with NAP (davunetide) enhancing func-
tional activities in schizophrenia patients (Javitt et al. 2012;
Jarskog et al. 2013), Parkinson’s disease (PD) (Chu et al.
2016), and Alzheimer’s disease (AD)(Yang et al. 2012;
Malishkevich et al. 2016).

Importantly, ADNP was found to be mutated de novo
in an autism spectrum disorder (ASD) constituting the
ADNP syndrome (O'Roak et al. 2012; Helsmoortel et al.
2014; Gozes et al. 2015, 2017b, c; Arnett et al. 2018;
Levine et al. 2019; Van Dijck et al. 2019), with an esti-
mated prevalence of 0.17% among ASD cases, making it
a relatively frequent ASD identified gene (Helsmoortel
et al. 2014). Indeed, a recent study evaluating thousands
of ASD cases identified 102 ASD-associated genes, with
ADNP being one of the 13 lead genes (Satterstrom et al.
2020). More than 30 different mutations have been found
in the ADNP syndrome so far, which cause various man-
ifestations in disease severity (Van Dijck et al. 2019).
Even though neurodevelopmental processes have been
linked to MT dynamic instability, the direct effect of de
novo truncating mutations in ADNP on MTs is a new
topic of investigation.

Our latest results discovered somatic ADNP syndrome-
related and novel ADNP mutations in vulnerable parts of
postmortem aging and AD brains. In the olfactory bulb, more
than 100 disease-implicated genes have been found to be mu-
tated, with related functionality to cytoskeletal mechanisms,
ASD, and intellectual disability causing mutations (about 40%
each) (Ivashko-Pachima et al. 2019a). Tauopathy represents a
major hallmark of AD and related neurodegenerations (Gozes
et al. 2017a; Yang and Wang 2018). Coupled with the inter-
action of ADNP and Tau, it became apparent that it was cru-
cial to assess the direct effect of truncated forms of ADNP and
autism/AD-related mutations on the neuronal MT
cytoskeleton.

Our recent results showed that truncated ADNPs resulting
from de novo ASD- and somatic AD–related mutations
caused adverse effects on MT dynamics and MT-Tau associ-
ation, which were ameliorated by NAP (Ivashko-Pachima
et al. 2019a).

Fig. 1 Human neuroblastoma SH-SYS5 cells, a neuronal model
(ECACC, Public Health England, Porton Down, Salisbury, UK; passage
numbers from 14 to 16), were maintained in Ham’s F12: minimum es-
sential media (MEM) Eagle (1:1), 2 mM glutamine, 1% non-essential
amino acids, 15% fetal bovine serum (FBS) and 100 U/ml penicillin,
100 mg/ml streptomycin (Biological Industries, Beit Haemek, Israel).
SH-SYS5 cells were plated on 35 mm dishes (81156, μ-Dish, Ibidi,
Martinsried, Germany) at a concentration of 12,500 cells/dish, 48 h be-
fore the experiment. In the day of live imaging, cells were treated for 4 h
with 80, 400, or 800 μM of dynasore (Abcam, ab120192) diluted in
DMSO or with an equal volume of DMSO alone (DMSO control; 1.6,
8, and 16 μL, accordingly). Dishes were incubated at 37 °C with a 5%
CO2/95% air mixture in a thermostatic chamber placed on the stage of a
Leica TCS SP5 confocal microscope (objective × 100 (PL Apo) oil im-
mersion, NA 1.4). NAP was labeled with Cy5 as before (Ivashko-
Pachima et al. 2017). Data are presented as the mean ± Stdev, n = 5 for
each group. Statistical analysis was performed by one-way ANOVA test
(Tukey post hoc test), IBM SPSS Statistics software version 23. ***
P < 0.001. a In order to test the ability of NAP to enter into cells by
endocytosis, we treated cells with increasing concentrations of the
dynamin inhibitor—dynasore (“Dynasore”) or with an equal volume of
the dynasore solvent—dimethyl sulfoxide ((“DMSO control”). NAP
tagged with fluorescent dye Cy5 (red color in the pictures) was added
to the cell culture media in a final concentration of 10−12M, 15min before
live imaging. b Enlargement of merge images from panel a, represented
DMSO control (16 μL) vs. Dynasore (800 μM). c Quantitative represen-
tation of the data—cellular intensity of the Cy5 fluorescent dye, reflecting
the amount of NAP entry into the cell. The graph shows significant
inhibition of NAP entry as a consequence of increasing concentrations
of dynasore, while cells treated with DMSO did not show significant
differences. d A cartoon of NAP cellular entry, mediated by dynamin-
dependent endocytosis
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How Does NAP Enter Cells?

As the NAP targets EB1/EB3 are intracellular proteins
(Oz et al. 2014), it is important to ascertain cellular
bioavailability. Using fluorescently labeled NAP, we
have shown rapid intracellular localization and target
engagement of NAP even at low pH and low tempera-
tures, coupled with NAP structure (NAPVSIPQ), which
resembles cellular bioavailable, membrane-permeable
peptides (Divinski et al. 2004). These results suggested
no requirement for a cell surface receptor, for cellular
internalization (Divinski et al. 2004; Oz et al. 2014;
Ivashko-Pachima et al. 2017).

Current, live cell imaging suggested NAP cellular
internalization by endocytosis (Ivashko-Pachima et al.
2017). Given the interactions of NAP-EB1/3-Tau and
the reports on Tau pathology spreading, we focused on
literature deciphering Tau cellular entry. A relatively
recent article using human stem cell-derived neurons
questioned the route of entry of monomeric and aggre-
gated Tau into neurons and discovered that both forms
of tau are efficiently taken up by human neurons by
regulated endocytosis, with regulated endocytosis being
dynamin-dependent (Evans et al. 2018).

Dynamins are fission proteins that mediate endocytic
and exocytic membrane events. Dynamin II belongs to
the dynamin family of large GTP-binding proteins.
There are three mammalian classical dynamins: dynamin
I, which is primarily expressed in brain, dynamin II
which is ubiquitously expressed, and dynamin III which
is expressed predominantly in neurons and testes.
Dynamin proteins contain a number of conserved do-
mains: a GTPase domain for GTP hydrolysis, a
pleckstrin homology (PH) domain mediating lipid bind-
ing, a GTPase effector domain (GED), a middle domain
which together with the GED domain controls self-as-
sembly, and a proline-rich domain (PRD) (Kockx et al.
2014). Dynasore, a cell-permeable inhibitor of dynamin,
inhibits the GTPase activity of dynamin as well
dynamin-regulated endocytosis, which is required for
numerous membrane fission events, including clathrin-
mediated endocytosis (Kockx et al. 2014; Preta et al.
2015).

Here, we asked if the observed internalization of NAP into
cells (Ivashko-Pachima et al. 2017) is through a dynamin-
dependent process and hence inhibited by dynasore.

Figure 1 shows that dynasore dose-dependently inhibited
fluorescent NAP (Cy5) cellular internalization, into human
neuronal-like cells, with 800 μM providing a highly signifi-
cant ~ 70% inhibition (***p < 0.001). Thus, we have now
solved the conundrum of NAP (CP201) entry into cells, pro-
viding a fast forward development path for clinical exploita-
tion, targeting first the ADNP syndrome.
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