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Abstract
Frontotemporal dementia (FTD) and Alzheimer’s disease (AD) are the two common forms of dementia. FTD syndromes
are characterized by lobar atrophy (frontotemporal lobar degeneration or FTLD) and the presence of either cellular
TDP43 (FTLD-TDP), tau (FTLD-tau), or FUS aggregates, while extracellular β-amyloid plaques and
hyperphosphorylated tau tangles develop in AD. Oxidative stress can induce these pathological modifications in disease
models, and is thought to play a role in these syndromes. Apolipoprotein D (apoD) is a glial-expressed lipocalin known
to protect against oxidative stress, with increased levels in AD, supporting a protective role. The expression of apoD has
not been studied in FTLD. This study assesses apoD expression in FTLD-TDP and FTLD-tau in comparison to AD and
controls. It also analyzes the effect of apoD on TARDBP (TDP43 gene) and β-amyloid precursor protein (APP). The
expression of apoD was analyzed by Western blotting in FTLD-TDP, FTLD-tau, AD, and control post-mortem brain
tissue. An apoD-overexpressing cell model was used to study the impact of increased apoD on APP and TARDBP
expression. We confirm that apoD expression was increased in AD but surprisingly it was not affected in either of
the two main pathological forms of FTLD. Under oxidative stress conditions, apoD had no effect on TDP43 expression
but it did decrease APP expression. This suggests that apoD does not act as a neuroprotective factor in FTLD in the
same way as in AD. This could contribute to the more rapid degeneration observed in FTLD.
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Abbreviations
apoD Apolipoprotein D
FTLD Frontotemporal lobar degeneration
AD Alzheimer’s disease
PD Parkinson’s disease
PSP Progressive supranuclear palsy
CBD Corticobasal degeneration

GGT Globular glial taupathies
TBS Tris-buffered saline
FBS Fetal bovine serum

Introduction

Apolipoprotein D (apoD) is a 29 kDa highly conserved
lipocalin known for its antioxidant and neuroprotective func-
tions (He et al. 2009; Tsukamoto et al. 2013; Dassati et al.
2014). ApoD is known to be upregulated in astrocytes during
aging (Loerch et al. 2008; de Magalhaes et al. 2009) and in
various neurological disorders including schizophrenia, bipo-
lar disorder (Thomas et al. 2001; Mahadik et al. 2002), stroke
(Rassart et al. 2000), Alzheimer’s disease (AD) (Terrisse et al.
1998; Belloir et al. 2001; Glockner and Ohm 2003; Bhatia
et al. 2013), Parkinson’s disease (PD) (Ordonez et al. 2006),
and Niemann-Pick’s C disease (Suresh et al. 1998). ApoD
knockout mouse models have provided evidence that the loss
of apoD is associated with motor and cognitive deficits
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(Ganfornina et al. 2008; Bajo-Grañeras et al. 2011a). The loss
of apoD is known to disrupt proteostasis machinery and in-
duce oxidative and inflammatory damage (Thomas et al.
2003; Sanchez et al. 2015). It has been demonstrated that
apoD helps to maintain neuronal homeostasis by combatting
lipid peroxidation (Ganfornina et al. 2008).

Frontotemporal lobar degeneration (FTLD) and AD are
two major forms of dementia. Neuropathologically, TDP43
and tau protein aggregates are present in the majority of
FTLD cases (IR and Manuela 2016) while extracellular β-
amyloid plaques produced from amyloid precursor protein
(APP) and intracellular hyperphosphorylated tau tangles are
the hallmarks of AD (Bloom 2014). Oxidative stress is one of
the major factors associated with both of these pathological
forms of dementia. Oxidative stress response genes are dys-
regulated in both TDP43-overexpressing mice (Tsuiji et al.
2017) and human brain post-mortem tissues with FTLD pa-
thology (Schweitzer et al. 2006). Moreover, under induced
oxidative stress, cellular TDP43 undergoes phosphorylation
and C terminal fragmentation, characteristic of pathological
TDP43 in FTLD (Iguchi et al. 2012). Similarly, increased
levels of lipid and protein oxidation products are evident in
AD (Lyras et al. 1997; Montine et al. 2005) and these are
known to modulate β-amyloid production (Tong et al. 2005;
Tamagno et al. 2008; Tan et al. 2013a).

ApoD is upregulated in brain astrocytes and CSF of AD
patients (Terrisse et al. 1998; Belloir et al. 2001; Bhatia et al.
2013) and is known to colocalize with β-amyloid plaques
(Desai et al. 2005). Studies have demonstrated that the apoD
homolog in Drosophila (GLaz) protects against β-amyloid-
induced cytotoxicity (Muffat et al. 2008). In addition, trans-
genic AD mouse models with loss of apoD function exhibit
twice the amount of hippocampal β-amyloid plaque load
along with alterations in β-amyloid-generating proteins (Li
et al. 2015). Increasing evidence suggests the antioxidant
and anti-inflammatory role of apoD (Ganfornina et al. 2008;
Bajo-Grañeras et al. 2011b; Dassati et al. 2014). We therefore
hypothesized that apoD plays a neuroprotective role in FTLD;
and to test our hypothesis, we analyzed the expression of
apoD in FTLD and compared that to AD and controls. As
oxidative stress is known to induce pathological modifications
in TDP43 and APP, we also assessed the effect of apoD on
APP and TARDBP (TAR DNA–binding protein) gene expres-
sion, responsible for pathological aggregates in AD and FTLD
respectively.

Our data suggests that unlike AD, apoD is not increased
in FTLD. The cell models suggest that under oxidative
stress, apoD protects against increased expression of APP
while it has no effect on TARDBP, which is responsible for
TDP43 expression. Therefore, this suggests that apoD ex-
pression is differentially regulated in FTLD and AD and
that it is possible that apoD is unable to protect against
oxidative stress in FTLD.

Material and Methods

Human Brain Tissue

Frozen post-mortem brain tissue was obtained with approval
from Sydney Brain Bank and NSW Brain Tissue Resource
Centre as part of the NSW Brain Banks. Brain tissue from
the inferior temporal and superior frontal cortex from 18
FTLD cases, 7 AD cases (5 for inferior temporal region),
and 11 controls, all without other neuropathological abnor-
malities, were used in this study. In particular, both the
FTLD and control cases were selected for having no or low
AD neuropathologic change. Ten FTLD cases had TDP-43
aggregates (FTLD-TDP) with Type A, B, and C pathologies
(Tan et al. 2013b), and 8 FTLD cases had tau aggregates
(FTLD-tau) with 4R subtype pathologies (Kovacs 2018).
Demographic information for each group is provided in
Table 1. Ethics approval for the study was from the
University of New South Wales Human Research Ethics
Committee.

Sample Preparation

Tris-buffered saline (TBS), SDS-soluble and SDS-insoluble
proteins were serially extracted from 100 mg of fresh-frozen
tissue from each brain region, as previously described (Bhatia
et al. 2013; Murphy et al. 2013). Briefly, tissue was homoge-
nized in ten volumes of TBS homogenization buffer (20 mM
Tris, 150 mM NaCl, pH 7.4, 5 mM EDTA, 0.02% sodium
azide) containing protease inhibitor cocktail (Roche) using
Qiagen tissue lyser (3 × 30 sec, 30 Hz cycles), followed by
centrifugation at 100,000×g for 1 h at 4 °C, with supernatant
collected as the TBS-soluble fraction containing cytosolic pro-
teins. The pellet was resuspended in SDS solubilization buffer
(TBS homogenization buffer containing 5% SDS) using 3 ×
30 sec, 30 Hz cycles with Qiagen Tissue Lyser, and centri-
fuged at 100,000×g for 30 min at 25 °C, with supernatant
collected as the SDS-soluble fraction containing membrane-
associated proteins. The pellet obtained by SDS fraction was
homogenized in 5 M guanidine hydrochloride (gHCl) and
mixed in a mixer at room temperature for 4 h. The lysate
was further centrifuged at 100,000×g for 30min at 25 °C, with
supernatant collected as the SDS-insoluble (gHCl soluble)
fraction. Protein concentration was measured using a
bicinchoninic acid assay (Pierce BCA Protein Assay Kit,
Thermo Scientific), according to the manufacturer’s instruc-
tions. Samples were stored at − 80 °C until use.

Immunoblotting

Equal concentrations of TBS fraction of the protein extracts
(15 μg) were heated with sample buffer (3.2% SDS, 32%
glycerol, 0.16% bromophenol blue, 100 mM Tris–HCl,
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pH 6.8, 8% 2-mercaptoethanolw/v) and separated on Bio-Rad
Criterion Stain-free 4–20% SDS-PAGE gels. The gels were
activated for 1 min using Bio-Rad chemiDoc MP imaging
system prior to transfer of proteins to a 0.45-μm PVDF mem-
brane. The membranes were imaged for total protein using
Bio-Rad chemiDoc MP imaging system. Subsequently, the
membranes were blocked with 5% milk powder in TBST for
1 h at room temperature and incubated overnight in apoD
primary antibody (Santacruz, sc-373965, 1:2000) prior to pro-
tein detection using horseradish peroxidase-conjugated sec-
ondary antibodies (Bio-Rad) with enhanced chemilumines-
cence (Amersham ECL Plus Western Blot Detection
System, GE Healthcare). The protein band in each gel lane
was normalized to total protein using Bio-Rad image lab
software.

Cell Culture

U87-MG cell line (astroglioma) obtained from ATCC was
used as apoD is highly expressed in astrocytic cells in vivo.
To obtain an apoD-overexpressing stable cell line, the cells
were transfected with human apoD plasmid (obtained from
OriGENE) using Lipofectamine 3000 as per manufacture’s
protocol and then maintained in EMEMmedia with 10% fetal
bovine serum (FBS) and 0.5 mg/ml Geneticin for 2 weeks.
After the initial selection process, the cells were maintained in
media with 0.25 mg/ml Geneticin. The cells were plated in a
six well dish at the density of 1 × 105cells/ml and treated with
300 μM of H2O2 for 24 h to induce oxidative stress. The
experiments were repeated in triplicates for three times.

RNA Extraction and qPCR

RNAwas extracted from the cells using Relia Prep RNA cell
Miniprep system (promega) as per manufacture’s protocol.
Analysis of APP and TARDBP expression was performed
using iScript cDNA synthesis Kit and SSO advanced SYBR
green mix on Bio-Rad CFX connect system. Amplification
was carried out with 40 cycles of 94 °C for 15 s and 60 °C
for 1 min. The details of the primers used for the study is as
follows-APP (F: 5′CCGCTGCTTAGTTGGTGAGTTTGT-3′
and R: 5′-ACGGTGTGCCAGTGAAGATGAGTT-3′),
TARDBP (F 5′-CGGCCTAGCGGGAAAAGTAA-3′ and
R:5′TGGAAACTGGGCTGTAACCG-3′), β-actin (F: 5′-
GAATTCTGGCCACGGCTGCTTCCAGCT-3′, and R: 5′-

AAGCTTTTTCGTGGATGCCACAGGACT-3′) 5.8S for-
ward 5′-GGTGGATCACTCGGCTCGT-3′, and R: 5′-
GCAAGTGCGTTCGAAGTGTC-3′, Cyclophilin A (F: 5′-
AGGGTTCCTGCTTTCACAGA-3 ′and R: 5 ′-GTCT
TGGCAGTGCAGATGAA-3′).

All gene expression was normalized to the housekeeper
genes β-actin, Cyclophilin A, and 5.8S. A no-template control
was included for each PCR amplification. The level of expres-
sion for each gene was calculated using the comparative
threshold cycle (CT) value method with the formula 2−ΔΔCt

(where ΔΔCT =ΔCT sample −ΔCTreference).

Data Analysis

All statistical analyses for post-mortem apoD expression in
human brain were performed using SPSS statistical software
using univariate analysis covarying for age, sex, and gender,
with a p value < 0.05 considered significant. The relative ex-
pression of apoD in human brain tissue is expressed as a
percentage of control. The analysis for cell models was com-
pleted using Welch’s t test on Prism Graphpad, p value < 0.05
was considered significant.

Results

ApoD Expression in FTLD and AD

The relative expression of apoD in post-mortem brain tissue of
FTLD and AD samples was analyzed in the highly affected
superior frontal cortex (SFC) and inferior temporal cortex
(ITC) using western blotting. There was no significant differ-
ence in soluble apoD levels in FTLD compared to controls in
either of the regions analyzed [C vs FTLD-TDP43-SFC; p =
0.262, ITC; p = 0.490]. This is in contrast to AD where we
confirm previous findings of significantly increased apoD
protein levels [C vs AD–SFC; p = 0.005, ITC; p = 0.002]
(Belloir et al. 2001; Glockner and Ohm 2003; Desai et al.
2005; Bhatia et al. 2013) (Fig. 1a, b). Comparison of FTLD
cases with either TDP43 or tau pathology found no significant
differences in the relative soluble apoD levels even in the most
affected superior frontal cortex between these groups [FTLD-
TDP43 vs FTLD-tau, p = 0.367] (Fig. 1a). These data suggest
that there are significant differences in the expression of TBS-
soluble apoD between FTLD and AD, two different

Table 1 Demographic and
pathological details of control,
FTLD-TDP43, FTLD-tau, and
AD cohorts. Values are given as
mean ± standard deviation for age
and post-mortem delay (PMI)

Group N Age PMI (h) Gender (M/F)

Control 11 79.5 ± 12.1 16.3 ± 6.5 5/6

FTLD-TDP43 10 72.9 ± 13 24 ± 8.7 5/5

FTLD-tau 8 73.9 ± 5.8 12.5 ± 9 4/4

AD 7 (superior frontal) 73.7 ± 7.5 2.3 ± 0.7 3/4
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neurodegenerative dementias. As the expression of apoD has
not been previously studied in FTLD, we also analyzed the
SDS-soluble and SDS-insoluble (gHCl soluble) fraction from
the superior frontal cortex in the diseased cohorts. There was
no significant difference in apoD expression in either SDS-
soluble (Suppl. Fig. 1a,b,c) or gHCL-soluble fractions (Suppl.
Fig. 2) in any of the disease groups when compared to con-
trols. Furthermore, we did not detect any specific higher mo-
lecular weight aggregates in gHCl fractions in either FTLD or
AD compared to controls (Suppl. Fig. 2).

Effect of apoD on TARDBP and APP Expression
Under Oxidative Stress

As mentioned previously, TARDBP is the gene encoding the
protein that deposits in the pathological aggregates in FTLD-
TDP. Therefore, we analyzed the effect of apoD on TARDBP.
We found that apoD overexpression has no impact on

endogenous TARDBP expression (Fig. 2a). To determine if
increased apoD could impact AD pathology, we analyzed
the expression of amyloid precursor protein (APP) in apoD-
overexpressing U87 cells. We observed no change in
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Fig. 1 Relative expression of ApoD in TBS-soluble fraction in a the
superior frontal cortex and b inferior temporal cortex. Data represents
mean ± SD. Significance is at *p < 0.05
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expression ofAPP in apoD-overexpressing U87 cells (Fig. 3a)
suggesting that the expression of apoD is unlikely to impact
on astrocytic β-amyloid production.

Oxidative stress induces pathological modifications in
TDP43 (Cohen et al. 2012; Iguchi et al. 2012) and results in
increased β-amyloid production (Paola et al. 2000).

Therefore, we analyzed the effect of apoD on TARDBP and
APP expression under oxidative stress. Different concentra-
tion and exposure times of hydrogen peroxide (H2O2) were
used to induce oxidative stress to the cells, and based on cell
viability assays we used the 300 μM H2O2, 24-h treatment to
induce oxidative stress (suppl. Fig. 3). We found that apoD
has no effect on TARDBP expression under oxidative stress
(Fig. 2b, c). However, we found that in the presence of H2O2,
APP expression was significantly upregulated in U87 cells but
this effect was not evident in apoD-overexpressing U87 cells
(Fig. 3b, c).

Discussion

This study analyzes the expression of apoD in FTLD, AD, and
control brain tissue. As apoD expression in FTLD has not
been studied previously, we analyzed the apoD expression in
TBS soluble (cytosolic), SDS soluble, and SDS insoluble
(gHCl soluble) in FTLD. We found that unlike AD, there
was no change in cytosolic apoD expression in either FTLD-
TDP or FTLD-tau compared to age-matched controls.
Furthermore, there was no difference in the expression of cy-
tosolic apoD between FTLD-TDP and FTLD-tau, two major
pathological forms of FTLD (Fig. 1a, b). We also found no
difference in apoD expression in SDS-soluble and gHCl-
soluble fraction in either FTLD-TDP or FTLD-tau.
Furthermore, in contrast to our previous study which has re-
ported apoD dimers in gHCL-soluble fraction (with patholog-
ical aggregates) in the hippocampal region in AD (Bhatia et al.
2013), we found no specific apoD aggregates in either FTLD
groups or AD in the superior frontal cortex. This suggests that
apoD may be present as a dimer only in the highly affected
hippocampal region in AD and not in the superior frontal
cortex. These results indicate that in contrast to AD where
cytosolic apoD expression is increased along with presence
of apoD dimers in the highly affected hippocampal region,
apoD expression is unaltered and apoD does not seem to ag-
gregate in the most affected superior frontal region in FTLD.

A major difference between AD and FTLD is the deposi-
tion of extracellular β-amyloid pathology found in AD, while
both have abnormal intracellular protein deposits in the re-
maining cortical neurons (Ferrer et al. 2014; Irwin et al.
2015; Tan et al. 2015). Therefore, β-amyloid-induced oxida-
tive stress or the presence of β-amyloid itself may be respon-
sible for increased apoD in AD as suggested previously
(Martinez et al. 2012).

Apart from extracellular β-amyloid aggregates, AD is also
characterized by the presence of intracellular tau deposition.
Intracellular tau pathology also underlies a proportion of cases
with FTLD (Arai et al. 2006; Leyton and Hodges 2010;
Goedert et al. 2012). Our data demonstrate that tau deposition
in FTLD does not increase apoD protein expression,
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Fig. 3 Relative expression of APP in (a) U87- and apoD-overexpressing
cell line, b in U87 cells, and c U87 apoD cells under control vs treated
(300 mm H2O2 for 24 h) conditions. Data represents mean ± SD of n = 3
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suggesting that neuronal tau accumulation of itself does not
cause astrocytic upregulation of apoD. Also, the type of tau
accumulations in AD versus FTLD differs, with both 3 repeat
and 4 repeat tau isoforms incorporated into the neuritic pathol-
ogy in AD, while only 4 repeat tau isoforms are incorporated
into the neuritic pathology of the FTLD-tau cases analyzed in
this study (Goedert et al. 1989; Yoshida 2006; Dickson et al.
2011). Astrocytes have 4 repeat tau isoforms (Nishimura et al.
1997; Arai et al. 2001) and it may be that increasing 3 repeat
tau protein is a trigger in AD compared with the FTLD.

Alternatively, it may be different in the potential reactivity
of astrocytes in these two neurodegenerative dementias that
affect apoD expression. Astrocytic apoptosis correlates with
the degree of atrophy in FTLD (Broe et al. 2004) and the early
loss of astrocytes in FTLD may explain the lack of any poten-
tial increase in apoD protein levels in these cases. In fact,
reduced astrocytic apoD results in stress-induced astrocytic
apoptotic cell death (Bajo-Grañeras et al. 2011a) which may
further contribute to the degeneration of these cells in FTLD.

Furthermore, our data suggests that oxidative stress in-
creases β-amyloid production in astrocytes, and that such
increased β-amyloid production can be ameliorated by
increasing the expression of apoD, in agreement with pre-
vious studies (Desai et al. 2005; Martinez et al. 2012; Li
et al. 2015). Overall, this data is consistent with an in-
crease expression of astrocytic apoD protein in associa-
tion with increased oxidation and β-amyloid production
in AD. We also found that in the presence of H2O2, there
was no difference in TDP43 expression in U87 cells
(Fig. 2), a finding in line with the concept that oxidative
stress impacts on TDP43 in a neuron-specific way
(Cacabelos et al. 2016), and also in line with our data
showing no change in apoD in FTLD-TDP.

Previous studies using apoD knock out mice have
shown that apoD specifically protects against oxidation
of lipids in the brain while it has no effect on protein
oxidation (Ganfornina et al. 2008). A large number of
studies have shown increased lipid peroxidation in the
AD brain (Pratico et al. 1998; Williams et al. 2006;
Fukuda et al. 2009). In comparison, only one study has
assessed lipid peroxidation in FTLD and reports that F2
isoprostane (lipid peroxidation marker) levels are not in-
creased in FTLD compared to controls (Yao et al. 2003).
The absence of excessive oxidation of brain lipids in
FTLD suggests that clearance of lipid peroxidation prod-
ucts may be well preserved in FTLD and therefore, apoD
levels remain unaltered. Overall, the data show that the
neuroprotective apoD is increased in AD brain tissue but
not in FTLD, suggesting significantly different reactions
to oxidative stress in these two forms of dementia—the
apoD response in AD appears to be somewhat neuropro-
tective, while its unchanging level in FTLD may exacer-
bate the neurodegeneration.
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