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Abstract
The lack of a single predictive or diagnostic test in multiple sclerosis (MS) remains a major obstacle in the patient’s
care. The aim of this study was to investigate metabolic profiles, especially lipids in cerebrospinal fluid (CSF) using
1H-NMR spectroscopy and metabolomics analysis to discriminate MS patient group from the control ones. In this
study, 19 MS patients and 19 controls, without neurological problems, patients were enrolled. To obtain the CSF
metabolic profiles, NMR spectroscopy was used. Hydrophilic and hydrophobic compounds were analyzed using
univariate and multivariate supervised analysis orthogonal partial least square discriminant analysis (OPLS-DA).
Targeted OPLS-DA analysis of 32 hydrophilic and 17 hydrophobic compounds obtained 9 hydrophilic metabolites
and 8 lipid functional groups which had the highest contribution to patient’s group separation. Lower concentrations
of CSF hydrophilic and hydrophobic compounds were observed in MS patients as compared to control group.
Acetone, choline, urea, 1,3-dimethylurate, creatinine, isoleucine, myo-inositol, leucine, and 3-OH butyrate; saturated
and monounsaturated acyl groups of ω–9, ω–7, ω–6, ω–3, and fatty acid, triglycerides, 1,3-DG, 1-MG, and
unassigned component signal at 3.33 ppm were the most important signal compounds in group separation.
Analysis of metabolic profile of raw CSF and their lipid extract shows decreased levels of many compounds and
led to the conclusion that MS patients could have a disturbance in many metabolic pathways perhaps leading to the
decreased level of acetyl-CoA and/or inflammation. CSF metabolic profile analyses could be used as a fingerprint
for early MS diagnosis.
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Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease that
affects the central nervous system (CNS) characterized by
demyelination and simultaneous axonal and neuronal degen-
eration that occurs from the earliest clinical stage of the dis-
ease (Campbell et al. 2011). Although the causes of MS are
not completely known, it is notorious that this disease is char-
acterized by heterogeneous and multifaceted mechanisms in-
volving oxidative damage (Fischer et al. 2013), increased in-
flammation (Lubina-Dabrowska et al. 2017), and mitochon-
drial injury (Campbell and Mahad 2012). At the places of
damaged axons and oligodendrocytes, the changes in the in-
flammation occur which cause the formation of active and
inactive demyelinating plaques in the brain (Brosnan et al.
1996). In the demyelinating plaques, activated astrocytes, mi-
croglia, T cells, and macrophages occur which in turn secrete
pro-inflammatory factors such as cytokines (IL-6, IL-1β,
TNFα, INFγ), free oxygen radicals (ROS), and nitric oxide
(NO) (Brosnan et al. 1996; DeGroot et al. 1997). All the
above-mentioned pro-inflammatory mediators are found to
be elevated in the cerebral cortex, cerebrospinal fluid (CSF)
as well as in the serum inMS patients. In 90% of patients with
MS, local disturbances of B cells’ response elicit presence of
oligoclonal bands in CSF which have been proposed as a
helpful biomarker for MS diagnosis and evaluation of
treatment. Their presence discloses the intrathecal immuno-
globulin G (IgG) synthesis (Bo et al. 1994). However, recent
studies have indicated a large number of controversies about
the oligoclonal IgG bands’ role in MS (O'Connor et al. 2003).
Currently, diagnosis of MS is based on clinical criteria includ-
ing symptoms, magnetic resonance imaging (MRI), lumbar
puncture to identify inflammatory proteins, and excluding oth-
er disorders (Zhou et al. 2016; Hunter 2016; Raphael et al.
2015). For many patients, diagnosis takes months, and the
decision of introduction of MS therapy is delayed. The lack
of a single predictive or diagnostic test in MS remains a major
obstacle in the patient’s care. In recent years, there have been
advances in molecular biology, cellular immunology, and
Bomics^ (genomics, proteomics, metabolomics) which focus
on exploring the processes underlying disease pathogenesis to
provide a list of possible MS biomarkers (Kuhle et al. 2015;
Poddighe et al. 2017).

In the last decade, advances in high-throughput approaches
allowed development of proteomic and metabolomics studies
in evaluating the association of genetic and phenotypic vari-
ability with disease sensitivity and therapy response. These
considerations have more value in the case of MS, a multifac-
torial disease with high heterogeneity in clinical course, and
treatment response.

Metabolomics concerns the identification and quantifica-
tion of small endogenous molecules in a biological system.
Because the metabolite represents substrates and the final

products of physiological processes in a living organism,
the profiling of the metabolome in tissues and biofluids of-
fers an instantaneous molecular image of the phenotype.
Among the several analytical techniques, HPLC, high-
resolution mass spectrometry, and gas chromatography
coupled with mass spectrometry are the most commonly
used methods in the metabolomics filed (Kim et al. 2017;
Del Boccio et al. 2016; Poisson et al. 2015; Dickens et al.
2015; Cha et al. 2015; Pieragostino et al. 2018). These tech-
niques have been used to investigate MS in serum and CSF
hydrophilic and hydrophobic compounds (Bhargava and
Calabresi 2016; Cocco et al. 2016; Moussallieh et al.
2014; Reinke et al. 2014). Nuclear magnetic resonance
(NMR) spectroscopy is not often presented in CSF metabo-
lomics of MS patients. In CSF studies of most research
groups, other neurological disease (OND) patients have been
used as the control group. The participation of metabolomics
in the autoimmune process of MS has been examined in
serum, but the role of lipids, especially in combination with
amino acids, remains poorly defined. Lipids play a main
dual role in MS, both as substrates of myelin and as medi-
ators of inflammation.

The aim of this study was to investigate metabolic profiles,
especially lipids in CSF using 1H-NMR spectroscopy and
metabolomics analysis to discriminate the MS patient group
from the control ones. Our studies focused on metabolic and
lipid profiles of the same CSF sample and compared the re-
sults of MS patients to control, non-neurological problem pa-
tients. We hypothesized that disturbances in CSF metabolite
profiles reflected the myelin degradation/regeneration during
the inflammatory process of brain tissue in MS relapsing/
remitting status.

Materials and Methods

Patients

In this study, 19 patients (13 females and 6 males) with MS
according to the McDonald criteria of 2010 (Polman et al.
2011) were enrolled in the study in 2016–2017. Patients were
admitted to the department of neurology forMS diagnosis. All
patients underwent extensive neurologic evaluation; impair-
ment and disability were measured using the Expanded
Disability Status Scale (EDSS). None of them had a history
of immunomodulatory or immunosuppressive therapy. All pa-
tients had MRI to show characteristic multiple lesions in the
periventricular and subcortical white matter of the brain as
well as gadolinium enhancements, a result of active demye-
lination. We excluded patients with any other chronic dis-
eases: depression, diseases of liver, kidney, thyroid gland,
and abnormalities in blood morphology. The analysis of
CSF obtained from all the patients was done after setting the
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first diagnosis of MS. Based on the clinical data, all MS pa-
tients had an active disease status.

The control group of 19 patients (12 females and 7 males)
was set from those who underwent minor vascular surgery or
inguinal hernia repair under spinal anesthesia during the last
2 years and had not any neurological problems.

At the time of screening for trial inclusion, potential partic-
ipants received thorough written and oral information on the
purpose and duration of the study, as well as possible adverse
events, and signed the informed consent. The study was de-
signed in accordance with the Declaration of Helsinki. The
study protocol was approved by the Hospital Bioethics
Committee.

Sample Preparation and Spectra Acquisition

Two milliliters of CSF were collected from lumbar puncture
during anesthesia or clinical examination. All samples were
centrifuged at room temperature at 15,000 rpm for 5 min, and
the supernatants were frozen at − 80 °C until NMR analysis
was performed. The pH was stabilized at 7.4 ± 0.2 using HCl.
To achieve a stable lock signal, a 100 μl of D2O was added to
each sample volume. 3-Trimethylsilyl propionic acid (TSP)
with a final concentration in the sample of 1 mM was used
as an internal reference compound for the normalization of all
spectra, quantitative statistical analysis. Hydrophobic com-
pounds were prepared according to the procedure described
in our past publication (Zieminska et al. 2018).

All NMR spectra were acquired at 25 °C on a Varian Inova
400 (Varian Inc.) spectrometer. One pulse sequence was ap-
plied to hydrophilic and hydrophobic CSF compounds in 1H-
NMR examinations. Settings for each measurement were for
raw and CDCl3 samples: 512/128 transients, 12/5 s pulse rep-
etition time, respectively. Zero-filling to 16 k data points, line
broadening of 0.5, baseline and phase correction were applied
to each spectrum using software implemented in the spectrom-
eter. Signals were assigned according to our own reference
database and literature information (Lutz et al. 1998; Wevers
et al. 1995).

Data Analysis

Quantities of metabolites were expressed as relative intensity.
Spectra were both baseline and phase corrected and normal-
ized to the TSP or CDCl3 rest signal prior to statistical analy-
sis. For the statistical analysis of raw CSF samples and lipid
spectra, 32 and 18 signals of the NMR spectrum were select-
ed, respectively.

Univariate statistical analysis was performed for all data
using the Mann-Whitney test followed by Tukey correction.
A P value lower than 0.05 was considered as significant.

Multivariate statistical analysis was performed using super-
vised methods of orthogonal partial least square discriminant

analysis (OPLS-DA). In the OPLS-DA modeling, the good-
ness of fit is reported as the cumulative score across all of the
components R2cum—explained by the model and Q2cum—
predicted by the model. OPLS-DA model was considered
significant if R2cum andQ2cumwere significantly larger than
zero and was considered as good when both values were equal
or greater than 0.5 (Bylesjo et al. 2008). The variable impor-
tance in the projection (VIP) value of each variable in the
model was calculated to indicate its contribution to the classi-
fication. Those variables with VIP value greater than 1.0 were
considered significantly different, and a larger VIP value of a
variable represented a higher contribution to the discrimina-
tion between groups (Karp et al. 2005; Toczylowska et al.
2013). A receiver-operator characteristic (ROC) curve was
created by plotting the true positive rate (TPR) versus the false
positive rate (FPR = 1-TNR) at various threshold settings of
the criterion parameter. As a quantitative measure of the clas-
sification success, the area under the ROC-AUC was calculat-
ed. Multivariate analysis, OPLS-DA, was performed using the
software package SIMCA-P (Version 14, MKS Umetrics,
Sweden) (Ellis et al. 2007).

Results

The MS group of patients had an average age of 34.2 ± 9.6,
with median 2.5 years of disease (1–15 years), median EDSS
value was 1.75 (0–3.5), the median number of relapses before
admission was 1 (0–3) (Table 1). All the patients had been
diagnosed with at least one active lesion in the brain (9 out of
19) and/or in the spinal cord (12 out of 19). Routine CSF
examinations showed cytosis as well as oligoclonal IgG bands
in all patients.

The Concentrations of CSF Hydrophilic Compounds

All 32 hydrophilic compounds selected for the identification
of potential differences in biochemical composition caused by
neuronal death processes, the obtained P value for univariate
analysis, and VIP value > 1 are presented in Table 2.

The multivariate OPLS-DAmodeling was employed using
the knowledge of patient’s classification. The best OPLS-DA
model consisted of one predictive and seven orthogonal com-
ponents (R2cum = 0.948, Q2cum = 0.703). In this model,
100% of all patients were classified correctly according to
their groups (Fig. 1). The most important parameters (VIP >
1) that contributed to class separation were the NMR signals
from acetone, choline, urea, 1,3-dimethylurate, creatinine, iso-
leucine, myo-inositol, leucine, and 3-OH-butyrate. The model
was tested for validity by applying the analysis of variance to
cross-validated predictive residuals (F test, P = 0.004). In the
MS group, all metabolites had lower concentrations as com-
pared to the control group (Figs. 2 and 3). A receiver-operator
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Table 2 Direction of changes and
statistical significance of analyzed
hydrophilic compounds of CSF
fluid for MS vs control group

Compound MS vs control P value VIP value Published results

ppm Assignment

8.46 Formate ↓ 0.550

7.73 Hist ↓ 0.261

7.39 Phe ↓ 0.389

6.86 Tyr ↑ 0.872

5.76 Urea ↓ 0.006 1.57 ↓ (Sinclair et al. 2010;
Koneczny et al. 2014)

4.12 Lactate ↓ 0.457

4.07 Myo-inositol ↓ 0.015 1.13 ↓ (Sinclair et al. 2010)

4.01 Betaine ↓ 0.804

3.52 Gly ↓ 0.782

3.36 1,3 dimethylurate ↓ 0.358 1.45 ↓ (Sinclair et al. 2010)

3.31 Cysteine ↓ 0.274

3.25 Glucose ↓ 0.693

3.21 Choline ↓ 0.008 1.82 ↓ (Sinclair et al. 2010)

3.16 Citrulline ↓ 0.166

3.05 Creatinine ↓ 0.007 1.19 ↓ (Sinclair et al. 2010)

3.04 Creatine ↓ 0.140

2.68 Citrate ↓ 0.569

2.42 Gln ↓ 0.872

2.38 Pyruvate ↓ 0.550

2.28 Acetoacetate ↓ 0.530

2.11 Methionine ↓ 0.550

2.24 Acetone ↓ 0.001 2.10 ↓ (Sinclair et al. 2010)

2.13 Gln ↓ 0.362

2.03 N-acetyl NH3 group ↓ 0.942

1.93 Acetate ↓ 0.942

1.72 Lys ↓ 0.872

1.47 Ala ↓ 0.849

1.34 Lactate ↓ 0.511

1.21 3-OH-butyrate ↓ 0.157 1.12 ↓ (Sinclair et al. 2010)

1.03 Val ↓ 0.257

0.96 Ile ↓ 0.140 1.09 ↓ (Sinclair et al. 2010)

0.9 Leu ↓ 0.052 1.18 ↓ (Sinclair et al. 2010)

Table 1 Clinical parameters of
control and MS groups Parameter Control MS

N (F/M) 19 (12/7) 19 (13/6)

Age 46.2 ± 12.7 34.2 ± 9.6

EDSS value (median/min/max) – 1.75 (0–3.5)

Number of relapses (median (min–max)) – 1 (0–3)

Cytosis (number/mm3) 1.63 ± 0.33 3.74 ± 2.83*(p = 0.009)

Protein (mg%) 26.44 ± 3.97 39.12 ± 10.82* (p < 0.001)

Glucose (mg/dL) 57.89 ± 7.5 57.50 ± 11.46

*Significant differences between groups
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characteristic (ROC) generated from the ratio of the sensitivity
to 1—selectivity resulted in an area under the curve of 1.0 for
both, control and MS groups, which was the perfect classifi-
cation (Fig. 4).

The Concentration of CSF Hydrophobic Compounds

Seventeen lipid compound functional groups from proton
NMR signals are presented in Table 3 with P value of univar-
iate analysis and VIP > 1 values. Discriminant analysis,
OPLS-DA, of the lipid compound data allowed building a
model (Fig. 5). The model consisted of one predictive and
four orthogonal components (R2cum = 0.787, Q2cum =
0.528). In this model, 92% of all patients were classified cor-
rectly according to their groups (12 out of 19 in the MS group
and 18 out of 19 in the control group). The most important
parameters (VIP > 1) that contributed to class separation were
the signals from –CH3– saturated, monounsaturatedω–9 and/
or ω–7 acyl groups and fatty acid (FA) (0.86 ppm), –CH3–

unsaturated ω–6 acyl groups and FA (0.88 ppm), –CH3 un-
saturated ω–3 acyl groups and FA (0.96 ppm), –CH2–
CH=CH– acyl groups and FA (1.99 ppm), –OCO–CH2–acyl
groups in triglyceride (TG) (2.25 ppm), –OCO–H2–,–COOH–
CH2– acyl groups in 1,3-DG, 1-MG, and FA (2.35 ppm),
ROCH2–CHOH–CH2OH glyceryl group in 1-MG
(3.68 ppm) and unassigned signal at 3.33 ppm. The model
was tested for validity by applying the analysis of variance
to cross-validated predictive residuals (F test, P = 0.02). In the
MS group, all compounds had a lower concentration as com-
pared to control group except unassigned functional group
signal (singlet) at 3.68 ppm and =HC–CH2–CH=
diunsaturated ω-6 acyl groups and FA that had a higher con-
centration as compared to control group (Figs. 6 and 7). A
receiver-operator characteristic (ROC) generated from the ra-
tio of the sensitivity to 1-selectivity resulted in an area under
the curve of 0.94 for both, control and MS groups, which was
the almost perfect classification (Fig. 8).

NMR signal: s singlet, m multiplet

Fig. 1 The score plot of the two-
component OPLS-DA model for
hydrophilic compounds of NMR
data; to[1] represents within class
variation in the first orthogonal
component, whereas t[1]
represents between class variation
in the first predictive component.
Ellipse represents Hotelling T2
with 95% confidence in score
plots

Fig. 2 Score contribution for
hydrophilic compounds for MS
group versus control group. Black
color indicated metabolites with
VIP > 1

98 J Mol Neurosci (2019) 69:94–105



Discussion

In this study, investigators performed metabolic and lipids
profiling using 1H-NMR spectroscopy of CSF samples from
the early stage of MS to define the differences between MS
and control-matched subjects. This approach can detect a

number of endogenous metabolites that influence the condi-
tion to change an organism in MS. Thus, identification of the
important metabolites allows evaluation of potential pathways
characterizing an early stage of the disease. The model created
in this study revealed differences in the metabolites and lipids
of CSF in the two groups. Therefore, the authors looked at a

Fig. 4 The ROC curve of the true
positive rate (TPR) versus the
false positive rate (FPR = 1-TNR)
and ROC-AUC values for both
groups as quantitative measure of
the classification success for
hydrophilic compounds for the
OPLS-DA model; sensitivity:
100%, 95% CI = 82.35% to
100.00%; specificity: 100%, 95%
CI = 82.35% to 100.00%
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possible correlation in the metabolic profiles of hydrophilic
and hydrophobic compounds with clinical parameters to study
their relationship with pathology. The most important problem
in comparing the results of different research groups is the use
of different control groups. Most groups have used OND pa-
tients as the control group. In our study, we used non-
neurological problem patients as the control group.

By targeted analysis of OPLS-DA, 32 hydrophilic metab-
olites and 17 hydrophobic compound functional groups were
studied. Investigators obtained nine NMR signals associated
with hydrophilic metabolites and eight NMR signals

associated with lipid functional groups which had the highest
contribution to patient’s group separation.

Lower concentrations of CSF hydrophilic compounds were
observed in MS patients as compared to control group.
Univariate analysis indicated significant differences in urea,
myo-inositol, 1,3-dimethylurate, choline, creatinine, and ace-
tone concentrations while OPLS-DA indicated the low signif-
icant concentration of acetone, choline, urea, 1,3-
dimethylurate, creatinine, isoleucine, myo-inositol, leucine,
and 3-OH butyrate as in other group studies (Sinclair et al.
2010). Noga et al. (2012) have demonstrated a significant

Table 3 Direction of changes and statistical significance of analyzed hydrophobic functional groups of CSF fluid for MS vs control group

Compound MS vs control P value VIP value Publish results

ppm Functional group

6.10 Estriol (–HC(2,4)=) ↓ 0.378

5.34 –HC =CH– in FA ↓ 0.608

4.70 Unassigned 1 ↓ 0.222

4.17–4.08 ROCH2-CHOH-CH2OR′ in glyceryl group of 1,3-DG ↓ 0.457

3.68m ROCH2–CHOH–CH2O in glyceryl group of 1-MG ↓ 0.107 1.09 ↓ (Pietrocola et al. 2015)

3.68s Unassigned 2 ↑ 0.734

3.50 Pregnenolon ↓ 0.522

3.33 Unassigned 3 ↓ 0.854 1.04

2.81 =HC–CH2–CH= in acyl groups of diunsaturated ω-6 and FA ↑ 0.861

2.35 –OCO–CH2–, –COOH–CH2– in acyl groups of 1,3-DG, 1-MG and FA ↓ 0.082 1.04 ↓ (Pietrocola et al. 2015)

2.25 –OCO–CH2– in acyl groups of FA ↓ 0.243 1.34 ↓ (Pietrocola et al. 2015)

1.99 –CH2–CH=CH– in acyl groups of FA ↓ 0.492 1.08 ↓ (Pietrocola et al. 2015)

1.63 –OCO–CH2–CH2– in acyl groups of 1,3-DG, 1-MG and FA ↓ 0.249

1.24 –(CH2)n– in acyl groups of FA ↓ 0.013

0.96 –CH3 in acyl groups of unsaturated ω-3/FA ↓ 0.060 1.12 ↓ (Pietrocola et al. 2015)

0.88 –CH in acyl groups of unsaturated ω-6/FA ↓ 0.001 1.28 ↓ (Pietrocola et al. 2015)

0.86 –CH3 in acyl groups of saturated, monounsaturatedω-9 and/orω-7 and FA ↓ 0.003 1.34 ↓ (Pietrocola et al. 2015)

Fig. 5 The score plot of the two-
component OPLS-DA model for
hydrophobic compounds for
NMR data; to[1] represents
within class variation in the first
orthogonal component, whereas
t[1] represents between class
variation in the first predictive
component. Ellipse represents
Hotelling T2 with 95%
confidence in score plots
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change in amino acid metabolism in CSF during EAE. They
found the decreased level of metabolites related to pathways
including NO synthesis, energy metabolism, polyamine
synthesis, and levels of endogenous antioxidants. Sinclair
et al. (2010) have shown a similar change in the metabolite
levels in CSF as was observed in the present study. The met-
abolic changes of MS may be related to altered energy

metabolism and FA biosynthesis in the brain. Down-
regulation of citrated and acetate may support disruption of
TCA cycle through pyruvate pathway. This was confirmed by
the reduced metabolism of lipid compounds in CSF in this
study.

Acetone is an end product of ketosis, a metabolic state that
produces ketone bodies for use as another fuel for the brain.

Fig. 6 Score contribution for
hydrophobic compounds for MS
group versus control group. Black
color indicated metabolites with
VIP > 1
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Both the levels of 3-hydroxybutyrate (non-significant
P < 0.157) and acetone were altered in patients as compared
to the control subjects in this analysis. The significant decrease
of acetone in CSF might imply that the decreased flux from
acetyl-CoA into acetoacetyl-CoA resulted in lower production
of acetone or a reduced efflux through the blood-brain barrier
(BBB) and higher consumption in the brain. Interestingly, the
expression level of GULT 1, a major glucose transporter in the
BBB, is down-regulated in the brain lesion of MS patients.
Consistently, the observations for disturbed energy generation
in CNS diseases including MS have been reported: mitochon-
drial dysfunctions detected in MS lesions as well as OND
(Joseph et al. 2009; Ronowska et al. 2018).

On the analysis of lipid levels of CSF, especially saturated
and unsaturated FAs, we observed their decrease in MS pa-
tient group as compared to the control object group. FAs are
structural compounds that are components for cell membrane
building. They are synthesized from cytosol compounds and
acetyl-CoA from cytosol or mitochondria. In NMR experi-
ments, used in these studies, it is not possible to measure very
low concentrations of acetyl-CoA because it is below the sen-
sitivity level of this method. However, we can measure the
levels of compounds which are the products of cycles with
acetyl-CoA participation which is necessary to synthesize FA
and ketone bodies.We observed the decrease of FA and PUFA
levels which could be the effect of altered level of acetyl-CoA
(Pietrocola et al. 2015). In this study, we observed the de-
creased levels of ketone bodies (acetone, 3-OH butyric acid)
that are indirect metabolites of decarboxylation of acetoacetate
in the lipid degradation process. It could be the result of gly-
colysis cycle where acetyl-CoA participates. Low level of
ketone bodies inhibits dopamine secretion (Cornille et al.
2010).

In our study, we observed altered choline and urea levels in
theMS group as compared to the control group. Choline in the
brain is an essential component in cholesterol and other lipids

metabolism. The decrease of choline level influences their
metabolism, further reducing their levels, similar to what we
observed in our study. It also influences the so-called integrity
and fluidity of the cell membrane (Zhong et al. 2014). Choline
is a substrate for the synthesis of acetylcholine (ACh), excita-
tion neurotransmitter. All immune cells have receptors for
many neurotransmitters including ACh and neuropeptides.
Immune cells stimulate the immune and brain system, and
thus, disturbances in ACh influence their function. This may
result in immunological disturbances including possible auto-
immune reaction. The level of urea, the end compound of
protein degradation cycle, is decreased in neuromuscular dis-
eases, e.g., myasthenia gravis and dystrophies (Koneczny
et al. 2014).

Another low-level compound inMS group is myo-inositol.
It is partially synthesized in the brain and is an important part
of glycolipids and cell membrane building compounds. It sen-
sitizes serotonin and GABA receptors (Balla 2013).

We also observed decreased CSF creatine level in the MS
patient group. Creatine takes part in phosphocreatine metabo-
lism which in turn is the main energetic substrate for cells.
Their decrease indicates energetic disturbances in neuronal
cells. Brewer (Brewer and Wallimann 2000) demonstrated
the neuroprotective role of creatine in their studies on rat hip-
pocampus. The decrease of creatine level and thus energetic
deficiency can correlate with MS neuronal deficiencies. This
hypothesis was supported by the observed decreased levels of
two ketogenic amino acids: leucine and isoleucine.
Metabolism of ketogenic amino acids leads to the formation
of acetyl-CoA or acetoacetyl-CoA. If they will not be
completely utilized in the TCA cycle, the rest may undergo
ketogenesis.

The most relevant results of our studies were the detection
of an altered level of specific hydrophobic functional groups
in the MS group compared to the control subjects. In particu-
lar, we found a significant decrease level in the MS group of

Fig. 8 The ROC curve of the true
positive rate (TPR) versus the
false positive rate (FPR = 1-TNR)
and ROC-AUC values for both
groups as quantitative measure of
the classification success for
hydrophobic compounds for the
OPLS-DA model; sensitivity:
92.3%, 95% CI = 63.97% to
99.81%; specificity: 72%, 95%
CI = 50.61% to 87.93%
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saturated, monounsaturated acyl groups of ω–9 and/or ω–7,
ω–6,ω–3, and FA, TG, 1,3-DG, 1-MG, glycerol group in 1-
MG, and unassigned component signal at 3.33 ppm.

Pieragostino (Pieragostino et al. 2015) has analyzed the
hydrophobic metabolites ofMS and OND patients’CSF using
MALDI-TOF mass spectrometry. This method needs special
preparation of the samples (internal labeled standards) and
therefore, is more complicated and more expensive. Our re-
sults differed from those obtained by the Pieragostino study
because different control groups were examined (healthy vs.
OND). The most relevant result from their studies is the al-
tered levels of specific phospholipids in the MS group com-
pared to the OND group. In particular, they reported a signif-
icantly increased level of lysophosphocholine (LPC) (18:1),
(18:0), lysophosphoinositol (16:0) in the MS patients. LPCs
are well correlated to Link index (also known as IgG Index)
which is the parameter indicating high levels of intrathecal
IgG synthesis. Intrathecal IgG synthesis is a common event
in part of MS. In our patients, IgG index was elevated in CSF.
We also obtained the down expression of lipid compounds in
the CSF of MS group, a cerebral component suggestive for a
possible function of these lipids as candidate biomarkers,
reflecting intrathecal synthesis IgG and CNS inflammation.

Clinical and MRI studies indicate that axonal damage pre-
dominantly appears in the early MS and develops as a conse-
quence of inflammatory process (Bendfeldt et al. 2009), lead-
ing to the most numerous (~ 85% of cases) relapsing-remitting
form of the disease (Weiner 2008). Elevated levels of afore-
mentioned pro-inflammatory cytokines and lipid peroxidation
in the plasma, cerebrospinal cord, and brain cortex have been
found in the patients with MS (Gonsette 2008; Keller and
Mattson 1998); a positive correlation has been found between
their levels and disease’s activity and severity (Sharief 1991;
Navikas and Link 1996). Gonzalo et al. (Gonzalo et al. 2012)
performed targeted lipidome analyses comprising several ox-
idized phospholipids, lipid peroxidation-derived aldehydes,
oxysterols, and oxidized lipids. The results confirmed the
presence of aldehyde in agreement with data by Negre-
Salvayre (Negre-Salvayre et al. 2010) in human MS show-
ing increased lipid peroxidation in serum. Lipid peroxida-
tion can exert part of its pathological properties through
modification of the protein. Lipids are the major species
of cell membranes and removal of one of the FA results in
the increase of lysophospholipids (LPL) usually through
the enzymatic action of a phospholipase A2 (PLA2).
Several studies reported the altered levels of phospholipase
(PL) in neurodegenerative diseases concluding that secre-
tary PLA2 activity in CSF might serve as a valuable bio-
marker of inflammation as demonstrated in Alzheimer’s
disease (Chalbot et al. 2009). In EAE model of SM, the
blockage of PLA2 is highly efficacious in the amelioration
of the disease courses probably by reducing T cell prolif-
eration, pro-inflammatory cytokine production preventing

activation of CNS microglia, and increasing myelin protein
levels (Siritho and Freedman 2009).

Conclusion

The use of 1H-NMR spectroscopy was driven to obtain many
compounds in CSF and to be able to carry out the identifica-
tion of unknown compounds as well as to apply an easy robust
methodology to be transferred into clinical practice. Analysis
of metabolic profile of raw CSF and their lipid extract showed
decreased levels of many compounds and led to the conclu-
sion thatMS patients could have a disturbance in FA synthesis
as well as in other metabolic pathways perhaps leading to the
decreased levels of acetyl-CoA. This, in turn, could reflect the
disturbance processes of myelin regeneration and influence
the neurotransmission processes (excitation/inhibition) due
to energetic disturbances. Changes in the concentration of
the compounds were detected using NMR-based metabolite
profiles, and direction of those changes was in agreement with
results of studies done by other research groups. Therefore,
CSF metabolite profile analyses could be used as a fingerprint
for early MS diagnosis.
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